首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments using a precessing liquid-filled oblate spheroid with ellipticity ( a − b )/ a =1/400 extend and clarify earlier research. They yield flow data useful for estimating flows in the Earth's liquid core. Observed flows illustrate and confirm a nearly rigid liquid sphere with retrograde drift and lagging a cavity (mantle) axis in precession. The similarities of the observed lag angle with that computed for a rigid sphere, and earlier energy dissipation research both support the use of a rigid sphere analytical model to predict energy dissipation and first-order flow within the core–mantle boundary (CMB). Second-order boundary layer and interior cylindrical flow structures also are photographed and measured. Interior flows are never turbulent or unstable at near-Earth parameters, although complex and transient flow patterns are observed within the boundary layer. Other mechanisms proposed to explain net heat loss from the Earth and maintenance of the geodynamo typically require acceptance of some critical but unproven premise. Precession and CMB configuration are known with certainty and precision. Analytical difficulties have been the obstacle. Experiments illustrate the consequences of precession and ellipticity, provide criteria for validating analytical and numerical models, and may yield direct knowledge of the Earth's deep interior with careful scaling.  相似文献   

2.
Summary. An existing experimentally verified model for energy dissipation in a processing spherical cavity filled with liquid assumed to be in a semirigidized state except for a viscous Ekman boundary layer is applied to the Earth's liquid core to assess energy dissipation magnitudes. Application of the model to the best available Earth data occurs at the derived energy dissipation maximum for the model. Other existing research showing that the Earth's atmosphere appears to adjust to a state of maximum dissipation led to generic models for systems of maximum dissipation. The maximum dissipation mantle—core model with core motion driven by Earth precession alone, coupled to the mantle only by viscous shear stresses, and with a spherical mantle—core boundary leads to energy dissipation rates on the order of 104 times those necessary for an Earth dynamo. The maximum dissipation model also leads to excessive magnetic field drift rates and to excessive retardation of the Earth's rotation rate. Effects of the mantle—core ellipticity and of magnetic field coupling are briefly discussed and are used to help develop a less than maximum dissipation model also driven by precession alone but using the additional coupling to yield a model more consistent with observed phenomena.  相似文献   

3.
During the past ten years or so there has been considerable discussion in the literature regarding the author's 1963 contention that (neglecting temperature effects and spin) the Earth's liquid core cannot be stable unless the Adams-Williamson condition relating density distribution and compressibility holds there.
The present paper throws light on this question by showing mathematically that a sphere of gravitating compressible liquid cannot be internally stable unless this condition is fulfilled. Physical reasons for the necessity of this condition, which implies that particles of the liquid are in neutral equilibrium, are also discussed. By internal stability is meant stability of the density distribution while the spherical shape is maintained.
The question of shape stability is not treated here, since it may be assumed that the Earth's mantle is sufficiently rigid to keep the core essentially spherical.
The liquid is assumed to be a perfect fluid, elastic, and in the discussion only small strains are considered from an equilibrium configuration of initial hydrostatic stress. Furthermore thermodynamic effects are neglected and there is no spin.  相似文献   

4.
5.
Measured changes in the Earth's length of day on a decadal timescale are usually attributed to the exchange of angular momentum between the solid mantle and fluid core. One of several possible mechanisms for this exchange is electromagnetic coupling between the core and a weakly conducting mantle. This mechanism is included in recent numerical models of the geodynamo. The 'advective torque', associated with the mantle toroidal field produced by flux rearrangement at the core–mantle boundary (CMB), is likely to be an important part of the torque for matching variations in length of day. This can be calculated from a model of the fluid flow at the top of the outer core; however, results have generally shown little correspondence between the observed and calculated torques. There is a formal non-uniqueness in the determination of the flow from measurements of magnetic secular variation, and unfortunately the part of the flow contributing to the torque is precisely that which is not constrained by the data. Thus, the forward modelling approach is unlikely to be useful. Instead, we solve an inverse problem: assuming that mantle conductivity is concentrated in a thin layer at the CMB (perhaps D"), we seek flows that both explain the observed secular variation and generate the observed changes in length of day. We obtain flows that satisfy both constraints and are also almost steady and almost geostrophic, and therefore assert that electromagnetic coupling is capable of explaining the observed changes in length of day.  相似文献   

6.
The observed time-series of precession/nutation show residuals with respect to an empirical model based on the rigid Earth theoretical nutations and a frequency dependent transfer function with resonances to the Earth's normal modes. These residuals display energy mainly in the frequency domain around 430 and 500 days in the inertial frame. In this frequency band, the energy is possibly related to two normalmode frequencies: the free core nutation (FCN) and the free inner core nutation (FICN). In this paper, we examine the possibility of obtaining this energy from the resonance effect induced by a luni-solar (or planetary) forcing, or by an atmospheric forcing at a frequency very close to these Earth free nutations. The amplification factor due to the resonance is computed from an analytical formula expressed in the case of a simplified three-layer ellipsoidal rotating earth (with an elastic inner core, a liquid outer core and an elastic mantle), as well as the empirical formula based on the analysis of VLBI observations. For the tidal forcing, the theoretical results do not show any resonance at the level of precision we have examined but it is still possible to find one frequency near the FCN or FICN frequencies which could be excited. In contrast, for the atmospheric pressure the level of energy needed could be obtained from the diurnal pressure, depending on the noise level of the Earth's global pressure. We also show that the combination of three waves can explain the observed decrease of energy with time. While the tidal potential amplitudes are too small, a pressure noise level of 0.5 Pa would be sufficient to excite these waves.  相似文献   

7.
Body tides on an elliptical, rotating, elastic and oceanless earth   总被引:17,自引:0,他引:17  
Summary. The Earth's deformation caused by the luni-solar tidal force is defined as the 'body tide'. We compute the effects of the Earth's rotation and elliptical stratification on the body tide for a number of modern elastic structural models. Rotation and ellipticity within the mantle are found to affect tidal observations by about 1 per cent. A consequence is an improved estimate for the fluid core resonance in the diurnal tidal band. Agreement between results for the different structural models is very good. As a result, the results computed here can be used to model the tidal effects of a globally averaged, oceanless, rotating, elliptical and elastic earth to an accuracy of at least one part in 300.  相似文献   

8.
Summary. The basic equations describing the dynamical effects of the Earth's fluid core (Liouville, Navier-Stokes and elasticity equations) are derived for an ellipsoidal earth model without axial symmetry but with an homogeneous and deformable fluid core and elastic mantle.
We develop the balance of moment of momentum up to the second order and use Love numbers to describe the inertia tensor's variations. The inertial torque takes into account the ellipticity and the volume change of the liquid core. On the core—mantle boundary we locate dissipative, magnetic and viscous torques. In this way we obtain quite a complete formulation for the Liouville equations.
These equations are restricted in order to obtain the usual Chandler and nearly diurnal eigenfrequencies.
Then we propose a method for calculating the perturbations of these eigenfrequencies when considering additional terms in the Liouville equations.  相似文献   

9.
Summary. The tidal deformation of a homogeneous viscoelastic sphere due to the gravitational attraction of an external body is calculated. The sphere is modelled as an incompressible Kelvin-Voigt solid. An equation for the displacement field is obtained assuming that strains are small and inertia is negligible. This equation has a series solution in terms of Legendre polynomials. The resulting expression for the displacement field reduces to that for an elastic solid and a viscous fluid in the appropriate limits of the material constants. The first term in the viscoelastic solution is used to calculate the moments induced by tidal deformation assuming a circular orbit. In the absence of obliquity and precession, these moments reduced to a torque about the spin axis. This torque is compared to that predicted by a phase lag analysis. These two approaches are formally equivalent if the tidal dissipation function Q −1 depends in a specific way on the difference of the spin and orbital angular velocities.  相似文献   

10.
Speculations on the Thermal and Tectonic History of the Earth   总被引:3,自引:0,他引:3  
Summary. The connection between the Earth's thermal history and convection in the mantle is exploited to elucidate the early evolution of the Earth. It appears probable that convection extending over almost all of the mantle has dominated vertical heat transport throughout the whole of the Earth's history. Only in boundary layers at the surface and at a depth of 650–700 km is conduction likely to be important. The resulting evolution appears to be consistent with geological observations on early Precambrian rocks.
Various arguments are put forward in favour of two horizontal scales of convective flow in the mantle at depths less than 650 km. The large scale flow is related to the motion of major plates, and must be ordered over distances of more than 5000 km. Its evolution and energetics are discussed and there are no obvious problems in maintaining the proposed convective motions. Small scale flow with an extent of the order of 500 km appears necessary both to explain the heat flow through older parts of the Earth's surface and to reconcile the geophysical observations with the results of numerical experiments. Though the existence of the small scale flow is at present speculative, various tests of its presence are proposed.  相似文献   

11.
This paper investigates possible long-period oscillations of the earth's fluid outer core. Equations describing free oscillations in a stratified, self-gravitating, rotating fluid sphere are developed using a regular perturbation on the equations of hydrodynamics. The resulting system is reduced to a finite set of ordinary differential equations by ignoring the local horizontal component of the earth's angular velocity vector, Ω, and retaining only the vertical component. The angular dependence of the eigensolutions is described by Hough functions, which are solutions to Laplace's tidal equation.
The model considered here consists of a uniform solid elastic mantle and inner core surrounding a stratified, rotating, inviscid fluid outer core. The quantity which describes the core's stratification is the Brunt—Väisälä frequency N , and for particular distributions of this parameter, analytical solutions are presented. The interaction of buoyancy, and rotation results in two types of wave motion, the amplitudes of which are confined predominantly to the outer core: (1) internal gravity waves which exist when N 2 > 0, and (2) inertial oscillations which exist when N 2<4Ω2. For a model with a stable density stratification similar to that proposed by Higgins & Kennedy (1971), the resulting internal gravity wave eigenperiods are all at least 8 hr, and the fundamental modes have periods of at least 13 hr. A model with an unstable density stratification admits no internal gravity waves but does admit inertial oscillations whose eigenperiods have a lower bound of 12hr.  相似文献   

12.
Summary. We compute the luni-solar forced nutations of an elliptical, rotating, self-gravitating, elastic, hydrostatically prestressed and oceanless earth. Several recent structural models are considered, each possessing a fluid outer core and solid inner core. Complete results are given for the nutation of the 'axis of figure for the Tisserand mean surface' which best represents the observational effects of the Earth's nutational motion. Differences between results for different structural models are observationally insignificant. Differences between our results and Molodensky's are as large as ∼ 0.002 arcsec at six month and at 18.6 yr.  相似文献   

13.
Summary. The luni-solar forced nutations and body tide are believed to be resonant at frequencies near (1 + 1/460) cycle sidereal day−1 as seen from the rotating Earth. This resonance is due to the Earth's rotating, elliptical fluid core. We show here that tides in the open ocean and the Earth's response to those tides must also be resonant at (1 + 1/460) cycle day−1. We examine these resonant oceanic effects on the Earth's nutational motion and on the body tide. Effects on the forced nutations might be as large as 0.002 arcsec at 18.6 yr. The effects on the observed resonance in the body tide are more important. For tidal gravity, for example, the difference between K 1 and 0 1 which is usually used to determine the resonance, can be perturbed by 30 per cent or more due to the oceanic resonance effects.  相似文献   

14.
风沙运动中MAGNUS效应的数值研究   总被引:2,自引:2,他引:0  
张树  胡赞远  吕志咏 《中国沙漠》2010,30(3):498-504
在风沙运动中,跃移沙粒一般都会伴随高速旋转,同时引起一种升力效应,即Magnus效应。采用数值模拟的方法计算了0.1Re400,转速ω为100~1000 rev.s-1范围时均匀来流中单个球形沙粒受到的Magnus力,并与Rubinow和Keller推导的Magnus力公式进行了比较。计算结果表明,在0.1Re200范围内,升力和沙粒的旋转速度成正比,随雷诺数的增大而减小。同时,Magnus效应和固定沙粒在均匀来流中的流动结构也有关系,即计算结果和Magnus力公式的升力系数比K在沙粒流动是附体的时随Re数增加逐渐减小,在Re=20~30时达到最小值,然后在沙粒流动是对称分离的时K随着Re数增加逐渐增大。当雷诺数继续增大到超过200时,沙粒本身流动状态非对称所引起的升力超过Magnus效应产生的升力,但Magnus效应的作用也不可以忽略。根据计算结果,对Magnus力公式进行了修正。另外,还发现流场速度梯度与Magnus效应并没有耦合作用,速度梯度对升力的影响可以和Magnus效应线性叠加。  相似文献   

15.
This paper extends our earlier examinations of the utility of various approximations for treating the dynamics of the Earth's liquid core on time-scales of the order of 104 to 108 s. We discuss the effects of representing the response of the mantle and inner core by static (versus dynamic) Love numbers, and of invoking the subseismic approximation for treating core flow, used either only in the interior of the liquid core (SSA-1) or also at the boundaries (SSA-2). The success of each approximation (or combinations thereof) is measured by comparing the resulting surface gravity effects (computed for a given earthquake excitation), and (for the Slichter mode) the distribution of translational momentum, with reference calculations in which none of these approximations is made. We conclude that for calculations of the Slichter triplet, none of the approximations is satisfactory, i.e. a full solution (using dynamic Love numbers at elastic boundaries and no core flow approximation) is required in order to avoid spurious eigenfrequencies and to yield correct eigenfunctions (e.g. conserving translational momentum) and surface gravity. For core undertones, the use of static Love numbers at rigid boundaries is acceptable, along with SSA-1 (i.e. provided the subseismic approximation is not invoked at the core boundaries). Although the calculations presented here are for a non-rotating earth model, we argue that the principal conclusions should be applicable to the rotating Earth. Shortcomings of the subseismic approximation appear to arise because both SSA-1 and SSA-2 lower the order of the governing system of differential equations (giving rise to a singular perturbation problem), and because SSA-2 overdetermines the boundary conditions (making it impossible for solutions to satisfy all continuity requirements at core boundaries).  相似文献   

16.
The period and Q of the Chandler wobble   总被引:3,自引:0,他引:3  
Summary. We have extended our calculation of the theoretical period of the Chandler wobble to account for the non-hydrostatic portion of the Earth's equatorial bulge and the effect of the fluid core upon the lengthening of the period due to the pole tide. We find the theoretical period of a realistic perfectly elastic Earth with an equilibrium pole tide to be 426.7 sidereal days, which is 8.5 day shorter than the observed period of 435.2 day. Using Rayleigh's principle for a rotating Earth, we exploit this discrepancy together with the observed Chandler Q to place constraints on the frequency dependence of mantle anelasticity. If Qμ in the mantle varies with frequency σ as σα between 30 s and 14 months and if Qμ in the lower mantle is of order 225 at 30 s, we find that 0.04 ρα≤ 0.11; if instead Qμ in the lower mantle is of order 350 near 200 s, we find that 0.11 ≤α≤ 0.19. In all cases these limits arise from exceeding the 68 per cent confidence limits of ± 2.6 day in the observed period. Since slight departures from an equilibrium pole tide affect the Q much more strongly than the period we believe these limits to be robust.  相似文献   

17.
Summary. Numerical convection models are presented in which plates are simulated by imposing piecewise constant horizontal velocities on the upper boundary. A 4 × 1 box of constant viscosity fluid and two-dimensional (2-D) flow is assumed. Four heating modes are compared: the four combinations of internal or bottom heating and prescribed bottom temperature or heat flux. The case with internal heating and an isothermal base is relevant to lower mantle or whole mantle convection, and it yields a lower thermal boundary layer which is laterally variable and can be locally reversed, corresponding to heat flowing back into the core locally. When scaled to the whole mantle, the surface deflections and gravity and geoid perturbations calculated from the models are comparable to those observed at the Earth's surface. For models with migrating ridges and trenches, the flow structure lags well behind the changing surface 'plate'configurations. This may help to explain the poor correlation between the main geoid features and plate boundaries. Trench migration substantially affects the dip of the cool descending fluid because of induced horizontal shear in the vicinity of the trench. Such shear is small for whole mantle convection, but is large for upper mantle convection, and would probably result in the Tonga Benioff zone dipping to the SE, opposite to the observed dip, for the case of upper mantle convection.  相似文献   

18.
The general 3-D scalar equations of motion of the liquid core (with respect to the radial components of displacements and cubic dilatation) are constructed as a superposition of the solutions of ordinary differential equations describing the dynamics of a stably stratified, heterogeneous, compressible and inviscid rotating fluid inside thin spherical layers ( Molodensky & Sasao 1995 ). The estimation of dynamical effects of a homogeneous and incompressible liquid core on the Chandler period (Groten, Lenhardt & Molodensky 1991) is generalized for the case of a heterogeneous, compressible, inviscid and neutrally stratified liquid core.  相似文献   

19.
Internal oscillations in the Earth's fluid core   总被引:4,自引:0,他引:4  
  相似文献   

20.
We consider the kinematic production of magnetic fields in a sphere by velocity fields dominated by differential rotation and spiralling convective cells. The high magnetic Reynolds number limit of Braginsky (1964) is considered and formulae are derived allowing an α-effect parametrization of such flows to be easily calculated. This permits an axisymmetric system to be investigated in parallel with the direct 3-D numerical computations. Good agreement between the asymptotic and 3-D calculations is found. The 'spiralling' property typical of convective motion in rotating spheres is important in terms of dynamo action; the differential rotation coexisting with this feature is also vital. Indeed, it is the presence of both features which allows the analysis of Braginsky to be employed. With flows approximating the columnar form anticipated for rapidly rotating convection, dynamo action is relatively easily achieved for all azimuthal wavenumbers; modes of differing wavenumbers interact almost by a simple superposition. With flows of more complex latitudinal form, the mutual interactions between modes become more complicated. For columnar-type flows, dipole magnetic fields are favoured when the sense of outward spiralling is prograde and the zonal flow is eastwards, as is physically preferred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号