首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Global Positioning System (GPS) has become a powerful tool for ionospheric studies. In addition, ionospheric corrections are necessary for the augmentation systems required for Global Navigation Satellite Systems (GNSS) use. Dual-frequency carrier-phase and code-delay GPS observations are combined to obtain ionospheric observables related to the slant total electron content (sTEC) along the satellite-receiver line-of-sight (LoS). This observable is affected by inter-frequency biases [IFB; often called differential code biases (DCB)] due to the transmitting and the receiving hardware. These biases must be estimated and eliminated from the data in order to calibrate the experimental sTEC obtained from GPS observations. Based on the analysis of single differences of the ionospheric observations obtained from pairs of co-located dual-frequency GPS receivers, this research addresses two major issues: (1) assessing the errors translated from the code-delay to the carrier-phase ionospheric observable by the so-called levelling process, applied to reduce carrier-phase ambiguities from the data; and (2) assessing the short-term stability of receiver IFB. The conclusions achieved are: (1) the levelled carrier-phase ionospheric observable is affected by a systematic error, produced by code-delay multi-path through the levelling procedure; and (2) receiver IFB may experience significant changes during 1 day. The magnitude of both effects depends on the receiver/antenna configuration. Levelling errors found in this research vary from 1.4 total electron content units (TECU) to 5.3 TECU. In addition, intra-day vaiations of code-delay receiver IFB ranging from 1.4 to 8.8 TECU were detected.  相似文献   

2.
In this paper, we present the development of a local area differential GPS testbed of the ground-based augmentation system (GBAS) as the future airport navigation facility in the Taipei Flight Information Region (FIR) in Taiwan. The testbed is mainly a GBAS ground facility, which consists of a ground station, three GBAS receivers, and a VDL (VHF data link) broadcast antenna. We also present an airborne GPS/GBAS prototype receiver in this paper. The airborne subsystem (a GPS/GBAS receiver) receives the correction messages from the ground subsystem to perform a differential GPS (DGPS) positioning. In order to provide an ILS-look-alike approach and landing, the output messages of the airborne receiver are packed in an ARINC 429 format. The proposed airborne system has a software-based global navigation satellite system (GNSS) receiver structure.  相似文献   

3.
GPS接收机工作原理及发展现状   总被引:1,自引:0,他引:1  
根据GPS接收机的工作原理,分为连续接收机、序贯接收机和多元接收机。讨论了接收机的应用分类,分别为高精度测量型接收机,导航接收机及授时型接收机。根据GPS卫星信号的情况,介绍了GPS接收机的性能指标。根据GNSS的发展现状和卫星信号的实施论述了新一代多模双频接收机指标,根据测试结果证明:这种接收机将是未来GPS接收机的发展方向。  相似文献   

4.
在星载GPS精密定轨或单点定位中,尤其单频接收机的情况下,仅利用相位观测值,由于需要解算模糊度方程通常奇异,仅利用伪距观测资料,由于伪距观测值的噪声影响使得难以实现高精度定位要求。鉴于此,本文讨论了基于加权的伪距和历元间相位差分模型的GPS单点定位方法,该方法既能改善方程奇异性,又无需考虑模糊度因素,能确保观测值的精度。本文分别探讨了伪距观测方程和历元间差分相位观测方程,并给出了联合误差模型,推导了权值的计算公式和参数解算公式,最后基于动态单点定位考虑,探讨了基于加权的伪距和历元间相位差分模型的序贯最小二乘参数解算一般表达式。  相似文献   

5.
GPS Differential Code Biases (DCBs) computation is usually based on ground networks of permanent stations. The drawback of the classical methods is the need for the ionospheric delay so that any error in this quantity will map into the solution. Nowadays, many low-orbiting satellites are equipped with GPS receivers which are initially used for precise orbitography. Considering spacecrafts at an altitude above the ionosphere, the ionized contribution comes from the plasmasphere, which is less variable in time and space. Based on GPS data collected onboard JASON-2 spacecraft, we present a methodology which computes in the same adjustment the satellite and receiver DCBs in addition to the plasmaspheric vertical total electron content (VTEC) above the satellite, the average satellite bias being set to zero. Results show that GPS satellite DCB solutions are very close to those of the IGS analysis centers using ground measurements. However, the receiver DCB and VTEC are closely correlated, and their value remains sensitive to the choice of the plasmaspheric parametrization.  相似文献   

6.
根据多径信号的产生机理,在对GPS接收机中的码跟踪环多径信号模型研究的基础上,提出了采用自适应滤波的来消除GPS多径效应的算法。自适应滤波的方法不需要估计模型的系统参数,而直接通过自适应滤波将多径信号滤除。在有噪声的情况下,自适应滤波的RLS算法是最小二乘意义下的最优估计,仿真的结果表明采用自适应滤波算法可以快速的消除多径的影响,修正鉴相函数的过零点偏差,提高码跟踪环的跟踪精度。由于自适应滤波算法是递推算法,易于软、硬件实现。  相似文献   

7.
Error sources which decrease the accuracy of GPS in absolute velocity determination have been changed since SA was turned off. Firstly, quantities of all kinds of error sources that influence velocity determination are analyzed. The potential accuracy of GPS absolute velocity determination is derived from both theory and field GPS data simulation. After that, two tests were carried out to evaluate the performance of GPS absolute velocity determination in the case of a static and an airborne GPS receiver and INS (Inertial Navigation System) instrument in kinematic mode. In static mode, the receiver velocity has been estimated to be several mm/s with the carrier-phase derived Doppler measurements, and several cm/s with the receiver generated Doppler measurements. In kinematic mode, GPS absolute velocity estimates are compared with the synchronized measurements from the high accuracy INS. The root mean square statistics of the velocity discrepancies between GPS and INS come up to dm/s. Moreover, it has a strong correlation with the acceleration or jerk of the aircraft.  相似文献   

8.
The sampling frequency of a digitized intermediate frequency signal has a strong effect on the measurement accuracy of Global Navigation Satellite System (GNSS) receivers. The delay-locked loop tracking error is significant when the sampling frequency is an integer multiple of the code chipping rate, the so-called commensurate sampling frequency, and the number of distinct instantaneous residual code phases is low. This results in distortions of the correlation shape and discriminator functions that lead to a significant accuracy degradation. These effects are most pronounced when the sampling frequency is low. Notwithstanding, it is generally good for receivers to keep the sampling frequency to a minimum owing to the processing load and power consumption. It creates a challenge for existing GNSS signal processing techniques. Random, sine and sawtooth jitters have been found to mitigate these distortions considerably. A software algorithm and two hardware receiver implementations of these solutions are proposed. A register-based architecture can be directly applied to the conventional receiver architecture, while the increase in resource and power consumption is insignificant. A RAM-based design cannot only considerably minimize utilized resources but also slightly reduce the power consumption compared to the conventional architecture.  相似文献   

9.
GPS共视接收机短期观测资料处理算法研究   总被引:1,自引:0,他引:1  
提出了一种新的基于总体最小二乘数据拟合的短期观测资料处理算法 ,同时考虑测量时刻和时差测量值的不确定性 ,可提高共视接收机输出的单站数据精度。超短基线单通道共视测量数据表明 ,使用新算法后 ,可以提高原始共视数据短期稳定度  相似文献   

10.
Performance comparison of semicodeless GPS receivers for LEO satellites   总被引:1,自引:0,他引:1  
This report provides a detailed performance analysis of three semicodeless dual-frequency GPS receivers for use in low Earth orbit (LEO). The test set comprises the IGOR receiver, which represents a follow-on of the flight-proven BlackJack receiver, as well as two geodetic receivers (NovAtel OEM4-G2 and Septentrio PolaRx2), which are entirely based on commercial-off-the-shelf technology (COTS). All three receivers are considered for upcoming flight projects or experiments and have undergone at least a preliminary environmental qualification program. Using extensive signal simulator tests, the cold start signal acquisition, tracking sensitivity, differential code biases, raw measurement accuracy, and navigation accuracy of each receiver have been assessed. All tests are based on a common scenario that is representative of an actual space mission and provides a realistic simulation of the signal dynamics and quality on a scientific LEO satellite. Compared to the other receivers, the IGOR instrument exhibits a superior tracking sensitivity and is thus best suited for occultation measurements with low tangent point altitudes. The OEM4-G2 and PolaRx2 receivers are likewise shown to properly track dual-frequency GPS signals and normal signal levels and to provide accurate code and carrier phase measurements. Given their limited resource requirements, these receivers appear well suited for precise orbit determination applications and ionospheric sounding onboard of microsatellites with tight mission budgets.  相似文献   

11.
GPS单点测速的误差分析及精度评价   总被引:6,自引:0,他引:6  
首先从理论和实测数据模拟两方面分析了SA取消后各类误差源对GPS测速的影响,推导并计算了GPS单点测速可能达到的精度水平。然后用静态数据模拟动态测速试验和实测动态数据测速与同步高精度惯导测速的动态试验进行验证。结果表明,采用载波相位导出的多普勒观测值使用静态数据模拟动态测速,其精度可以达到mm/s级;用接收机输出的多普勒观测值进行测速时,其精度为cm/s级。在动态测速试验中,GPS单点测速方法(即多普勒观测值测速与导出多普勒观测值测速)间的符合精度达到cm/s级,与高精度的惯导测速结果的符合精度为dm/s级,而且和运动载体的动态条件(如加速度和加速度变化率的大小)具有很强的相关性。  相似文献   

12.
Automated GPS processing for global total electron content data   总被引:4,自引:2,他引:4  
A software package known as MIT Automated Processing of GPS (MAPGPS) has been developed to automate the processing of GPS data into global total electron density (TEC) maps. The goal of the MAPGPS software is to produce reliable TEC data automatically, although not yet in real time. Observations are used from all available GPS receivers during all geomagnetic conditions where data has been successfully collected. In this paper, the architecture of the MAPGPS software is described. Particular attention is given to the algorithms used to estimate the individual receiver biases. One of the largest sources of error in estimating TEC from GPS data is the determination of these unknown receiver biases. The MAPGPS approach to solving the receiver bias problem uses three different methods: minimum scalloping, least squares, and zero-TEC. These methods are described in detail, along with their relative performance characteristics. A brief comparison of the JPL and MAPGPS receiver biases is presented, and a possible remaining error source in the receiver bias estimation is discussed. Finally, the Madrigal database, which allows Web access to the MAPGPS TEC data and maps, is described.  相似文献   

13.
Single receiver phase ambiguity resolution with GPS data   总被引:26,自引:12,他引:14  
Global positioning system (GPS) data processing algorithms typically improve positioning solution accuracy by fixing double-differenced phase bias ambiguities to integer values. These “double-difference ambiguity resolution” methods usually invoke linear combinations of GPS carrier phase bias estimates from pairs of transmitters and pairs of receivers, and traditionally require simultaneous measurements from at least two receivers. However, many GPS users point position a single local receiver, based on publicly available solutions for GPS orbits and clocks. These users cannot form double differences. We present an ambiguity resolution algorithm that improves solution accuracy for single receiver point-positioning users. The algorithm processes dual- frequency GPS data from a single receiver together with wide-lane and phase bias estimates from the global network of GPS receivers that were used to generate the orbit and clock solutions for the GPS satellites. We constrain (rather than fix) linear combinations of local phase biases to improve compatibility with global phase bias estimates. For this precise point positioning, no other receiver data are required. When tested, our algorithm significantly improved repeatability of daily estimates of ground receiver positions, most notably in the east component by approximately 30% with respect to the nominal case wherein the carrier biases are estimated as real values. In this “static” test for terrestrial receiver positions, we achieved daily repeatability of 1.9, 2.1 and 6.0 mm in the east, north and vertical (ENV) components, respectively. For kinematic solutions, ENV repeatability is 7.7, 8.4, and 11.7 mm, respectively, representing improvements of 22, 8, and 14% with respect to the nominal. Results from precise orbit determination of the twin GRACE satellites demonstrated that the inter-satellite baseline accuracy improved by a factor of three, from 6 to 2 mm up to a long-term bias. Jason-2/Ocean Surface Topography Mission precise orbit determination tests results implied radial orbit accuracy significantly below the 10 mm level. Stability of time transfer, in low-Earth orbit, improved from 40 to 7 ps. We produced these results by applying this algorithm within the Jet Propulsion Laboratory’s (JPL’s) GIPSY/OASIS software package and using JPL’s orbit and clock products for the GPS constellation. These products now include a record of the wide-lane and phase bias estimates from the underlying global network of GPS stations. This implies that all GIPSY–OASIS positioning users can now benefit from this capability to perform single-receiver ambiguity resolution.  相似文献   

14.
Using GPS multipath to measure soil moisture fluctuations: initial results   总被引:13,自引:2,他引:11  
Measurements of soil moisture are important for studies of climate and weather forecasting, flood prediction, and aquifer recharge studies. Although soil moisture measurement networks exist, most are sparsely distributed and lack standardized instrumentation. Measurements of soil moisture from satellites have extremely large spatial footprints (40–60 km). A methodology is described here that uses existing networks of continuously-operating GPS receivers to measure soil moisture fluctuations. In this technique, incoming signals are reflected off and attenuated by the ground before reception by the GPS receiver. These multipath reflections directly affect signal-to-noise ratio (SNR) data routinely collected by GPS receivers, creating amplitude variations that are a function of ground reflectivity and therefore soil moisture content. After describing this technique, multipath reflection amplitudes at a GPS site in Tashkent, Uzbekistan are compared to estimates of soil moisture from the Noah land surface model. Although the GPS multipath amplitudes and the land surface model are uncalibrated, over the 70-day period studied, they both rise sharply following each rainfall event and slowly decrease over a period of ∼10 days.  相似文献   

15.
Unlike the conventional hardware approaches to GPS base band signal processing, a software GPS receiver is extremely flexible as it comes with all the associated advantages of a software solution. With a software solution, the improvements of silicon technology can be easily translated into better performance at smaller form factors and lower power consumption, without a redesign and/or change to the ASIC. A general purpose Digital Signal Processor (DSP) can be used effectively for GPS signal processing. The memory and speed resources available determine the algorithms and applications that can be effectively implemented in the receiver. The performance of software GPS receivers will soon be difficult to be surpassed by the hardware counterparts, as high-performance processors become available at low cost. ? 2000 John Wiley & Sons, Inc.  相似文献   

16.
Accuracy assessment of the GPS-based slant total electron content   总被引:6,自引:1,他引:5  
The main scope of this research is to assess the ultimate accuracy that can be achieved for the slant total electron content (sTEC) estimated from dual-frequency global positioning system (GPS) observations which depends, primarily, on the calibration of the inter-frequency biases (IFB). Two different calibration approaches are analyzed: the so-called satellite-by-satellite one, which involves levelling the carrier-phase to the code-delay GPS observations and then the IFB estimation; and the so-called arc-by-arc one, which avoids the use of code-delay observations but requires the estimation of arc-dependent biases. Two strategies are used for the analysis: the first one compares calibrated sTEC from two co-located GPS receivers that serve to assess the levelling errors; and the second one, assesses the model error using synthetic data free of calibration error, produced with a specially developed technique. The results show that the arc-by-arc calibration technique performs better than the satellite-by-satellite one for mid-latitudes, while the opposite happens for low-latitudes.  相似文献   

17.
Recent studies have demonstrated the usefulness of global positioning system (GPS) receivers for relative positioning of formation-flying satellites using dual-frequency carrier-phase observations. The accurate determination of distances or baselines between satellites flying in formation can provide significant benefits to a wide area of geodetic studies. For spaceborne radar interferometry in particular, such measurements will improve the accuracy of interferometric products such as digital elevation models (DEM) or surface deformation maps. The aim of this study is to analyze the impact of relative position errors on the interferometric baseline performance of multistatic synthetic aperture radar (SAR) satellites flying in such a formation. Based on accuracy results obtained from differential GPS (DGPS) observations between the twin gravity recovery and climate experiment (GRACE) satellites, baseline uncertainties are derived for three interferometric scenarios of a dedicated SAR mission. For cross-track interferometry in a bistatic operational mode, a mean 2D baseline error (1σ) of 1.4 mm is derived, whereas baseline estimates necessary for a monostatic acquisition mode with a 50 km along-track separation reveal a 2D uncertainty of approximately 1.7 mm. Absolute orbit solutions based on reduced dynamic orbit determination techniques using GRACE GPS code and carrier-phase data allows a repeat-pass baseline estimation with an accuracy down to 4 cm (2D 1σ). To assess the accuracy with respect to quality requirements of high-resolution DEMs, topographic height errors are derived from the estimated baseline uncertainties. Taking the monostatic pursuit flight configuration as the worst case for baseline performance, the analysis reveals that the induced low-frequency modulation (height bias) fulfills the relative vertical accuracy requirement (σ<1 m linear point-to-point error) according to the digital terrain elevation data level 3 (DTED-3) specifications for most of the baseline constellations. The use of a GPS-based reduced dynamic orbit determination technique improves the baseline performance for repeat-pass interferometry. The problem of fulfilling the DTED-3 horizontal accuracy requirements is still an issue to be investigated. DGPS can be used as an operational navigation tool for high-precision baseline estimation if a geodetic-grade dual-frequency spaceborne GPS receiver is assumed to be the primary instrument onboard the SAR satellites. The possibility of using only single-frequency receivers, however, requires further research effort.Deutsche Forschungsgemeinschaft (DFG) research fellow until Sept. 2004 at the Microwaves and Radar Institute, Deutsche Zentrum für Luft- und Raumfahrt (DLR) e.V., 82234 Weßling, Germany  相似文献   

18.
Short-term analysis of GNSS clocks   总被引:6,自引:6,他引:0  
A characterization of the short-term stability of the atomic frequency standards onboard GNSS satellites is presented. Clock performance is evaluated using two different methods. The first method derives the temporal variation of the satellite’s clock from a polynomial fit through 1-way carrier-phase measurements from a receiver directly connected to a high-precision atomic frequency standard. Alternatively, three-way measurements using inter-station single differences of a second satellite from a neighboring station are used if the receiver’s clock stability at the station tracking the satellite of interest is not sufficient. The second method is a Kalman-filter-based clock estimation based on dual-frequency pseudorange and carrier-phase measurements from a small global or regional tracking network. Both methods are introduced and their respective advantages and disadvantages are discussed. The analysis section presents a characterization of GPS, GLONASS, GIOVE, Galileo IOV, QZSS, and COMPASS clocks based on these two methods. Special focus has been set on the frequency standards of new generation satellites like GPS Block IIF, QZSS, and IOV as well as the Chinese COMPASS/BeiDou-2 system. The analysis shows results for the Allan deviation covering averaging intervals from 1 to 1,000 s, which is of special interest for real-time PPP and other high-rate applications like processing of radio-occultation measurements. The clock interpolation errors for different sampling rates are evaluated for different types of clocks and their effect on PPP is discussed.  相似文献   

19.
Under the assumption that the surrounding environment remains unchanged, multipath contamination of GPS measurements can be formulated as a function of the sidereal repeatable geometry of the satellite with respect to the fixed receiver. Hence, multipath error estimation amounts to a regression problem. We present a method for estimating code multipath error of GPS ground fixed stations. By formulating the multipath estimation as a regression problem, we construct a nonlinear continuous model for estimating multipath error based on well-known sparse kernel regression, for example, support vector regression. We will empirically show that the proposed method achieves state-of-the-art performance on code multipath mitigation with 79 % reduction on average in terms of standard deviation of multipath error. Furthermore, by simulation, we will also show that the method is robust to other coexisting signals of phenomena, such as seismic signals.  相似文献   

20.
GPS观测量先验方差-协方差矩阵实时估计   总被引:7,自引:0,他引:7  
GPS观测量的先验方差-协方差矩阵的可靠性直接关系到GPS定位结果和可靠性,关系到模糊度初始化时间、模糊度搜索的可靠性及成功率。本文提出了一种GPS观测量的先验方差-协方差矩阵的实时估计方法。其特点是直接利用伪距和载波相位观测值,来实时估计先验方差-协方差矩阵,而且可广泛应用于各种测量型接收机的各种测量模式。该方法应用于模糊度解算中,并与其他方法进行比较,以检验其效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号