首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large-scale dense bottom currents are geostrophic to leading order, with the main flow direction along the continental slope. Bottom friction makes the water descend to greater depths, but only at a small angle to the horizontal. Here the effect of a submarine ridge that intersects the slope is considered. It is shown that the presence of a submarine ridge greatly enhances the downward transport. By leaning against the ridge it is possible for the dense water to flow downhill, perpendicular to the depth contours, even though the first-order dynamics are geostrophic. The requirement for downward flow next to the ridge is that the frictional transport that it induces is sufficiently large to counteract geostrophic advection along the isobaths and out of the ridge region. The dynamics are similar to those of downward flow in submarine canyons, but ridges appear to be more effective in channeling the dense water downhill, in particular for narrow ridges/canyons with small seaward slope of the ridge/canyon axis. The downward flow is analyzed using a simplified analytical model and the results are compared to data from the Filchner Overflow, which agree qualitatively with the model.  相似文献   

2.
Numerical experiments with a two-dimensional nonhydrostatic ocean model have been carried out to investigate the dynamical process of descending density current on a continental slope. The associated deep water formation has been also examined by tracking labeled particles. The descending flow along the continental slope occurs in the bottom Ekman layer. The net pressure gradient determining the volume transport consists of not only the pressure gradient due to density deviation but also the surface pressure gradient due to the depth-mean alongshore flow. Since these constituents have the opposite signs and strengthen each other, the oscillation with an alternation of intense up- and downslope flows appears around the shelf break. This temporal variation of the flow field causes the effective mixing on the slope between descending shelf and interior waters and forms the deep water as a mixture of them at a ratio of about 1:3. The present result is applied to the slope current around Antarctica, using velocity and density fields calculated by an ocean general circulation model. The Ekman volume transport is estimated at 0.97 Sv (1 Sv = 106 m3s–1) in the Weddell Sea, 0.35 Sv in the Ross Sea, and 1.8 Sv in total. About 70% of them is attributed to the depth-mean alongshore flow, such as the East Wind Drift and the Weddell Gyre driven by the wind. This suggests that the pressure gradient due to other factors than density deviation may play an important role in the deep and bottom water formation in the actual oceans.  相似文献   

3.
The Rockall Bank Mass Flow (RBMF) is a large, multi-phase submarine slope failure and mass flow complex. It is located in an area where the Feni Drift impinges upon the eastern flank of the Rockall Bank in the NE Atlantic. A 6100 km2 region of slope failure scarps, extending over a wide water depth range and with individual scarps reaching up to 22 km long and 150 m high, lies upslope of a series of mass flow lobes that cover at least 18,000 km2 of the base of slope and floor of the Rockall Trough. The downslope lobe complex has a negative topographic relief along much of its northern boundary, being inset below the level of the undisplaced contourite drift at the base of slope. The southern margin is topographically more subtle but is marked by the sharp termination of sediment waves outside the lobe. Within the lobe complex the southern margin of the largest lobe shows a positive relief along its southern margin. The initial failure is suggested to have occurred along coherent layer-parallel detachment surfaces at depths of up to 100 m and this promoted initial downslope block sliding which in turn transformed into debris flows which moved out into the basin. The remains of a deep erosional moat linked to the onlapping contourite complex bisects the region of failed slope, and post-failure thermohaline currents have continued to modify the mass flow in this area. Differential sedimentation and erosion associated with the moat may have promoted slope instability. Following the major failure phase, continuous readjustments of the slope occurred and resulted in small-volume turbidites found in shallow gravity cores collected on the lobes. The short term trigger for the failure remains uncertain but earthquake events associated with a deep-seated tectonic lineament to the north of the mass flow may have been important. A Late Pleistocene age for the slope failure is likely. The RBMF is unusual in that it records large-scale collapse of a contourite body that impinged on a sediment-undersupplied slope system. Unlike many other large slope failure complexes along the NE Atlantic margin, the RBMF occurs in a region where there was little overloading by glacial sediment.  相似文献   

4.
The mixing and spreading of the Storfjorden overflow were investigated with density and horizontal velocity profiles collected at closely spaced stations. The dense bottom water generated by strong winter cooling, enhanced ice formation and the consequent brine rejection drains into and fills the depression of the fjord and upon reaching a 120-m deep sill, descends like a gravity current following the bathymetry towards the shelf edge. The observations covered an approximate 37-km path of the plume starting from about 68 km downstream of the sill. The plume is identified as two layers: a dense layer 1 with relatively uniform vertical structure underlying a thicker layer 2 with larger vertical density gradients. Layer 1, probably remnants from earlier overflows, almost maintains its temperature–salinity characteristics and spreads to a width of about 6 km over its path, comparable to spread resulting from Ekman veering. Layer 2, on the other hand, is a mixing layer and widens to about 16 km. The overflow, in its core, is observed to have salinities greater than 34.9, temperatures close to the freezing point, and light transmissivity typically 5% less than that of the ambient waters. The overall properties of the observed part of the plume suggest dynamical stability with weak entrainment. However local mixing is observed through profiles of the gradient Richardson number, the non-dimensional ratio of density gradient over velocity gradient, which show portions with supercritical values in the vicinity of the plume–ambient water interface. The net volume transport associated with the overflow is estimated to be 0.06 Sv (Sv≡106 m3 s−1) out of a section closest to the sill and almost double that as it leaves the section furthest downstream. The weak entrainment is estimated to account for the doubling of the volume transport between the two sections. A simple model proposed by Killworth (J. Geophys. Res. 106 (2001) 22267), giving the path of the overflow from a constant rate of vertical descent along the slope, compares well with our observations.  相似文献   

5.
A geomorphological and statistical analysis of slope canyons from the northern KwaZulu-Natal continental margin is documented and compared with submarine canyons from the Atlantic margin of the USA. The northern KwaZulu-Natal margin is characterized by increasing upslope relief, concave slope-gradient profiles and features related to upslope growth of the canyon forms. Discounting slope-gradient profile, this morphology is strikingly similar to canyon systems of the New Jersey slope. Several phases of canyon incision indicate that downslope erosion is also an important factor in the evolution of the northern KwaZulu-Natal canyon systems. Despite the strong similarities between the northern KwaZulu-Natal and New Jersey slope-canyon systems, key differences are evident: (1) the concavity of the northern KwaZulu-Natal slope, contrasting with the ∼linear New Jersey slope; (2) the relative isolation of the northern KwaZulu-Natal canyons, rather than the dense clustering of the New Jersey canyons; and (3) the absence of strongly shelf-breaching canyons along the northern KwaZulu-Natal margin. In comparison with the New Jersey margin, we surmise a more youthful stage of canyon evolution, a result of either the canyons themselves being younger or the formative processes being less active. Less complicated patterns of erosion resulting from reduced sediment availability have developed in northern KwaZulu-Natal. The reduction in slope concavity on the New Jersey margin may be the result of grading of the upper slope by intensive headward erosion, a process more subdued—or less evident—on the KwaZulu-Natal margin.  相似文献   

6.
Six submarine slope canyons in an area of the northwestern Mediterranean, offshore from the Ebro River and Delta, were surveyed with bathymetric swathmapping (SeaBeam) and mid-range side-looking sonar (SeaMARC I). All of the canyons have slightly winding paths with concave-upwards gradients that are relatively steep shallower than 1,200 m. Two major types of canyons are identified on the basis of their morphologic character at the base of the slope; Type-I canyons lead to an unchannelled base-of-slope deposit and Type-II canyons are continuous with channel-levee systems that cross the rise.Four Type-I canyons were surveyed in the area. Two of these are broad, U-shaped, steep (average gradients of 1:14), do not indent the shelf, and terminate downslope at debris-flow deposits. These two canyons, the most northern in the area, have rounded heads with extensive gullies separated by knife-edge ridges. Relief of the canyon walls is about equal on both sides of the canyons, although the right-hand walls (looking downslope) are generally steeper. The other two Type-I canyons in the area are similar in that they do not indent the shelf, but they are much smaller and shallower and coalesce before terminating in the base-of-slope region. The two Type-II canyons that feed leveed-channels are U-shaped with flatter floors, longer profiles and gentler gradients than Type-I canyons. They are closer to the Valencia Valley and have relatively small cross-sectional areas.We propose a four-stage evolutionary sequence to explain the development of the canyons observed in this section on the prograding Ebro margin. During the initial stage, slumping and erosion on the slope creates a network of small gullies. During the next stage, headward growth of one (or more) gully leads to a major indentation of the shelf. This is the critical factor for developing a channel that will incise the slope and provide a major conduit for moving sediment to the basin. Stage 3 is characterized by the development of a continuous channel accompanied by levee growth across the lobe. In the final stage, the channel-levee system becomes inactive either through destruction by mass wasting, infilling of the channel, or loss of the major sediment source.  相似文献   

7.
The Cap Creus and Lacaze-Duthiers canyons, cut on the narrow subsiding margin off the eastern Pyrenees, play an important role in downslope sediment transport in the northwestern Mediterranean. This conclusion is based on an evaluation of the surficial sediment distribution patterns, cores, direct visual observations of the sea floor made in 24 submersible dives and tight-grid seismic survey data. Down-canyon sediment movement (mostly by slump and gravity flow mechanisms) since the end of the Pliocene has resulted in the formation of the Catalonia Fan at the base of the slope west of the Rhone Cone.  相似文献   

8.
Using bathymetry and reflection seismic profiles this study reveals the nature of the modern ponded Fangliao Fan within a framework of sediment infilling of an intra-slope basin on a tectonically active margin off southwestern Taiwan. The Fangliao Fan begins at the mouth of Fangliao Canyon at a water depth of 900 m and terminates down-slope at the escarpment of a linear ridge north of the Kaoping Slope Valley at a water depth of about 1,100 m, sediment gravity flows being prevented from farther down-slope transport due to ponding against this bathymetric high. The fan appears as a distinct basinward-opening triangular depocenter confined by ridges on both sides and the NW–SE trending ridge aligned normal to the elongation of the fan. These topographic ridges were formed by mud-diapiric intrusions. The external form of the ponded Fangliao Fan is characterized by a fan-valley fill pattern that has a concave cross-sectional morphology, in contrast to typical mounded fans deposited on slope-basin plains having a smooth topography. Sediment episodically funneled through the Fangliao Canyon from upslope areas and derived from the flanks of the mud-diapiric ridges are mainly transported by mass movement before being re-dispersed by unconfined channels to infill the intra-slope basin, thereby building up channelized fan complexes with poorly developed levees. The sediment flows from the mouth of Fangliao Canyon flow down-slope along the west flank of the Fangliao Ridge. In the process, a feeder channel has been eroded into the seafloor along which sediment is transported to the distal parts of the fan. Sediment west of the feeder channel is mainly redistributed by mass movement and/or fan channels to fill up the irregular topographic low in the slope. Due to a very low sediment supply, Fangliao Fan represents a starved ponded slope fan. As such it provides insights into the processes by which ponded fans develop and can therefore serve as an analog for similar fans developed on topographically complex slopes elsewhere. The morpho-structural features of the Fangliao Fan resulted from the interplay between sediment supply, uplift of the mud-diapiric ridge, mass movements, and alternating incision and deposition.  相似文献   

9.
A series of submarine canyons on the southwest slope of Orphan Basin experienced complex failure at 7–8 cal ka that resulted in the formation of a large variety of mass-transport deposits (MTDs) and sediment gravity flows. Ultra-high-resolution seismic-reflection profiles and multiple sediment cores indicate that evacuation zones and sediment slides characterize the canyon walls, whereas the canyon floors and inner-banks are occupied by cohesive debris-flow deposits, which at the mouths of the canyons on the continental rise form large, coalescing lobes (up to 20 m thick and 50 km long). Erosional channels, extending throughout the length of the study area (<250 km), are observed on the top of the lobes. Piston cores show that the channels are partially filled by poorly sorted muddy sand and gravel, capped by inversely to normally graded gravel and sand. Such deposits are interpreted to originate from multi-phase gravity flows, consisting of a lower part behaving as a cohesionless debris flow and an upper part that was fully turbulent.The Holocene age and the widespread synchronous occurrence of these failures indicate a large magnitude earthquake as their possible triggering mechanism. The large debris-flow deposits on the continental rise originated from large failures on the upper continental slope, involving proglacial sediments. Retrogression of these failures led to the eventual failure of marginal sandy till deposits on the upper slope and outer shelf, which due to their low cohesion disintegrated into multi-phase gravity flows. The evacuation zones and slide deposits on the canyon walls were triggered either by the earthquake, or from erosion of the canyon walls by the debris flows. The slides, debris-flows, and multi-phase gravity flows observed in this study are petrographically different, indicating different sediment sources. This indicates that not all failures lead through flow transformation to the production of a multi-phase gravity flow, but only when the sediment source contains ample coarse-grained material. The spatial segregation of the slide, debris-flow, and multi-phase gravity-flow deposits is attributed to the different mobility of each transport process.  相似文献   

10.
Three mooring arrays were deployed in the Palamós Canyon axis with sediment traps, current meters and turbidimeters installed near the bottom and in intermediate waters. Frequent sharp and fast turbidity peaks along with current speed increases were recorded, particularly at 1200 m depth in spring and summer. During these events, near-bottom water turbidity increased by up to more than one order of magnitude, current velocity by two to four times and horizontal sediment fluxes by one to three orders of magnitude. When these events occurred, 9–11 days integrated downward particle fluxes collected by the near-bottom sediment trap increased by two to three times. These events were identified as sediment gravity flows triggered by trawling activities along the northern canyon wall. Sediment eroded by the trawling nets at 400–750 m depth on this wall seems to be channeled through a gully and transported downslope towards the canyon axis, where the 1200 m mooring was located. The sediment gravity flows recorded at the 1200 m site were not detected at deeper instrumented sites along the canyon axis, suggesting that they affect local areas of the canyon without traveling long distances downcanyon. These observations indicate that trawling can generate frequent sediment gravity flows and increase sediment fluxes locally in submarine canyons. Furthermore, in addition to the various natural processes currently causing sediment gravity flows and other sediment transport events, human activities such as trawling must be taken into account in modern submarine canyon sediment dynamics studies.  相似文献   

11.
Properties of the dense ice shelf water plume emerging from the Filchner Depression in the southwestern Weddell Sea are described, using available current meter records and CTD stations. A mean hydrography, based on more than 300 CTD stations gathered over 25 yr points to a cold, relatively thin and vertically well-defined plume east of the two ridges cross-cutting the continental slope about 60 km from the Filchner sill, whereas the dense bottom layer is warmer, more stratified and much thicker west of these ridges. The data partly confirm the three major pathways suggested earlier and agree with recent theories on topographic steering by submarine ridges. A surprisingly high mesoscale variability in the overflow region is documented and discussed. The variability is to a large extent due to three distinct oscillations (with periods of about 35 h, 3 and 6 d) seen in both temperature and velocity records on the slope. The oscillations are episodic, barotropic and have a horizontal scale of ∼20–40 km across the slope. They are partly geographically separated, with the longer period being stronger on the lower part of the slope and the shorter on the upper part of the slope. Energy levels are lower west of the ridges, and in the Filchner Depression. The observations are discussed in relation to existing theories on eddies, commonly generated in plumes, and continental shelf waves.  相似文献   

12.
A recently active normal fault and extensional crevasse on the western insular slope/rise boundary of Iceland adjoins a rotational slump that moved as the lower block of an active growth fault. A slump off SE Greenland is contrasted to the western Iceland slope/rise feature in translational movement and slump morphology. Bergschrund-like extensional cracks and valleys at the heads of slumps serve as troughs channeling gravity flows into established canyons on the midrise. Distinctive characteristics of buried canyons and levees may be confused with slump or slide surfaces and related subbottom features that have similar seismic reflection qualities. Examples are defined forGrowth Fault/Rotational Slumps, andTranslational Displacement Slumps.  相似文献   

13.
The Neogene and Quaternary sediments of the Faeroe-Shetland Channel and West Shetland shelf and slope rest upon a major regional unconformity, the Latest Oligocene Unconformity (LOU), and have been deposited through the interaction of downslope and parallel-to-slope depositional processes. The upper to middle continental slope is dominated by mass-transport deposits (debris flows), which progressively diminish downslope, and were largely generated and deposited during glacial cycles when ice sheets supplied large quantities of terrigeneous sediment to the upper slope and icebergs scoured sea-floor sediments on the outer shelf and uppermost slope. Large-scale sediment failures have also occurred on the upper slope and resulted in deposition of thick, regionally extensive mass-transport deposits on portions of the lower slope and channel floor. In contrast, large fields of migrating sediment waves and drift deposits dominate most of the middle to lower slope below 700 m water depth and represent deposition by strong contour currents of the various water masses moving northeastward and southwestward through the channel. These migrating sediment waves indicate strong northeastward current flow at water depths shallower than 700 m and strong southwestward current flow at water depths from 700 to >1,400 m. These flow directions are consistent with present-day water-mass flow through the Faeroe-Shetland Channel. The Faeroe-Shetland Channel floor is underlain by thin conformable sediments that appear to be predominantly glacial marine and hemipelagic with less common turbidites and debris flows. No evidence is observed in seismic or core data that indicates strong contour-current erosion or redistribution of sediments along the channel floor.  相似文献   

14.
Sleeve-gun, 3.5-kHz, and 12-kHz profiles from the Labrador Slope provide the basis for an analysis of sedimentary facies, processes, and evolution of a continental slope adjacent to an ice margin. The upper slope is deeply incised by numerous canyons reflecting headward canyon branching. The less rugged middle-slope topography has fewer canyons and large slide and slump scars followed downslope by debris-flow deposits. Echo character of seismic profiles reflects the difference in sediment types supplied from mud-dominated sources and sand-, gravel- and till-dominated sources. On the rise, debris-flow deposits are largely confined to canyons. Intercanyon areas are dominated by spill-over turbidites alternating with hemipelagic sediments, which on some of the southern to southwestern levees occur in sediment-wave fields formerly attributed to bottom-current activity.  相似文献   

15.
The Current Structure of the Tsushima Warm Current along the Japanese Coast   总被引:4,自引:0,他引:4  
The branching of the Tsushima Warm Current (TWC) along the Japanese coast is studied based upon intensive ADCP and CTD measurements conducted off the Wakasa Bay in every early summer of 1995–1998, the analysis of the temperature distribution at 100 m depth and the tracks of the surface drifters (Ishii and Michida, 1996; Lee et al., 1997). The first branch of TWC (FBTWC) exists throughout the year. It starts from the eastern channel of the Tsushima Straits, flows along the isobath shallower than 200 m along the Japanese coast and flows out through the Tsugaru Strait. The current flowing through the western channel of the Tsushima Straits feeds the second branch of TWC (SBTWC) which develops from spring to fall. The development of SBTWC propagates from the Tsushima Straits to Noto Peninsula at a speed of about 7 cm sec−1 following the continental shelf break with a strong baroclinicity. However, SBTWC cannot be always found around the shelf break because its path is influenced by the development of eddies. It is concluded that SBTWC is a topographically steered current; a current steered by the continental shelf break. Salient features at intermediate depth are the southwestward subsurface counter current (SWSCC) between 150 m and 300 m depths over the shelf region in 1995–1998 with the velocity exceeding about 5 cm sec−1, although discrepancies of the velocity and its location are observed between the ADCP data and the geostrophic currents. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Circular shaped density plumes of low turbidity, low fecal indicator (Escherichia coli and enterococci) concentrations, and high salinity have been observed near the Industrial Canal in Lake Pontchartrain, north of the City of New Orleans. A conceptual model in polar coordinates and a numerical model are developed, together with data analysis, to illustrate the dense plume. It is demonstrated that the northward expansion of the plume occurs under northerly winds. The northward expansion of the plume occurs under northerly winds that drive downwind flow at the surface and upwind radial flow at the bottom. Northerly wind-induced straining, similar to tidal straining, promotes vertical stratification. As a result, the water becomes stratified near a thin bottom layer (<1 m), within which density currents are facilitated. The stability of the stratified plume suppresses wind-induced turbulent mixing inside the plume. The bottom water outside of the plume is more effectively stirred by the wind, the result being that the suspended sediment concentration outside of the plume area is much higher than inside. This contrast in mixing makes the plume visible from the surface by satellites even though the stratification is at the bottom. Laterally, wind stress produces a torque (vorticity) in areas of non-uniform depth such that upwind flow is developed in deep water and downwind flow in shallow water. The continuity requirement produces an upwind flow along the axis of the Industrial Canal (IC). The upwind flow is balanced by the downwind flow over the shallower peripheral areas along the coast.  相似文献   

17.
Most submarine canyons are erosive conduits cut deeply into the world’s continental shelves through which sediment is transported from areas of high coastal sediment supply onto large submarine fans. However, many submarine canyons in areas of low sediment supply do not have associated submarine fans and show significantly different morphologies and depositional processes from those of ‘classic’ canyons. Using three-dimensional seismic reflection and core data, this study contrasts these two types of submarine canyons and proposes a bipartite classification scheme.The continental margin of Equatorial Guinea, West Africa during the late Cretaceous was dominated by a classic, erosional, sand-rich, submarine canyon system. This system was abandoned during the Paleogene, but the relict topography was re-activated in the Miocene during tectonic uplift. A subsequent decrease in sediment supply resulted in a drastic transformation in canyon morphology and activity, initiating the ‘Benito’ canyon system. This non-typical canyon system is aggradational rather than erosional, does not indent the shelf edge and has no downslope sediment apron. Smooth, draping seismic reflections indicate that hemipelagic deposition is the chief depositional process aggrading the canyons. Intra-canyon lateral accretion deposits indicate that canyon concavity is maintained by thick (>150 m), dilute, turbidity currents. There is little evidence for erosion, mass-wasting, or sand-rich deposition in the Benito canyon system. When a canyon loses flow access, usually due to piracy, it is abandoned and eventually filled. During canyon abandonment, fluid escape causes the successive formation of ‘cross-canyon ridges’ and pockmark trains along buried canyon axes.Based on comparison of canyons in the study area, we recognize two main types of submarine canyons: ‘Type I’ canyons indent the shelf edge and are linked to areas of high coarse-grained sediment supply, generating erosive canyon morphologies, sand-rich fill, and large downslope submarine fans/aprons. ‘Type II’ canyons do not indent the shelf edge and exhibit smooth, highly aggradational morphologies, mud-rich fill, and a lack of downslope fans/aprons. Type I canyons are dominated by erosive, sandy turbidity currents and mass-wasting, whereas hemipelagic deposition and dilute, sluggish turbidity currents are the main depositional processes sculpting Type II canyons. This morphology-based classification scheme can be used to help predict depositional processes, grain size distributions, and petroleum prospectivity of any submarine canyon.  相似文献   

18.
Coarse-grained gravity flow deposits are quite common in the stratigraphic record, but their capability in transporting cobbles and boulders at great distance from the eroding sources is still poorly assessed. Here, we tackle this issue by the analysis of coarse-grained gravity flow deposits of the Aveto Formation, deposited in the Early Oligocene Adriatic foredeep and now exposed in the accretionary wedge of the Northern Apennines (Italy). We combine field observations and provenance constraints provided by Laser Ablation Split Stream (LASS)-ICP-MS depth-profiling of detrital zircon grains. We found that the polymodal grain-age distributions in the analyzed samples, dominated by Periadriatic, Variscan and Caledonian age populations, also include Late Cretaceous to Paleocene ages associated to thin epitaxial overgrowths on older zircon cores. These overgrowths display Th/U and REE patterns consistent with a metamorphic origin, and provide a diagnostic fingerprint that indicates the Bergell area in the Central Alps as the only viable source of coarse detritus, including cobbles and boulders of magmatic and metamorphic rocks, transported by gravity flows towards the nascent Adriatic foredeep. Our results provide not only pin-points for a reliable paleotectonic reconstruction of the Bergell-Aveto source-to-sink system, one of the most remarkable features of the Oligocene Adria-Europe plate boundary, but also compelling evidence for ∼300 km axial transport by gravity flows experienced by coarse detritus derived from the Oligocene Central Alps. The eruptions of the Bergell volcanic complex provided abundant pyroclastic material variably mixed with metamorphic detritus, that was quickly funneled into submarine canyons triggering southward-directed gravity flows. Active tectonics, pyroclastic material provided by volcanic eruptions, steep canyons close to the shoreline and the presence of fault-controlled submarine troughs, may effectively promote the long-distance transport of coarse material by gravity flows not only in the Oligocene, but also today.  相似文献   

19.
Based upon 2D seismic data, this study confirms the presence of a complex deep-water sedimentary system within the Pliocene-Quaternary strata on the northwestern lower slope of the Northwest Sub-Basin, South China Sea. It consists of submarine canyons, mass-wasting deposits, contourite channels and sheeted drifts. Alongslope aligned erosive features are observed on the eastern upper gentle slopes (<1.2° above 1,500 m), where a V-shaped downslope canyon presents an apparent ENE migration, indicating a related bottom current within the eastward South China Sea Intermediate Water Circulation. Contourite sheeted drifts are also generated on the eastern gentle slopes (~1.5° in average), below 2,100 m water depth though, referring to a wide unfocused bottom current, which might be related to the South China Sea Deep Water Circulation. Mass wasting deposits (predominantly slides and slumps) and submarine canyons developed on steeper slopes (>2°), where weaker alongslope currents are probably dominated by downslope depositional processes on these unstable slopes. The NNW–SSE oriented slope morphology changes from a three-stepped terraced outline (I–II–III) east of the investigated area, into a two-stepped terraced (I–II) outline in the middle, and into a unitary steep slope (II) in the west, which is consistent with the slope steepening towards the west. Such morphological changes may have possibly led to a westward simplification of composite deep-water sedimentary systems, from a depositional complex of contourite depositional systems, mass-wasting deposits and canyons, on the one hand, to only sliding and canyon deposits on the other hand.  相似文献   

20.
To minimize cold water pipe lengths, the most favorable land or fixed platform based Ocean Thermal Energy Conversions (OTEC) sites have subbottom slopes greater than 5°. Observations at OTEC sites in Hawaii indicate that turbidity currents of an impulsive or episodic nature can occur with frontal speeds of several meters per second. Such speeds and the attendant potential for sediment transport and abrasion along routes containing OTEC installations indicate that the pertinent features of these flows are an important design criteria for OTEC or any other steep-slope marine installation. To satisfy this need, models of oceanic turbidity flows and similar flows have been examined. The model that addresses OTEC steep-slope conditions most succinctly was developed originally by Hopfinger and Tochon-Danguy (1977) for snow avalanches on land. This two-dimensional avalanche model is used to estimate the speed and growth characteristics of potential turbidity currents downslope for various postulated marine conditions of initial flow density, height, volume, and length at slopes from 5 to 60°. The areas of additional research required to increase reliability of the analyses are in the initiation and initial development of a turbidity plume, the mechanisms of sediment entrainment to and loss from the plume, and three-dimensional in addition to two-dimensional studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号