首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The physical properties of young stellar objects are studied as functions of the initial spatial distributions of the gas surface density Σ and angular velocity Ω in pre-stellar cores using numerical hydrodynamic simulations. Two limiting cases are considered: spatially homogeneous cores with Σ = const and Ω = const and centrally concentrated cores with radius-dependent densities Σ ∝ r −1 and Ω ∝ r −1. The degree of gravitational instability and protostellar disk fragmentation is mostly determined by the initial core mass and the ratio of the rotational to the gravitational energy, and depends only weakly on the initial spatial configuration of pre-stellar cores, except for the earliest stages of evolution, when models with spatially homogeneous cores can be more gravitationally unstable. The accretion of disk matter onto a protostar also depends weakly on the initial distributions of Σ and Ω, with matter from the collapsing core falling onto the disk at a rate that is slightly higher in models with spatially homogeneous cores. An appreciable dependence of the disk mass, disk radius, and the disk-to-protostar mass ratio on the initial density and angular velocity profiles of the parent core is found only for class 0 young objects; this relationship is not systematic in the later I and II stages of stellar evolution. The mass of the central protostar depends weakly on the initial core configuration in all three evolutionary stages.  相似文献   

2.
Published data on rotation curves and the radial distribution of the surface density of neutral hydrogen (HI) in galaxies with a low gas content are used to calculate radial profiles of the volume density of HI in the planes of the galactic disks. A self-consistent model for the disks is used, taking into account the self-gravitation of the gas and the presence of a pseudo-isothermal, massive halo. Eleven low-surface-brightness (LSB) galaxies and three S0 galaxies in which HI is detected are considered. The gaseous and stellar disks are taken to be in equilibrium and axially symmetric, and the velocity dispersion in the stellar disk to be equal to the marginal value for gravitational perturbations; in general, this gives an upper limit for the gas density. It is shown that, on average, the gas volume densities are two orders of magnitude lower in LSB galaxies than in galaxies with normal brightnesses at the same R values, while the three S0 galaxies occupy an intermediate position. The volume density of gas observed at the galaxy peripheries are less than 10−27 g/cm3, even in the plane of the disk. The role of the UV background in ionizing outer regions is discussed. The obtained gas densities can be used to estimate the star-forming efficiency in regions of low density.  相似文献   

3.
Vertical profiles of trace metal (Cd, Pb, Zn, Cu, Ni) concentrations, organic matter content, carbonate content and granulometric composition were determined in two sediment cores from the submarine pit Dragon Ear (Middle Adriatic). Concentrations of the analyzed metals (Cd: 0.06–0.12 mg kg−1, Pb: 28.5–67.3 mg kg−1, Zn: 17.0-65.4 mg kg−1, Cu: 21.1–51.9 mg kg−1, Ni: 27.8–40.2 mg kg−1) were in usual range for Adriatic carbonate marine sediments. Nevertheless, concentrations of Cu, Zn, and especially Pb in the upper layer of sediments (top 12 cm) were higher than in bottom layer, while Cd and Ni concentration profiles were uniform. Regression analysis and principal component analysis were used to interpret distribution of trace metals, organic matter and carbonate content in sediment cores. Results of both analysis showed that concentrations of all trace metals in the core below the entrance to the pit were significantly positively correlated with organic matter and negatively correlated with carbonate, while in the core more distant from the entrance only Pb showed significant positive correlation with organic matter. Obtained results indicated that, except for lead which was enriched in surface sediment, in the time of sampling (before the building of the nautical marina) investigated area belonged to unpolluted areas.  相似文献   

4.
Using the results of our Hα interferometric observations and observational data on the 21 cm and CO lines, we have analyzed the structure and kinematics of the interstellar medium in the extended vicinity of the star WR 137 and the supernova remnants CTB 87 and G73.9+0.9. A shell structure with a radius of up to 40′ observable in optical lines has been discovered around WR 137. The high-velocity motions of ionized hydrogen inside this shell can be interpreted as expansion of the gas swept out by the wind of WR 137 at velocities of up to 60 km/s. The ionized hydrogen near WR 137 emits at the systematic velocity V LSR ∼ 6–18 km/s. The expansion ofG73.9+0.9 at a velocity of up to 55 km/s has been confirmed. The systematic velocities of the ionized hydrogen toward this supernova remnant are V LSR ≃ −14…+14 km/s. An HI shell around G73.9+0.9 has been detected at velocities V LSR≃−14…−8 km/s. A very faint optical shell of CTB 87 with a size of about 20′ has also been detected. Evidence that CTB 87 is located in the Cygnus Arm is presented.  相似文献   

5.
Observations of 26 regions of low-mass star formation and 17 regions of massive star formation in the 5−1-40 E, 70-61 A +, 80-71 A +, and 2K-1K methanol lines at 44.1, 84.5, 95.2 GHz, and 96.7 GHz yielded detections of methanol emission in 11 low-mass and 12 high-mass regions. The strongest lines in the low-mass regions were found towards bipolar outflows driven by Class 0 protostars with luminosities higher than or of the order of 10 L . These lines usually consist of cores 1–2 km s−1 in width, which are emitted by quiescent gas, and broader wings, emitted by gas accelerated by high-velocity jets. The temperature of the accelerated gas derived from rotational diagrams and statistical equilibrium calculations is roughly 20–50 K. This means that a significant fraction of the accelerated gas cools to such temperatures. The widths of the lines detected in the massive star-forming regions are 2–3 km s−1 or higher. Weak, broad wings were found towards only two sources: L1287 and AFGL5142. For most sources, the statistical-equilibrium calculations yielded gas temperatures of about 20–30 K and densities of about 104–106 cm−3, which are typical for warm clouds. However, different transitions emit in regions with different physical conditions located within the main beam of the telescope. Most of the 96.7 GHz emission arises in warm gas with kinetic temperatures of about 30 K, while most of the 95.2 GHz emission may arise in hot regions around Young Stellar Objects and/or be related to the wings of bipolar outflows. Published in Russian in Astronomicheskiĭ Zhurnal, 2007, Vol. 84, No. 1, pp. 48–59. The article was translated by the author.  相似文献   

6.
The α − β transition of quartz was successfully observed with using a single sample by means of the rectangular parallelepiped resonance (RPR) method. An oriented rectangular parallelepiped of α-quartz single crystal was prepared and the resonant frequencies of 30–11 vibrational modes were measured from room temperature to 700°C. The softening of quartz crystal was observed as the significant reduction of resonant frequencies near the α–β transition. The present study is the first application of the RPR method to the study of phase transition. The complete set of elastic constants of α- and β-quartz were determined as a function of temperature by the least-squares inversion of the measured frequency data obtained by a single run. This is a merit yielded by the RPR method. It is shown near the α − β transition in both α- and β-quartz that the elastic parameters decrease proportionally to |TT 0|n , where T is temperature and T 0 is the transition temperature, 573.0°C for α-quartz and 574.3°C for β-quartz. It was also seen that linear incompressibilities K 1 = (C 11 +C 12 +C 13)/3 and K 3 = (C 33 +2C 13)/3 decrease rapidly toward the transition, whereas, shear moduli C 44, C S1 = (C 11 +C 33 -2C 13)/4 and C S3 = (C 11 -C 12)/2 = C 66 decrease only slightly. The shear modulus C S3 = C 66 increased slightly in α-quartz. The elastic properties of isotropic aggregate of quartz were calculated, and it is shown that the longitudinal wave velocity significantly decreases at the α − β transition, whereas, the shear wave velocity decreases only slightly.  相似文献   

7.
Isobaric volume measurements for MgO were carried out at 2.6, 5.4, and 8.2 GPa in the temperature range 300–1073 K using a DIA-type, large-volume apparatus in conjunction with synchrotron X-ray powder diffraction. Linear fit of the thermal expansion data over the experimental pressure range yields the pressure derivative, (∂α/∂P) T , of −1.04(8) × 10−6 GPa−1 K−1 and the mean zero-pressure thermal expansion α0, T  = 4.09(6) × 10−5 K−1. The α0, T value is in good agreement with results of Suzuki (1975) and Utsumi et al. (1998) over the same temperature range, whereas (∂α/∂P) T is determined for the first time on MgO by direct measurements. The cross-derivative (∂α2/∂PT) cannot be resolved because of large uncertainties associated with the temperature derivative of α at all pressures. The temperature derivative of the bulk modulus, (∂K T/∂T) P , of −0.025(3) GPa K−1, obtained from the measured (∂α/∂P) T value, is in accord with previous findings. Received: 2 April 1999 / Revised, accepted: 22 June 1999  相似文献   

8.
The unit cell parameters, extracted from Rietveld analysis of neutron powder diffraction data collected between 4.2 K and 320 K, have been used to calculate the temperature evolution of the thermal expansion tensor for gypsum for 50 ≤ T ≤ 320 K. At 300 K the magnitudes of the principal axes are α 11  = 1.2(6) × 10−6 K−1, α 22  = 36.82(1) × 10−6 K−1 and α 33  = 25.1(5) × 10−6 K−1. The maximum axis, α 22 , is parallel to b, and using Institution of Radio Engineers (IRE) convention for the tensor orthonormal basis, the axes α 11 and α 33 have directions equal to (−0.979, 0, 0.201) and (0.201, 0, 0.979) respectively. The orientation and temperature dependent behaviour of the thermal expansion tensor is related to the crystal structure in the I2/a setting. Received 12 February 1998 / Revised, accepted 19 October 1998  相似文献   

9.
We present images of the star-forming regionG23.01–0.41 at 6.7GHz in the Class II methanol maser transition 51–60 A +, produced from archival observations on the European VLBI Network. Our map of the source and its maser spots contains 24 maser components. The data for each spot—absolute coordinates, coordinates relative to the calibration feature, peak flux and flux integrated over the spot, size, position angle, velocity along the line of sight, and line full width at half-maximum—are collected in tabular form. The spatial region occupied by the maser spots is approximated by a 200×130 milliarcsec ellipse in position angle PA = −0.40°, centered on the absolute coordinates α 0 = 18h34m40.282s, δ 0 = −09°00′38.27″ (J2000). If the source is a protoplanetary disk, then, for the distance estimate derived from trigonometric parallax, its diameter is 1800 AU, and the mass of the central protostar is 23.5M .  相似文献   

10.
 The empirical linear relation between volume and logarithm of bulk modulus of a material, discovered by Grover, Getting and Kennedy is taken as the basis for our equation of state. Using the latest experimental information on the adiabatic bulk modulus, the equation of state is applied to the three polymorphs of Mg2SiO4 to develop a consistent dataset of their thermodynamic properties in the temperature range of 200–2273 K and a pressure range of 0.1 MPa–30 GPa. The results imply that the bulk sound velocity contrast (v βv α)/v α increases with temperature along the α–β phase boundary and reaches the value 8.9% at 13.5 GPa, a pressure equivalent to 410 km depth in the Earth. The bulk sound velocity contrast (v γv β)/v β decreases with temperature along the β–γ phase boundary and becomes less than 0.7% at temperatures and pressures equivalent to those associated with the 520-km seismic discontinuity in the Earth. Received: 1 August 2000 / Accepted: 1 March 2001  相似文献   

11.
Community structure and intertidal zonation of the macrobenthos on a macrotidal, ultra-dissipative beach were studied. On the beach of De Panne, Belgium, six transects perpendicular to the waterline (each with five stations) were sampled in September 1995 (summer) and March 1996 (winter). The 30 stations were distributed across the continuum from mean high water spring to mean low water spring in order to sample the macrobenthos at different levels of elevation. The 39 species found had total densities up to 5,500 ind m−2 in summer and 1,400 ind m−2 in winter. The highest densities were found in the spionid polychaetesScolelepis squamata andSpio filicornis, the nephtyid polychaeteNephtys cirrosa, the cirolanid isopodEurydice pulchra, and the haustorid amphipodsBathyporeia spp. Based on species composition, specific densities, and biomass, two species associations were defined: a relatively species-poor, high intertidal species association, dominated byS. squamata and with an average density of 1,413 ind m−2 and biomass of 808 mg AFDW m−2 (summer); and a relatively species-rich, low intertidal species association, dominated byN. cirrosa, and with an average density of 104 ind m−2 and biomass of 162 mg AFDW m−2 in summer. For both seasons, the high intertidal species association was restricted in its intertidal distribution between the mean tidal and the mean high-water spring level, whereas the low intertidal species association was found from the mean tidal level to the subtidal. The latter showed good affinities with the subtidalN. cirrosa species association occurring just offshore of De Panne beach, confirming the existence of a relationship between the low intertidal and subtidal macrobenthic species associations. Summer-winter comparison revealed a strong decrease in densities and biomass in the high intertidal zone during winter. Habitat continuity of the low intertidal zone with the subtidal allows subtidal organisms to repopulate the low intertidal zone.  相似文献   

12.
The thermal expansion of gehlenite, Ca2Al[AlSiO7], (up to T=830 K), TbCaAl[Al2O7] (up to T=1,100 K) and SmCaAl[Al2O7] (up to T=1,024 K) has been determined. All compounds are of the melilite structure type with space group Thermal expansion data was obtained from in situ X-ray powder diffraction experiments in-house and at HASYLAB at the Deutsches Elektronen Synchrotron (DESY) in Hamburg (Germany). The thermal expansion coefficients for gehlenite were found to be: α1=7.2(4)×10−6 K−1+3.6(7)×10−9ΔT K−2 and α3=15.0(1)×10−6 K−1. For TbCaAl[Al2O7] the respective values are: α1=7.0(2)×10−6 K−1+2.0(2)×10−9ΔT K−2 and α3=8.5(2)×10−6 K−1+2.0(3)×10−9ΔT K−2, and the thermal expansion coefficients for SmCaAl[Al2O7] are: α1=6.9(2)× 10−6 K−1+1.7(2)×10−9ΔT K−2 and α3=9.344(5)×10−6 K−1. The expansion-mechanisms of the three compounds are explained in terms of structural trends obtained from Rietveld refinements of the crystal structures of the compounds against the powder diffraction patterns. No structural phase transitions have been observed. While gehlenite behaves like a ’proper’ layer structure, the aluminates show increased framework structure behaviour. This is most probably explained by stronger coulombic interactions between the tetrahedral conformation and the layer-bridging cations due to the coupled substitution (Ca2++Si4+)-(Ln 3++Al3+) in the melilite-type structure. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

13.
The low-temperature isobaric heat capacities (C p) of β- and γ-Mg2SiO4 were measured at the range of 1.8–304.7 K with a thermal relaxation method using the Physical Property Measurement System. The obtained standard entropies (S°298) of β- and γ-Mg2SiO4 are 86.4 ± 0.4 and 82.7 ± 0.5 J/mol K, respectively. Enthalpies of transitions among α-, β- and γ-Mg2SiO4 were measured by high-temperature drop-solution calorimetry with gas-bubbling technique. The enthalpies of the α−β and β−γ transitions at 298 K (ΔH°298) in Mg2SiO4 are 27.2 ± 3.6 and 12.9 ± 3.3 kJ/mol, respectively. Calculated α−β and β−γ transition boundaries were generally consistent with those determined by high-pressure experiments within the errors. Combining the measured ΔH°298 and ΔS°298 with selected data of in situ X-ray diffraction experiments at high pressure, the ΔH°298 and ΔS°298 of the α−β and β−γ transitions were optimized. Calculation using the optimized data tightly constrained the α−β and β−γ transition boundaries in the P, T space. The slope of α−β transition boundary is 3.1 MPa/K at 13.4 GPa and 1,400 K, and that of β−γ boundary 5.2 MPa/K at 18.7 GPa and 1,600 K. The post-spinel transition boundary of γ-Mg2SiO4 to MgSiO3 perovskite plus MgO was also calculated, using the optimized data on γ-Mg2SiO4 and available enthalpy and entropy data on MgSiO3 perovskite and MgO. The calculated post-spinel boundary with a Clapeyron slope of −2.6 ± 0.2 MPa/K is located at pressure consistent with the 660 km discontinuity, considering the error of the thermodynamic data.  相似文献   

14.
In situ x-ray data on molar volumes of periclase and tungsten have been collected over the temperature range from 300 K to melting. We determine the temperature by combining the technique of spectroradiometry and electrical resistance wire heating. The thermal expansion (α) of periclase between 300 and 3100 K is given by α=2.6025 10−5+1.3535 10−8 T+6.5687 10−3 T−1−1.8281 T−2. For tungsten, we have (300 to 3600 K) α=7.862 10−6+6.392 10−9 T. The data at 298 K for periclase is: molar volume 11.246 (0.031) cm3, α=3.15 (0.07) 10−5 K−1, and for tungsten: molar volume 9.55 cm3, α=9.77 (10.08) 10−6 K−1. Received: July 18, 1996 / Revised, accepted: February 14, 1997  相似文献   

15.
Daily zenith scattered light intensity observations were carried out in the morning twilight hours using home-made UV-visible spectrometer over the tropical station Pune (18‡31′, 73‡51′) for the years 2000–2003. These observations are obtained in the spectral range 462–498 nm for the solar zenith angles (SZAs) varying from 87‡ to 91.5‡. An algorithm has been developed to retrieve vertical profiles of ozone (O3) and nitrogen dioxide (NO2) from ground-based measurements using the Chahine iteration method. This retrieval method has been checked using measured and recalculated slant column densities (SCDs) and they are found to be well matching. O3 and NO2 vertical profiles have been retrieved using a set of their air mass factors (AMFs) and SCDs measured over a range of 87–91.5‡ SZA during the morning. The vertical profiles obtained by this method are compared with Umkehr profiles and ozonesondes and they are found to be in good agreement. The bulk of the column density is found near layer 20–25 km. Daily total column densities (TCDs) of O3 and NO2 along with their stratospheric and tropospheric counterparts are derived using their vertical profiles for the period 2000–2003. The total column, stratospheric column and tropospheric column amounts of both trace gases are found to be maximum in summer and minimum in the winter season. Increasing trend is found in column density of NO2 in stratospheric, tropospheric and surface layers, but no trend is observed in O3 columns for above layers during the period 2000–2003  相似文献   

16.
The thermal expansion of gehlenite, Ca2Al[AlSiO7], (up to T=830 K), TbCaAl[Al2O7] (up to T=1100 K) and SmCaAl[Al2O7] (up to T=1024 K) has been determined. All compounds are of the melilite structure type with space group Thermal expansion data were obtained from in situ X-ray powder diffraction experiments in-house and at HASYLAB at the Deutsches Elektronen Synchrotron (DESY) in Hamburg (Germany). The thermal expansion coefficients for gehlenite were found to be: α1=7.2(4)×10−6×K−1+3.6(7)×10−9ΔT×K−2 and α3=15.0(1)×10−6×K−1. For TbCaAl[Al2O7] the respective values are: α1=7.0(2)×10−6×K−1+2.0(2)×10−9ΔT×K−2 and α3=8.5(2)×10−6×K−1+2.0(3)×10−9ΔT×K−2, and the thermal expansion coefficients for SmCaAl[Al2O7] are: α1=6.9(2)×10−6×K−1+1.7(2)×10−9ΔT×K−2 and α3=9.344(5)×10−6×K−1. The expansion mechanisms of the three compounds are explained in terms of structural trends obtained from Rietveld refinements of the crystal structures of the compounds against the powder diffraction patterns. No structural phase transitions have been observed. While gehlenite behaves like a ‘proper’ layer structure, the aluminates show increased framework structure behavior. This is most probably explained by stronger coulombic interactions between the tetrahedral conformation and the layer-bridging cations due to the coupled substitution (Ca2++Si4+)–(Ln 3++Al3+) in the melilite-type structure. This article has been mistakenly published twice. The first and original version of it is available at .  相似文献   

17.
High-spectral-resolution observations with the Special Astrophysical Observatory 6-m telescope obtained in 2003–2011 are used to study features of the optical spectrum and the velocity field in the atmosphere of the semiregular variable LN Hya in detail. The weak, symmetric, photospheric absorption lines indicate radial-velocity variations from night to night (by as much as 3 km/s), resulting from small pulsations. Peculiarities and profile variations were found for strong lines of FeI, FeII, BaII, SiII, etc. The profiles of these lines were asymmetric: their short-wavelength wings were extended and their cores were either split or distorted by emission. During the 2010 observing season, the position and depth of the Hα absorption component, the intensities of the short- and long-wavelength emission components, and the intensity ratio of the latter components varied from spectrum to spectrum. Weak emission lines of neutral atoms (VI, MnI, CoI, NiI, FeI) appeared in the spectrum of June 1, 2010. These spectral peculiarities, recorded for the first time, suggest that we have detected rapid changes in the physical conditions in the upper atmospheric layers of LN Hya in 2010.  相似文献   

18.
 Powder diffraction measurements at simultaneous high pressure and temperature on samples of 2M1 polytype of muscovite (Ms) and paragonite (Pg) were performed at the beamline ID30 of ESRF (Grenoble), using the Paris-Edinburgh cell. The bulk moduli of Ms, calculated from the least-squares fitting of VP data on each isotherm using a second-order Birch–Murnaghan EoS, were: 57.0(6), 55.1(7), 51.1(7) and 48.9(5) GPa on the isotherms at 298, 573, 723 and 873 K, respectively. The value of (∂K T /∂T) was −0.0146(2) GPa K−1. The thermal expansion coefficient α varied from 35.7(3) × 10−6 K−1 at P ambient to 20.1(3) × 10−6 K−1 at P = 4 GPa [(∂α/∂P) T = −3.9(1) × 10−6 GPa−1 K−1]. The corresponding values for Pg on the isotherms at 298, 723 and 823 K were: bulk moduli 59.9(5), 55.7(6) and 53.8(7) GPa, (∂K T /∂T) −0.0109(1) GPa K−1. The thermal expansion coefficient α varied from 44.1(2) × 10−6 K−1 at P ambient to 32.5(2) × 10−6 K−1 at P = 4 GPa [(∂α/∂P) T = −2.9(1) × 10−6 GPa−1 K−1]. Thermoelastic coefficients showed that Pg is stiffer than Ms; Ms softens more rapidly than Pg upon heating; thermal expansion is greater and its variation with pressure is smaller in Pg than in Ms. Received: 28 January 2002 / Accepted: 5 April 2002  相似文献   

19.
Seventy-eight molecules have been detected as a result of a spectral survey of the star-forming region DR21(OH) at 84–115 GHz. The abundances of most molecules are typical of those in the dense cores of molecular clouds. The rotational temperatures derived using the lines of most molecules fall in the range 9–56 K, which is also typical for dense cores. However, emission from high-lying levels of methanol and sulfur dioxide was detected; since the rotational temperatures for methanol and sulfur dioxide are 252 and 186 K, this indicates the presence of hot regions. Another fact indicating the existence of hot regions is the detection of CH3OCHO, CH3CH2OH, and CH3OCH3, which have thus far been observed only in hot cores and shock-heated regions. An interesting result is the tentative detection of the J = 2 − 1, v = 1 SiO line, with the upper level energy of 1775 K. This is probably a maser line, similar to but weaker than the well-known SiO masers in the star-forming regions Orion-KL,W51(N), and Sgr B2(N).  相似文献   

20.
The thermo-elastic behavior of a natural epidote [Ca1.925 Fe0.745Al2.265Ti0.004Si3.037O12(OH)] has been investigated up to 1,200 K (at 0.0001 GPa) and 10 GPa (at 298 K) by means of in situ synchrotron powder diffraction. No phase transition has been observed within the temperature and pressure range investigated. PV data fitted with a third-order Birch–Murnaghan equation of state (BM-EoS) give V 0 = 458.8(1)Å3, K T0 = 111(3) GPa, and K′ = 7.6(7). The confidence ellipse from the variance–covariance matrix of K T0 and K′ from the least-square procedure is strongly elongated with negative slope. The evolution of the “Eulerian finite strain” vs “normalized stress” yields Fe(0) = 114(1) GPa as intercept values, and the slope of the regression line gives K′ = 7.0(4). The evolution of the lattice parameters with pressure is slightly anisotropic. The elastic parameters calculated with a linearized BM-EoS are: a 0 = 8.8877(7) Å, K T0(a) = 117(2) GPa, and K′(a) = 3.7(4) for the a-axis; b 0 = 5.6271(7) Å, K T0(b) = 126(3) GPa, and K′(b) = 12(1) for the b-axis; and c 0 = 10.1527(7) Å, K T0(c) = 90(1) GPa, and K’(c) = 8.1(4) for the c-axis [K T0(a):K T0(b):K T0(c) = 1.30:1.40:1]. The β angle decreases with pressure, βP(°) = βP0 −0.0286(9)P +0.00134(9)P 2 (P in GPa). The evolution of axial and volume thermal expansion coefficient, α, with T was described by the polynomial function: α(T) = α0 + α1 T −1/2. The refined parameters for epidote are: α0 = 5.1(2) × 10−5 K−1 and α1 = −5.1(6) × 10−4 K1/2 for the unit-cell volume, α0(a) = 1.21(7) × 10−5 K−1 and α1(a) = −1.2(2) × 10−4 K1/2 for the a-axis, α0(b) = 1.88(7) × 10−5 K−1 and α1(b) = −1.7(2) × 10−4 K1/2 for the b-axis, and α0(c) = 2.14(9) × 10−5 K−1 and α1(c) = −2.0(2) × 10−4 K1/2 for the c-axis. The thermo-elastic anisotropy can be described, at a first approximation, by α0(a): α0(b): α0(c) = 1 : 1.55 : 1.77. The β angle increases continuously with T, with βT(°) = βT0 + 2.5(1) × 10−4 T + 1.3(7) × 10−8 T 2. A comparison between the thermo-elastic parameters of epidote and clinozoisite is carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号