首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two distinct regions of shock-associated magnetic clouds, (i) magnetically turbulent regions formed due to interaction between magnetic cloud and ambient magnetic field i.e. turbulent interaction region (TIR), and magnetically quiet region called magnetic cloud have been considered separately and correlation of interplanetary plasma and field parameters, magnetic field strength (B) and solar wind speed (V), with cosmic ray intensity (I) have been studied during the passage of these two regions. A good correlation between B and I and between V and I has been obtained during the passage of sheath when the magnetic field is high and turbulent, while these correlation have been found to be poor during the passage of magnetic clouds when the field is strong and smooth. Further, there is a positive correlation between enhancement in field strength and its variance in the sheath region. These results strongly support the hypothesis that most Forbush decreases are due to scattering of particles by region of enhanced magnetic turbulence. These results also suggest that it will provide a better insight if not the magnetic field enhancement alone but in addition, the nature of magnetic field enhancement is also considered while correlating the field enhancements with depressions in cosmic rays. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
We have examined WIND magnetic field and plasma data during the first half of 1998 in order to find encounters of this spacecraft with magnetic clouds. From the events obtained through this search, we have selected four of them taking into account their solar origin. The four magnetic clouds are related to halo or partial halo CMEs, but the morphology of the active region before the eruption is sigmoidal for three of them and non-sigmoidal for the other one. We have analyzed these events in the solar wind by fitting the experimental data to a non-force-free flux-rope model. We conclude that both kinds of active regions develop in the solar wind an ejection with a flux-rope topology.  相似文献   

3.
Influence of magnetic clouds on cosmic ray intensity variation   总被引:1,自引:0,他引:1  
The data from a high counting rate neutron monitor has been analysed to study the nature of galactic cosmic-ray transient modulation associated with three classes of magnetic clouds, i.e., clouds associated with shock, stream interface and cold magnetic enhancement.It is found that the decreases in cosmic-ray intensity which are associated with clouds preceded by a shock, are very high (Forbush-type) and these decreases start earlier than the arrival of the cloud at the Earth. From the study of the time profile of these decreases it is found that the onset time of a Forbush-type decrease produced by a shock-associated cloud starts nearly at the time of arrival of the shock front at the Earth and the recovery is almost complete within a week.The decreases in cosmic-ray intensity associated with clouds followed by a stream interface are smaller in magnitude and larger in duration. The depression starts on the day of the arrival of the cloud.The decreases associated with the third category of clouds, i.e., clouds associated with cold magnetic enhancement (a region in which plasma temperature is anomalously low and the magnetic field strength is enhanced) are of still smaller amplitude and duration. The decrease in this case starts on the day the cloud arrives at the Earth.It seems that the Forbush decrease modulating region consists of a shock front followed by a plasma sheath in which the field intensity is high and turbulent. The amplitude of decrease is related to the field magnitude and the speed of the cloud. Both shocked plasma and the magnetic cloud are influential in determining the time profile of these decreases. In our view it is not the magnetic field strength or the topology alone which is responsible for the cosmic-ray depression. The most likely additional effect is the increased degree of turbulence.  相似文献   

4.
We test a new emission mechanism in pulsar magnetospheres, eventually responsible in part for the high level of observed radio radiation. This is carried out by comparing the efficiency of the two-stream instability of Langmuir waves in a pulsar emission region, where the stationary and non-stationary characters of pair plasma outflows produced in the gap region are characterized by two different time-scales. On the shorter time-scale, the Ruderman &38; Sutherland 'sparking' phenomenon leads to the creation of pair plasma clouds, in motion along magnetic field lines, that contain particles with a large spectrum of momenta. The overlapping of particles with different energies produced in successive clouds results in an efficient 'two stream'-like instability. This effect is a consequence of the non-stationary character of the pair plasma produced in the gap region, just above the magnetic poles of the neutron star. On a long time-scale, resulting pair plasma outflows in pulsar magnetospheres can be treated as stationary. In this case, the instability which results from interaction between existing primary beam particles and the pair plasma is negligible, whereas the instability owing to interaction between electrons and positrons of the pair plasma itself, and more precisely to their relative drift motion along curved magnetic field lines, is effective. We derive characteristic features of the triggered instability, using specific distribution functions to describe either particles in the assembly of clouds or relative drifting of electrons and positrons in these same plasma clouds. Although linear and local, our treatment suggests that non-stationary effects may compete with, or even dominate over, drifting effects in parts of pulsar emission regions.  相似文献   

5.
Fadaaq  M.  Badruddin  B. 《Astrophysics》2021,64(2):210-218
Astrophysics - We study the modulation of galactic cosmic rays due to magnetic clouds observed during solar cycles 23 and 24 (1996-2018). We utilize solar wind plasma and field data together with...  相似文献   

6.
Cid  C.  Hidalgo  M.A.  Nieves-Chinchilla  T.  Sequeiros  J.  Viñas  A.F. 《Solar physics》2002,207(1):187-198
Data observed during spacecraft encounters with magnetic clouds have been extensively analyzed in the literature. Moreover, several models have been proposed for the magnetic topology of these events, and fitted to the observations. Although these interplanetary events present well-defined plasma features, none of those models have included a simultaneous analysis of magnetic field and plasma data. Using as a starting point a non-force-free model that we have developed previously, we present a global study of MCs that include both the magnetic field topology and the plasma pressure. In this paper we obtain the governing equations for both magnitudes inside a MC. The expressions deduced are fitted simultaneously to the measurements of plasma pressure and magnetic field vector. We perform an analysis of magnetic field and plasma WIND observations within several MCs from 1995 to 1998. The analysis is confined to four of these events that have high-quality data. Only in one fitting procedure we obtain the orientation of the magnetic cloud relative to the ecliptic plane and the current density of the plasma inside the cloud. We find that the equations proposed reproduce the experimental data quite well.  相似文献   

7.
We analyze a series of complex interplanetary events and their solar origins that occurred between 19 and 23 May 2007 using observations by the STEREO and Wind satellites. The analyses demonstrate the new opportunities offered by the STEREO multispacecraft configuration for diagnosing the structure of in situ events and relating them to their solar sources. The investigated period was characterized by two high-speed solar wind streams and magnetic clouds observed in the vicinity of the sector boundary. The observing satellites were separated by a longitudinal distance comparable to the typical radial extent of magnetic clouds at 1 AU (fraction of an AU), and, indeed, clear differences were evident in the records from these spacecraft. Two partial-halo coronal mass ejections (CMEs) were launched from the same active region less than a day apart, the first on 19 May and the second on 20 May 2007. The clear signatures of the magnetic cloud associated with the first CME were observed by STEREO B and Wind while only STEREO A recorded clear signatures of the magnetic cloud associated with the latter CME. Both magnetic clouds appeared to have interacted strongly with the ambient solar wind and the data showed evidence that they were a part of the coronal streamer belt. Wind and STEREO B also recorded a shocklike disturbance propagating inside a magnetic cloud that compressed the field and plasma at the cloud’s trailing portion. The results illustrate how distant multisatellite observations can reveal the complex structure of the extension of the coronal streamer into interplanetary space even during the solar activity minimum. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

8.
Magnetic field and plasma properties of the solar wind measured in near-Earth space are a convolution of coronal source conditions and in-transit processes which take place between the corona and near-Earth space. Elemental composition and heavy ion charge states, however, are not significantly altered during transit to Earth and thus such properties can be used to diagnose the coronal source conditions of the solar wind observed in situ. We use data from the Advanced Composition Explorer (ACE) spacecraft to statistically quantify differences in the coronal source properties of interplanetary coronal mass ejections (ICMEs). Magnetic clouds, ICMEs which contain a magnetic flux-rope signature, display heavy ion properties consistent with significantly hotter coronal source regions than non-cloud ICMEs. Specifically, magnetic clouds display significantly elevated ion charge states, suggesting they receive greater heating in the low corona. Further dividing ICMEs by speed, however, shows this effect is primarily limited to fast magnetic clouds and that in terms of heavy ion properties, slow magnetic clouds are far more similar to non-cloud ICMEs. As such, fast magnetic clouds appear distinct from other ICME types in terms of both ion charge states and elemental composition. ICME speed, rather ICME type, correlates with helium abundance and iron charge state, consistent with fast ICMEs being heated through the more extended corona. Fast ICMEs also tend to be embedded within faster ambient solar wind than slow ICMEs, though this could be partly the result of in-transit drag effects. These signatures are discussed in terms of spatial sampling of ICMEs and from fundamentally different coronal formation and release processes.  相似文献   

9.
In the following study our aim is to analyse the magnetic flux-rope topology of some events observed in the interplanetary medium related to ejecta. The magnetic field structures associated with interplanetary coronal mass ejections are globally classified in magnetic clouds and ejecta. One of the main questions regarding these phenomena concerns their flux-rope or non-flux-rope magnetic field line configuration. From the experimental measurements the only way to elucidate such a question is analysing the corresponding data by means of a flux-rope physical model. After selecting the ejecta events observed during the period 1997?–?2006, we have analysed them in light of an analytical model with that topology for the magnetic field components, initially developed for magnetic clouds, and with a non-force-free character; then, incorporating the expansion of the magnetic structure during their evolution in the interplanetary medium. Different parameters obtained from the fitting of the model are related to the orientation of the axis of the magnetic flux-rope structure and, additionally, the closest distance approach of the spacecraft to its axis. One of the main conclusions achieved concerns the fact that the axes of most of those structures are close to the Sun–Earth line, which implies that the passage of the spacecraft through the corresponding ejecta event is by its flank. In general, we show a rough procedure for the analysis and classification of ejecta in terms of their magnetic field topology.  相似文献   

10.
Lepping  R.P.  Berdichevsky  D.B.  Szabo  A.  Arqueros  C.  Lazarus  A.J. 《Solar physics》2003,212(2):425-444
Using WIND magnetic field (MFI) and plasma (SWE) data, an `average' profile of an interplanetary magnetic cloud was developed in terms of five physical (scalar) quantities based on appropriately selected individual clouds. The period of study was from early 1995 to late in 1998, primarily during the quiet part of a solar cycle. The physical quantities are: magnetic field magnitude, proton density, solar wind bulk speed, proton thermal speed, and proton plasma beta. Selection of the clouds was based on two considerations: (1) their `quality', determined objectively from the application of a static magnetic field model of cloud field structure, had to be good, and (2) distant spacecraft approaches from the cloud axes were not accepted. Nineteen clouds resulted out of 35 original cases. A superposed epoch analysis was performed on the 5 parameters generating summary profiles of a generic magnetic cloud at 1 AU. The density within the generic magnetic cloud reached a distinct minimum near the center and peaked in the trailing part (closest to Sun) after a slow rise. The individual clouds fall into two classes, those that have such an enhanced density feature (about of them) and those that have an overall nearly flat density profile. For the first 85% of the generic magnetic cloud the bulk speed decreased almost uniformly by 45 km s–1 indicating marked expansion over 1 AU. The field intensity peaked very near the cloud's center but was noticeably asymmetric. Proton thermal speed was quite symmetric with local maxima at the front, center, and rear. Proton plasma beta was low throughout the cloud (0.12 on average), but had a broad minimum at its center. The relative degree of fluctuation level for the parameters ranged from the most quiet for both speed and field magnitude, to the most `noisy' for proton plasma beta, with fluctuations in density and thermal speed at intermediate levels, all being below 0.2, based on a sample-scale of frac1100 of the cloud duration. These profiles may be useful in constraining future structural and thermodynamic models of clouds with regard to their solar birth conditions and interplanetary evolution.  相似文献   

11.
A subset of CMEs, called interplanetary magnetic clouds (MCs), are observed to have systematic rotation [northward to southward (NS) or southward to northward (SN)] in their field structures. These MCs identified in the heliospheric plasma and field data at 1 AU may have different features associated with them. These structures (NS/SN) may be isolated MC moving with the ambient solar wind. MCs (NS/SN) may also be associated with shock/sheath region, formed due to compression of the ambient plasma/field ahead of them. A fraction from each of these four types of MCs have additional features, being ‘pushed’ by fast solar wind streams from coronal holes, forming interaction region (IR) between MCs and high-speed solar wind streams (HSS). Using these different sets of MCs, we have done a detailed study of the geoeffectiveness of NS and SN turning MCs and their associated features (shock/sheath, IR and HSS). To study the process that produces the geomagnetic disturbances and influences its amplitude/duration, we have utilized the interplanetary plasma and field parameters, namely, plasma velocity, density, temperature, pressure, field strength and its north-south component, during the passage of these structures with different associated properties. Differences in the geoeffectiveness of MCs with different structural and dynamical properties have been identified. The possible role of high-speed stream in influencing the recovery time (and hence duration) of geomagnetic disturbance has also been investigated. A best-fit equation representing the relation between level of the geomagnetic activity (due to MCs) and interplanetary plasma/field parameter has been obtained.  相似文献   

12.
Highly variable conditions prevail in the geospace environment due to the variations in Solar activity. The characteristics of the magnetic clouds (MCs) and their effects on geosphere, which have occurred during the period January 1996 to December 2006; have been investigated. No systematic trend has been observed between MCs and Solar activity cycle which is analyzed on the basis of maximum Sunspot number in that particular year. 85% MCs are found to be geoeffective. MCs are divided into two major classes: unipolar and bipolar. Unipolar MCs are of south (S) or north (N) type while bipolar MCs are of south-north (SN) or north-south (NS) type. During Solar cycle 23, SN-type MCs dominated over NS-type MCs. Highly intense geomagnetic storms (GMSs) of Dst <−300 nT follow from SN or S-type MCs. No preference is observed for right handed (RH) or left handed (LH) clouds for being geoeffective. MCs of very high speed lead to intense GMSs. The correlation coefficient (r) of southward component of magnetic field (Bz), total magnetic field (B) and their products with plasma flow speed (VB and VBz) with Dst are observed to be r=0.78, −0.81, −0.79 and 0.82, respectively, which suggests that these parameters are reliable indicators of the strength of GMS. SN clouds do not always lead to more fall in Dst value (or lead to high strength of GMS) than NS clouds for similar value of Bz minimum associated with both type of MCs.  相似文献   

13.
Donald V. Reames 《Solar physics》2010,265(1-2):187-195
We investigate the topology of magnetic clouds using energetic particles from a variety of sources outside the clouds as probes to remotely sense the interconnections of the magnetic field. We find that only a small percentage of field lines in magnetic clouds are truly closed directly to the Sun, so as to exclude particles from an external source. Field lines that are open to the outer heliosphere must be mixed with closed field lines on a fine spatial scale in the clouds to explain the simultaneous observation of anomalous cosmic rays from the outer heliosphere and of counter-streaming suprathermal electrons from the corona. The results of this paper show that, given sufficient time, particles accelerated at shock waves outside magnetic clouds have access to the interior and to a wide region of solar longitude in interplanetary space surrounding the clouds.  相似文献   

14.
Magnetic fields are observed everywhere in the universe. In this review, we concentrate on the observational aspects of the magnetic fields of Galactic and extragalactic objects. Readers can follow the milestones in the observations of cosmic magnetic fields obtained from the most important tracers of magnetic fields, namely, the star-light polarization, the Zeeman effect, the rotation measures (RMs, hereafter) of extragalactic radio sources, the pulsar RMs, radio polarization observations, as well as the newly implemented sub-mm and mm polarization capabilities. The magnetic field of the Galaxy was first discovered in 1949 by optical polarization observations. The local magnetic fields within one or two kpc have been well delineated by starlight polarization data. The polarization observations of diffuse Galactic radio background emission in 1962 confirmed unequivocally the existence of a Galactic magnetic field. The bulk of the present information about the magnetic fields in the Galaxy comes from anal  相似文献   

15.
Laboratory experiments on the interaction of a plasma flow, produced by laser ablation of a solid target with the inhomogeneous magnetic field from the Zebra pulsed power generator demonstrated the presence of strong wave activity in the region of the flow deceleration. The deceleration of the plasma flow can be interpreted as the appearance of a gravity-like force. The drift due to this force can lead to the excitation of flute modes. In this paper a linear dispersion equation for the excitation of electromagnetic flute-type modes with plasma and magnetic field parameters, corresponding to the ongoing experiments is examined. Results indicate that the wavelength of the excited flute modes strongly depends on the strength of the external magnetic field. For magnetic field strengths ∼0.1 MG the excited wavelengths are larger than the width of the laser ablated plasma plume and cannot be observed during the experiment. But for magnetic field strengths ∼1 MG the excited wavelengths are much smaller and can then be detected.  相似文献   

16.
Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga (1982) and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking; six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected control periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear; proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients.  相似文献   

17.
We studied the cosmic ray intensity variation due to interplanetary magnetic clouds during an unusual class of low amplitude anisotropic wave train events. The low amplitude anisotropic wave train events in cosmic ray intensity have been identified using the data of ground based Deep River neutron monitor and studied during the period 1981–1994. Even though the occurrence of low amplitude anisotropic wave trains does not depend on the onset of interplanetary magnetic clouds, but the possibility of occurrence of these events cannot be overlooked during the periods of the interplanetary magnetic cloud events. It is observed that the solar wind velocity remains higher (> 300) than normal and the interplanetary magnetic field B remains lower than normal on the onset of the interplanetary magnetic cloud during the passage of low amplitude wave trains. It is also noted that the proton density remains significantly low during high solar wind velocity, which is expected. The north south component of interplanetary magnetic field Bz turns southward to one day before the arrival of cloud and remains in the southward direction after the arrival of a cloud. During these events the cosmic ray intensity is found to increase with increase of solar wind velocity. The superposed epoch analysis of cosmic ray intensity for these events during the onset of interplanetary magnetic clouds reveals that the decrease in cosmic ray intensity starts not at the onset of the cloud but after a few days. The cosmic ray intensity increases on arrival of the magnetic cloud and decreases gradually after the passage of the magnetic cloud.  相似文献   

18.
Predictions of Energy and Helicity in Four Major Eruptive Solar Flares   总被引:1,自引:0,他引:1  
In order to better understand the solar genesis of interplanetary magnetic clouds (MCs), we model the magnetic and topological properties of four large eruptive solar flares and relate them to observations. We use the three-dimensional Minimum Current Corona model (Longcope, 1996, Solar Phys. 169, 91) and observations of pre-flare photospheric magnetic field and flare ribbons to derive values of reconnected magnetic flux, flare energy, flux rope helicity, and orientation of the flux-rope poloidal field. We compare model predictions of those quantities to flare and MC observations, and within the estimated uncertainties of the methods used find the following: The predicted model reconnection fluxes are equal to or lower than the reconnection fluxes inferred from the observed ribbon motions. Both observed and model reconnection fluxes match the MC poloidal fluxes. The predicted flux-rope helicities match the MC helicities. The predicted free energies lie between the observed energies and the estimated total flare luminosities. The direction of the leading edge of the MC’s poloidal field is aligned with the poloidal field of the flux rope in the AR rather than the global dipole field. These findings compel us to believe that magnetic clouds associated with these four solar flares are formed by low-corona magnetic reconnection during the eruption, rather than eruption of pre-existing structures in the corona or formation in the upper corona with participation of the global magnetic field. We also note that since all four flares occurred in active regions without significant pre-flare flux emergence and cancelation, the energy and helicity that we find are stored by shearing and rotating motions, which are sufficient to account for the observed radiative flare energy and MC helicity.  相似文献   

19.
Magnetic clouds were observed in the solar wind between 2–4 AU by Voyagers 1 and 2, indicating that they are stable enough to persist without major changes out to such distances. The average size in radial extent of the clouds observed at these distances was 0.47 AU, compared to 0.25 for clouds observed at 1 AU. Assuming that these numbers are representative, we estimate that the clouds were expanding at a speed of the order of 45 km s-1. This is consistent with the expansion speed derived from the difference of the speeds of the front and rear boundaries of the clouds, 33 km s-1. The average Alfvén speed at the front and rear boundaries was 104 km s-1, so our estimated expansion speed is nearly half of the Alfvén speed, consistent with an earlier estimate of the expansion speed of clouds between the Sun and 1 AU. The magnetic field configuration cannot be determined uniquely, but it is highly ordered and consistent with the passage of some kind of loop. The simple model of a magnetic tongue with magnetic field lines in planes, e.g., meridian planes, is not consistent with the data.  相似文献   

20.
In this paper, we show that if the broad-line region clouds are in approximate energy equipartition between the magnetic field and gravity, as hypothesized by Rees, there will be a significant effect on the shape and smoothness of broad emission-line profiles in active galactic nuclei. Linewidths of contributing clouds or flow elements are much wider than their thermal widths, because of the presence of non-dissipative magnetohydrodynamic waves and their collective contribution produce emission-line profiles broader and smoother than would be expected if a magnetic field were not present. As an illustration, a simple model of isotropically emitting clouds, normally distributed in velocity, is used to show that smoothness can be achieved for less than ∼8×104 clouds and may even be as low as a few hundred. We conclude that magnetic confinement has far-reaching consequences for observing and modelling active galactic nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号