首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Lavas from Heard Island, located on the Kerguelen Plateau inthe southern Indian Ocean, exhibit the largest range (e.g.,87Sr/86Sr=0.7047–0.7079) of isotopic compositions yetobserved on a single oceanic island. Isotopic compositions arewell correlated and are accompanied by systematic changes inincompatible trace element ratios, particularly those involvingNb. These variations are interpreted as resulting from mixingbetween two components. One is characterized by high 87Sr/86Sr,low 206Pb/204Pb and 143Nd/144Nd ratios, and negative Nb andEu anomalies, and is derived ultimately from the upper continentalcrust. The other has lower 87Sr/86Sr, and higher 206Pb/204Pband 143Nd/144Nd ratios, and lacks the depletions in Nb and Eu.Two possible compositions are considered for the low-87Sr/86Srcomponent of the source. The first is at the low-87Sr/86Sr endof the Heard Island data array, represented most closely bylavas from the Laurens Peninsula. However, trace element variationssuggest that these lavas might not be representive of the Heardplume. The second is close to the low-87Sr/86Sr end of the isotopicarray for lavas from the main volcano. In this case a lithosphericmantle origin is suggested for the Laurens Peninsula lavas.The relationships between isotopic data, major element compositions,and incompatible trace element ratios indicate that the continent-derivedmaterial is probably present in the mantle source, where itmakes a maximum contribution of <4 wt.% for all but one HeardIsland sample. However, if the Kerguelen Plateau is a submergedcontinental block, shallow-level contamination cannot be ruledout. The binary mixing model developed to explain the Heard Islandgeochemical variations is extended to include other Indian Oceanoceanic island and mid-ocean ridge basalts (OIB and MORB). Weshow that isotopic compositions of Indian Ocean OIB are consistentwith sampling of a regional reservoir in which the same twocomponents exist in variable proportions (generally 1–5wt.% of the continent-derived component). The distinctive isotopiccompositions of Indian Ocean MORB are consistent with mixingof a similar component into an Atlantic-or Pacific-like MORBmantle source. The relatively unradiogenic 206Pb/204Pb isotopiccompositions of these ‘enriched’ Indian Ocean mantlecomponents are unlike any present-day marine sediments and indicatethat their source has had 238U/204Pb ratios (µ) much lowerthan typical upper continental crust for > 1 Ga. These agespre-date the formation of Gondwana (600-130 Ma) and thereforedo not support sediment subduction beneath Gondwana as the causeof enrichment in the sub-Indian Ocean mantle. We propose thatthe enrichment of Indian Ocean OIB sources was due to subductionof upper-crustal material beneath a Proterozoic precursor ofGondwana at 1–2 Ga. The enrichment of the Indian OceanMORB sources could have had a similar origin, or could havebeen derived from sub-continental lithospheric mantle returnedto the asthenospheric mantle, perhaps during the break-up ofGondwana (200–130 Ma).  相似文献   

2.
Site 1201D of Ocean Drilling Program Leg 195 recovered basalticand volcaniclastic units from the West Philippine Basin thatdocument the earliest history of the Izu–Bonin–Marianaconvergent margin. The stratigraphic section recovered at Site1201D includes 90 m of pillow basalts, representing the WestPhilippine Basin basement, overlain by 459 m of volcaniclasticturbidites that formed from detritus shed from the Eocene–Oligoceneproto-Izu–Bonin–Mariana island arc. Basement basaltsare normal mid-ocean ridge basalt (N-MORB), based on their abundancesof immobile trace elements, although fluid-mobile elements areenriched, similar to back-arc basin basalts (BABB). Sr, Nd,Pb and Hf isotopic compositions of the basement basalts aresimilar to those of basalts from other West Philippine Basinlocations, and show an overall Indian Ocean MORB signature,marked by high 208Pb/204Pb for a given 206Pb/204Pb and high176Hf/177Hf for a given 143Nd/144Nd. Trace element and isotopicdifferences between the basement and overlying arc-derived volcaniclasticsare best explained by the addition of subducted sediment orsediment melt, together with hydrous fluids from subducted oceaniccrust, into the mantle source of the arc lavas. In contrastto tectonic models suggesting that a mantle hotspot was a sourceof heat for the early Izu–Bonin–Mariana arc magmatism,the geochemical data do not support an enriched, ocean islandbasalt (OIB)-like source for either the basement basalts orthe arc volcanic section. KEY WORDS: back-arc basalts; Izu–Bonin–Marianas; Philippine Sea; subduction initiation; Ocean Drilling Program Leg 195  相似文献   

3.
It is unclear why the Pb, Nd, and Sr isotopic composition of the modern mid-ocean ridge basalts (MORB) from the Indian Ocean is different from that of the North Atlantic and Pacific Oceans. A possible explanation for this is that the Indian MORB-type isotopic signature is a long-lived regional feature of the mantle, as evidently shown by the isotopic composition of the 350 Ma MORB-like Mian-Lue northern ophiolite, which was formed in the same region presently occupied by the Indian Ocean. However, this hypothesis is in conflict with the lack of Indian MORB-type isotopic signature in a number of 150 Ma Tethyan and Indian Ocean crusts. To further constrain the origin of the Indian MORB-type isotopic signature, we analyze the geochemical and Pb, Nd, and Sr isotopic composition of representative mafic rocks from four Tethyan ophiolites ranging in age from 90 to 360 Ma. The Sr isotopic composition of the samples is unreliable due to alteration, but the age-corrected Nd and Pb isotopic ratios and geochemical data indicate that these Tethyan rocks were derived from a geochemically depleted asthenospheric source that had a clear Indian MORB-type isotopic signature. We therefore conclude that the bulk of the Indian suboceanic mantle was most probably inherited from the Tethyan asthenosphere. A few regions in both the Tethyan and Indian Oceans, however, are most probably underlain by Pacific and North Atlantic MORB-type mantle (and vice-versa) because of the flow of the asthenosphere in response to tectonic plate reorganizations that lead to openings and closures of ocean basins. The Indian MORB-type isotopic signature of the western Pacific marginal basin crusts could be due to either flow of the Indian Ocean mantle into the western Pacific or to endogenous production of such an isotopic signature from delaminated East-Asian sublithospheric materials during closure of the Tethys Ocean.  相似文献   

4.
We present the results of a comprehensive major element, traceelement and Sr–Nd–Pb–O isotopic study of post-glacialvolcanic rocks from the Neovolcanic zones on Iceland. The rocksstudied range in composition from picrites and tholeiites, whichdominate in the main rift systems, to transitional and alkalicbasalts confined to the off-rift and propagating rift systems.There are good correlations of rock types with geochemical enrichmentparameters, such as La/Sm and La/Yb ratios, and with long-termradiogenic tracers, such as Sr–Nd–Pb isotope ratios,indicating a long-lived enrichment/depletion history of thesource region. 87Sr/86Sr vs 143Nd/144Nd defines a negative array.Pb isotopes define well-correlated positive arrays on both 206Pb/204Pbvs 207Pb/204Pb and 208Pb/204Pb diagrams, indicating mixing ofat least two major components: an enriched component representedby the alkali basalts and a depleted component represented bythe picrites. In combined Sr–Nd–Pb isotopic spacethe individual rift systems define coherent mixing arrays withslightly different compositions. The enriched component hasradiogenic Pb (206Pb/204Pb > 19·3) and very similargeochemistry to HIMU-type ocean island basalts (OIB). We ascribethis endmember to recycling of hydrothermally altered upperbasaltic oceanic crust. The depleted component that is sampledby the picrites has unradiogenic Pb (206Pb/204Pb < 17·8),but geochemical signatures distinct from that of normal mid-oceanridge basalt (N-MORB). Highly depleted tholeiites and picriteshave positive anomalies in mantle-normalized trace element diagramsfor Ba, Sr, and Eu (and in some cases also for K, Ti and P),negative anomalies for Hf and Zr, and low 18Oolivine values(4·6–5·0) below the normal mantle range.All of these features are internally correlated, and we, therefore,interpret them to reflect source characteristics and attributethem to recycled lower gabbroic oceanic crust. Regional compositionaldifferences exist for the depleted component. In SW Icelandit has distinctly higher Nb/U (68) and more radiogenic 206Pb/204Pbratios (18·28–18·88) compared with the NErift (Nb/U 47; 206Pb/204Pb = 18·07–18·47).These geochemical differences suggest that different packagesof recycled oceanic lithosphere exist beneath each rift. A thirdand minor component with relatively high 87Sr/86Sr and 207Pb/204Pbis found in a single volcano in SE Iceland (Öræfajökullvolcano), indicating the involvement of recycled sediments inthe source locally. The three plume components form an integralpart of ancient recycled oceanic lithosphere. The slope in theuranogenic Pb diagram indicates a recycling age of about 1·5Ga with time-integrated Th/U ratios of 3·01. Surprisingly,there is little evidence for the involvement of North AtlanticN-MORB source mantle, as would be expected from the interactionof the Iceland plume and the surrounding asthenosphere in formof plume–ridge interaction. The preferential samplingof the enriched and depleted components in the off-rift andmain rift systems, respectively, can be explained by differencesin the geometry of the melting regions. In the off-rift areas,melting columns are truncated deeper and thus are shorter, whichleads to preferential melting of the enriched component, asthis starts melting deeper than the depleted component. In contrast,melting proceeds to shallower depths beneath the main rifts.The longer melting columns also produce significant amountsof melt from the more refractory (lower crustal/lithospheric)component. KEY WORDS: basalts; trace element and Sr, Nd, Pb, O isotope geochemistry; Iceland plume; isotope ratios; oceanic crustal recycling; partial melting; plume–ridge interaction  相似文献   

5.
Petrogenetic models for the origin of lamproites are evaluatedusing new major element, trace element, and Sr, Nd, and Pb isotopedata for Holocene lamproites from the Gaussberg volcano in theEast Antarctic Shield. Gaussberg lamproites exhibit very unusualPb isotope compositions (206Pb/204Pb = 17·44–17·55and 207Pb/204Pb = 15·56–15·63), which incommon Pb isotope space plot above mantle evolution lines andto the left of the meteorite isochron. Combined with very unradiogenicNd, such compositions are shown to be inconsistent with an originby melting of sub-continental lithospheric mantle. Instead,a model is proposed in which late Archaean continent-derivedsediment is subducted as K-hollandite and other ultra-high-pressurephases and sequestered in the Transition Zone (or lower mantle)where it is effectively isolated for 2–3 Gyr. The high207Pb/204Pb ratio is thus inherited from ancient continent-derivedsediment, and the relatively low 206Pb/204Pb ratio is the resultof a single stage of U/Pb fractionation by subduction-relatedU loss during slab dehydration. Sr and Nd isotope ratios, andtrace element characteristics (e.g. Nb/Ta ratios) are consistentwith sediment subduction and dehydration-related fractionation.Similar models that use variable time of isolation of subductedsediment can be derived for all lamproites. Our interpretationof lamproite sources has important implications for ocean islandbasalt petrogenesis as well as the preservation of geochemicallyanomalous reservoirs in the mantle. KEY WORDS: lamproites; Pb isotopes; mantle Transition Zone; subducted sediment; anomalous mantle reservoirs  相似文献   

6.
Tertiary volcanic rocks from the Westerwald region range frombasanites and alkali basalts to trachytes, whereas lavas fromthe margin of the Vogelsberg volcanic field consist of morealkaline basanites and alkali basalts. Heavy rare earth elementfractionation indicates that the primitive Westerwald magmasprobably represent melts of garnet peridotite. The Vogelsbergmelts formed in the spinel–garnet peridotite transitionregion with residual amphibole for some magmas suggesting meltingof relatively cold mantle. Assimilation of lower-crustal rocksand fractional crystallization altered the composition of lavasfrom the Westerwald and Vogelsberg region significantly. Thecontaminating lower crust beneath the Rhenish Massif has a differentisotopic composition from the lower continental crust beneaththe Hessian Depression and Vogelsberg, implying a compositionalboundary between the two crustal domains. The mantle sourceof the lavas from the Rhenish Massif has higher 206Pb/204Pband 87Sr/86Sr than the mantle source beneath the Vogelsbergand Hessian Depression. The 30–20 Ma volcanism of theWesterwald apparently had the same mantle source as the QuaternaryEifel lavas, suggesting that the magmas probably formed in apulsing mantle plume with a maximum excess temperature of 100°Cbeneath the Rhenish Massif. The relatively shallow melting ofamphibole-bearing peridotite beneath the Vogelsberg and HessianDepression may indicate an origin from a metasomatized portionof the thermal boundary layer. KEY WORDS: continental rift volcanism; basanites; trachytes; assimilation; fractional crystallization; partial melting  相似文献   

7.
The geologic evolution of the New Zealand microcontinent was characterised by intermittent Cretaceous to Quaternary episodes of intraplate volcanism. To evaluate the corresponding mantle evolution beneath New Zealand with a specific focus on the tectonic evolution, we performed a combined major and trace element and Hf, Nd, Pb, Sr isotope investigation on a suite of representative intraplate volcanic rocks from both main islands and the Chatham Islands. Isotopically, the data set covers a range between “HIMU-like” end member compositions (206Pb/204Pb: 20.57, 207Pb/204Pb: 15.77, 87Sr/86Sr: 0.7030, εHf: + 3.8, εNd: + 4.2), compositions tending towards MORB (206Pb/204Pb: 19.01, 207Pb/204Pb: 15.62, 87Sr/86Sr: 0.7028, εHf: + 9.9, εNd: + 7.0) and compositions reflecting the influence of subducted sediments (206Pb/204Pb: 18.99, 207Pb/204Pb: 15.67, 87Sr/86Sr: 0.7037, εHf: + 4.4, εNd: + 3.9). Whereas volcanism on the Chatham Islands constitutes the HIMU end member of our data set, intraplate volcanic rocks from the North Island are dominated by MORB-like compositions with relatively radiogenic 206Pb/204Pb signatures. Volcanic rocks from the South Island form a trend between the three end members. Assuming a polybaric melting column model, the primary melt compositions reflect variations in the degree of melting, coupled to variable average melting depths. As the three isotope and trace element end members occur throughout the volcanic episodes, the “HIMU-like” and the sediment influenced signatures most likely originate from a heterogeneous subcontinental lithospheric mantle, whereas an asthenospheric origin is inferred for the MORB-like component. For the South Island, affinities to HIMU wane with decreasing average melting depths whereas MORB and sediment-like signatures become more distinct. We therefore propose a polybaric melting model involving upper asthenospheric mantle and a lithospheric mantle source that has been modified by subduction components and veins of fossil “HIMU-like” asthenospheric melts. The proportion of asthenospheric versus lithospheric source components is controlled by variations in lithospheric thickness and heat flow, reflecting the different tectonic settings and rates of extension. Generally, low degree melts preferentially tap enriched vein material with HIMU signatures. The widespread occurrence of old Gondwana-derived lithospheric mantle beneath intraplate volcanic fields in East Gondwana is suggested by overall similarities between New Zealand intraplate volcanic rocks and volcanic rocks in East Australia and Antarctica. The petrogenetic model proposed here may therefore serve as a general model for the petrogenesis of Cretaceous to Recent intraplate volcanic rocks in former East Gondwana. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Mesozoic and Cenozoic ore deposits in the Chilean Andes between La Serena (~30°S) and Santiago (~34°S) include polymetallic vein, low- and high-sulfidation epithermal vein, skarn, porphyry copper-molybdenum and porphyry copper-gold. These deposits are associated with volcanic and plutonic complexes emplaced in eastward-migrating longitudinal arcs which formed during subduction along the continental margin of South America since the Middle Jurassic. Stratabound, but epigenetic, volcanic rock- and sedimentary rock-hosted manto deposits contain additional copper resources. Lead isotopic compositions in ore minerals from 29 deposits vary with age and geographic location, and hence with basement and host rocks. Lead in most ore deposits is derived from temporally related igneous rocks, except for the manto deposits whose lead is derived from host volcanic and sedimentary rock sequences. Lead in the ore deposits is dominated by two crustal sources. Low 207Pb/204Pb characterizes one source whereas high 207Pb/204Pb characterizes the second source. Lead isotopic compositions of Jurassic and Miocene ore minerals (206Pb/204Pb>18.50; 207Pb/204Pb>15.61) lie along the average crustal growth curve. By contrast, most Cretaceous deposits have ore minerals with lower 206Pb/204Pb (<18.39) and 207Pb/204Pb (<15.58) than Jurassic ore minerals. The shift in lead isotopic composition to lower lead isotopic values precludes derivation of lead from a source of similar composition to those in the Jurassic or Tertiary deposits. For Cretaceous deposits, polymetallic and low-sulfidation epithermal veins and a skarn have lower 206Pb/204Pb than a porphyry copper-gold system and peripheral gold veins at Andacollo (18.43-18.50). Late Cretaceous veins from the Bellavista deposit have the lowest 206Pb/204Pb (18.33) of all deposits. Ore minerals in Miocene and Pliocene porphyry copper-molybdenum deposits have higher 206Pb/204Pb (18.58-18.67) than Cretaceous deposits, consistent with their age being younger. The Miocene and Pliocene ore minerals also have higher 207Pb/204Pb (15.58-15.66) than Cretaceous ore minerals, thereby requiring an additional input from the high-207Pb/204Pb source into the younger deposits. Miocene auriferous deposits in the north have similar 206Pb/204Pb values as the Miocene and Pliocene porphyry copper-molybdenum deposits in the south, but they are distinguished by higher and variable 207Pb/204Pb (15.61-15.66) and 208Pb/204Pb (38.54-39.01), which are arrayed along steep mixing trends. These ore minerals have the largest input of high-207Pb/204Pb material in the deposits studied. By contrast, lead in the epigenetic manto deposits appears to be derived from the host volcanic or sedimentary rock-dominated sequences, and locally exhibits large-scale isotopic heterogeneity within a deposit. Overall, the lead isotopic compositions of ore minerals mimic the values and variations established in age-equivalent rock sequences. The low-207Pb/204Pb material in the deposits is derived from Cretaceous igneous rocks or their sources as they evolved with time; low 207Pb/204Pb characterizes these rocks. By contrast, high-207Pb/204Pb material is likely derived from Carboniferous to Triassic igneous rocks or their sources, as this lead isotopic characteristic dominates these rocks.  相似文献   

9.
Miocene to Pleistocene calc-alkaline volcanism in the East Carpathianarc of Romania was related to the subduction of a small oceanbasin beneath the continental Tisza–Dacia microlate. Volcanicproducts are predominantly andesitic to dadtic in composition,with rare basalts and rhyodacites (51–l71% SiO2; mg-number0.65–0.26) and have medium- to high-K calcalkaline andshoshonitic affinities. Mg, Cr and Ni are low in all rock-types,indicating the absence of primary erupted compositions. Detailedtrace element and Sr, Nd, Pb and 0 isotope data suggest thatmagmas were strongly crustally contaminated. Assimilation andfractional crystallization (AFC) calculations predict the consumptionof 5–35% local upper-crustal metasediments or sedimentsfrom the palaeo-accretionary wedge. Variations in the isotopiccomposition of the contaminants and parental magmas caused variationsin the mixing trajectories in different parts of the arc Themost primitive isotopic compositions are found in low-K dacitesof the northern Cdlimani volcanic centre and are interpretedas largely mantle derived. A second possible mantle reservoirof lower 149 Nd/144 Nd and lower 206 Pb/204 Pb is identifiedfrom back-arc basic calc-alkaline rocks in the south of thearc Both magmatic reservoirs have elevated isotopic characteristics,owing either to source bulk mixing (between depleted or enrichedasthenosphere and <1% average subducted local sediment) orlower-crustal contamination. KEY WORDS: Carpathians; assimilation; calc-alkaline; Sr-Nd-Pb-0 isotopes; laser flurination  相似文献   

10.
The Serbian province of Tertiary ultrapotassic volcanism isrelated to a post-collisional tectonic regime that followedthe closure of the Tethyan Vardar Ocean by Late Cretaceous subductionbeneath the southern European continental margin. Rocks of thisprovince form two ultrapotassic groups; one with affinitiesto lamproites, which is concentrated mostly in the central partsof the Vardar ophiolitic suture zone, and the other with affinitiesto kamafugites, which crops out in volcanoes restricted to thewestern part of Serbia. The lamproitic group is characterizedby a wide range of 87Sr/86Sri (0·70735–0·71299)and 143Nd/144Ndi (0·51251–0·51216), whereasthe kamafugitic group is isotopically more homogeneous witha limited range of 87Sr/86Sri (0·70599–0·70674)and 143Nd/144Ndi (0·51263–0·51256). ThePb isotope compositions of both groups are very similar (206Pb/204Pb18·58–18·83, 207Pb/204Pb 15·62–15·70and 208Pb/204Pb 38·74–38·99), falling withinthe pelagic sediment field and resembling Mesozoic flysch sedimentsfrom the Vardar suture zone. The Sr and Nd isotopic signaturesof the primitive lamproitic rocks correlate with rare earthelement fractionation and enrichment of most high field strengthelements (HFSE), and can be explained by melting of a heterogeneousmantle source consisting of metasomatic veins with phlogopite,clinopyroxene and F-apatite that are out of isotopic equilibriumwith the peridotite wall-rock. Decompression melting, with varyingcontributions from depleted peridotite and ultramafic veinsto the final melt, accounts for consistent HFSE enrichment andisotopic variations in the lamproitic group. Conversely, themost primitive kamafugitic rocks show relatively uniform Srand Nd isotopic compositions and trace element patterns, andsmall but regular variations of HFSE, indicating variable degreesof partial melting of a relatively homogeneously metasomatizedmantle source. Geochemical modelling supports a role for phlogopite,apatite and Ti-oxide in the source of the kamafugitic rocks.The presence of two contrasting ultrapotassic suites in a restrictedgeographical area is attributable to the complex geodynamicsituation involving recent collision of a number of microcontinentswith contrasting histories and metasomatic imprints in theirmantle lithosphere. The geochemistry of the Serbian ultrapotassicrocks suggests that the enrichment events that modified thesource of both lamproitic and kamafugitic groups were relatedto Mesozoic subduction events. The postcollisional environmentof the northern Balkan region with many extensional episodesis consistent at regional and local levels with the occurrenceof ultrapotassic rocks, providing a straightforward relationshipbetween geodynamics and volcanism. KEY WORDS: kamafugite; lamproite; Mediterranean; Serbia; mantle metasomatism; veined mantle; petrogenesis  相似文献   

11.
Cenozoic, post-collisional, potassic and ultrapotassic igneousrocks in the North Qiangtang, Songpan–Ganzi and NorthKunlun terranes of the northern Tibetan Plateau are distributedalong a semi-continuous, east–west-trending, volcanicbelt, which is over 1200 km in length. Spatially, there is aclose association with major strike-slip faults, thrust faultsand pull-apart basins. The ages of these magmatic rocks rangefrom 45 Ma to the present (the youngest known eruption occurredin 1951); they are shoshonitic, compositionally similar to K-richsubduction-related magmas, and range in SiO2 from 44 to 66 wt%. There is a relative enrichment of large ion lithophile elements(LILE) and light rare earth elements (LREE) in the most primitivemagmatic rocks (MgO >6 wt %) in the North Qiangtang terranecompared with those in the Songpan–Ganzi and North Kunlunterranes; correspondingly, the primitive magmas have higher87Sr/86Sr and 206Pb/204Pb, and lower 143Nd/144Nd ratios in theNorth Qiangtang terrane than in the Songpan–Ganzi andNorth Kunlun terranes. The dominant factors that control thegeochemical characteristics of the magmas are an enriched asthenosphericmantle source composition, the degree of partial melting ofthis source, and the combined processes of crustal assimilationand fractional crystallization (AFC). Enrichment of the asthenosphereis considered to have occurred by incorporation of subductedsediments into the mantle wedge above a subducted slab of Indianlithosphere during India–Asia convergence. Continentallithospheric mantle, metasomatically enriched during earlierepisodes of subduction, may have also contributed a source componentto the magmas. Trace element modelling indicates that the mantlesource of the most primitive magmas in the North Qiangtang terranecontained higher amounts of subducted sediment (0·5–10%)compared with those in the Songpan–Ganzi and North Kunlunterranes (<2%). The degrees of partial melting required togenerate the primitive potassic and ultrapotassic magmas fromthe enriched mantle sources range from <0·1% to 15%in the three major basement terranes. Energy-constrained AFCmodel calculations show that the more evolved magmatic rocks(MgO <6 wt %) are the results of AFC processes in the middlecrust in the North Qiangtang terrane and the upper crust inthe Songpan–Ganzi and North Kunlun terranes. We proposethat the ultimate driving force for the generation of the post-collisionalpotassium-rich magmatism in north Tibet is the continuous northwardunderthrusting of the Indian continental lithosphere followingIndia–Asia collision. This underthrusting resulted inupwelling of hot asthenosphere beneath north Tibet, squeezedup between the advancing Indian lithosphere and the backstopof the rigid Asian continental lithosphere. Asthenospheric upwellingmay have also contributed to uplift of the northern TibetanPlateau. KEY WORDS: Tibetan Plateau; potassic and ultrapotassic magmatism; enriched asthenospheric mantle source; EC-AFC modelling; geodynamics  相似文献   

12.
BELL  K.; SIMONETTI  A. 《Journal of Petrology》1996,37(6):1321-1339
New Nd (0.51261–0.51268), Pb (206Pb/204Pb: 19.24–19.26),and Sr (0.70437–0.70446) isotopic compositions from tennatrocarbonatite lavas, collected in June 1993 from OldoinyoLengai, the only known active carbonatite volcano, are relativelyuniform, and are similar to data from the 1960 and 1988 flows.Three of the samples contain silicate spheroids, one of whichhas Nd and Sr isotopic ratios similar to host natrocarbonatite,consistent with an origin by liquid immiscibility or the mixingof melts with similar isotopic compositions. Pb isotope datafor two samples of trona are inconsistent with its involvementin the genesis of natrocarbonatite. New Pb isotope data fromsilicate volcanic and plutonic blocks (ijolite, nephelinite,phonolite, syenite) from Oldoinyo Lengai are highly variable(206Pb/204Pb, 17.75–19.34; 207Pb/204Pb, 15.41–15.67;208Pb/204Pb, 37.79–39.67), and define near-linear arraysin Pb-Pb diagrams. The isotopic data for the silicate rocksfrom Oldoinyo Lengai are best explained by invoking discretepartial melting events which generate undersaturated alkalinesilicate magmas with distinct isotopic ratios. Pb isotope ratiosfrom most ijolites and phonolites are predominantly lower andmore variable than from the natrocarbonatites, and are attributedto interaction between silicate melts involving HIMU and EMIsource components and an additional component, such as lower-crustalgranulites, DMM or PREMA (prevalent mantle). Variations in Nd,Pb and Sr isotope ratios from Oldoinyo Lengai, among the largestyet documented from a single volcano, are attributed to mantlesource heterogeneity involving mainly the mixing of HIMU andEMI mantle components. Based on the new isotopic data from OldoinyoLengai and data from other East African carbonatites, and mantlexenoliths, we propose a two-stage model in an attempt to explainthe isotope variations shown by carbonatites in this area. Themodel involves (I) the release of metasomatizing agents withHIMU-like signatures from upwelling mantle (‘plume’)source, which in turn metasomatize the sub-continental (old,isotopically enriched, EMI-like) lithosphere, and (2) variabledegrees and discrete partial melting of the resulting heterogeneous,metasomatized lithosphere. KEY WORDS: carbonatite; isotopes; Oldoinyo Lengai; mantle plumes *Telephone: (613) 788–2660, ext. 4419. Fax: (613) 788–4490. e-mail: kbell{at}ccs.carleton.ca  相似文献   

13.
The Miocene–Quaternary Jemez Mountains volcanic field(JMVF), the site of the Valles caldera, lies at the intersectionof the Jemez lineament, a Proterozoic suture, and the CenozoicRio Grande rift. Parental magmas are of two types: K-depletedsilica-undersaturated, derived from the partial melting of lithosphericmantle with residual amphibole, and tholeiitic, derived fromeither asthenospheric or lithospheric mantle. Variability insilica-undersaturated basalts reflects contributions of meltsderived from lherzolitic and pyroxenitic mantle, representingheterogeneous lithosphere associated with the suture. The Kdepletion is inherited by fractionated, crustally contaminatedderivatives (hawaiites and mugearites), leading to distinctiveincompatible trace element signatures, with Th/(Nb,Ta) and La/(Nb,Ta)greater than, but K/(Nb,Ta) similar to, Bulk Silicate Earth.These compositions dominate the mafic and intermediate lavas,and the JMVF is therefore derived largely, and perhaps entirely,from melting of fertile continental Jemez lineament lithosphereduring rift-related extension. Significant variations in Pband Nd isotope ratios (206Pb/204Pb = 17·20–18·93;143Nd/144Nd = 0·51244–0·51272) result fromcrustal contamination, whereas 87Sr/86Sr is low and relativelyuniform (0·7040–0·7048). We compare theeffects of contamination by low-87Sr/86Sr crust with assimilationof high-87Sr/86Sr granitoid by partial melting, with Sr retainedin a feldspathic residue. Both models satisfactorily reproducethe isotopic features of the rocks, but the lack of a measurableEu anomaly in most JMVF mafic lavas is difficult to reconcilewith a major role for residual plagioclase during petrogenesis. KEY WORDS: Jemez Mountains volcanic field; Rio Grande rift; lithospheric mantle; crustal contamination; trace elements; radiogenic isotopes  相似文献   

14.
Quartz diorites represent the earliest (ca. 540 Ma) and most primitive plutonic rocks in the Pan African Damara belt and they pre-date the main phase of high-T regional metamorphism. Two suites of synorogenic quartz diorites are unusual among Damaran intrusive rocks in their elemental and isotopic features. Comparison of the diorite compositions with melts from amphibolite-dehydration melting experiments points to a garnet-bearing meta-tholeiite, probably enriched in K2O, as a likely source rock. Partial melting processes generated mafic (ca. 50 wt% SiO2) quartz diorites in the deep crust at temperatures of between 1,000 and 1,100 °C, based on comparison with experimental results and similar temperature estimates based on P2O5 solubility in mafic rocks. Subsequently, the quartz diorites evolved by multistage, polybaric differentiation processes including fractional crystallization of mainly hornblende and plagioclase and assimilation of felsic basement gneisses. Although their chemical characteristics (high LILE, low HFSE) resemble those of other quartz diorites with calc-alkaline affinities, they differ in their enriched Sr (initial 87Sr/86Sr: 0.70943-0.71285), Nd (initial ) Nd: -9.1 to -15.2 ) and O ('18O: 6.8-8.1‰) isotope compositions. Neodymium model ages (TDM) that range from 1.7 to 2.2 Ga and large variation in 207Pb/204Pb relative to 206Pb/204Pb indicates involvement of ancient crustal material. Lead (206Pb/204Pb: 17.08-17.23, 207Pb/204Pb: 15.53-15.62, 208Pb/204Pb: 37.71-38.16) isotope compositions are strongly retarded, indicating that the source underwent a pre-Pan-African U/Pb fractionation and U depletion. It is proposed that the quartz diorites originated by synorogenic high temperature melting of mafic lower crust. This contrasts with previous suggestions favouring an origin of these rocks by melting of an enriched mantle during Pan-African times with characteristics modified by subduction of oceanic crust and sedimentary rocks.  相似文献   

15.
Miocene to Recent volcanism in northwestern Arabia producedthe largest intraplate volcanic field on the Arabian plate (HarratAsh Shaam, Jordan). The chemically and isotopically diversevolcanic field comprises mafic alkali basalts and basanites.The magmas underwent limited fractional crystallization of ol± cpx ± plag and rare samples have assimilatedup to 20% of Late Proterozoic crust en route to the surface.However, there are subtle Sr–Nd–Pb isotopic variations(87Sr/86Sr = 0·70305–0·70377, 143Nd/144Nd= 0·51297–0·51285, 206Pb/204Pb = 18·8–19·2),which exhibit marked correlations with major elements, incompatibletrace element ratios and abundances in relatively primitivebasalts (MgO >8·5 wt %), and cannot be explained byfractional crystallization and crustal contamination alone.Instead, the data require polybaric melting of heterogeneoussources. Semi-quantitative melt modelling suggests that thisheterogeneity is the result of small degree melts (2–5%)from spinel- and garnet-facies mantle, inferred to be shallowArabian lithosphere, that mixed with smaller degree melts (<1%)from a predominantly deep garnet-bearing asthenospheric(?) sourcewith ocean island basalt characteristics. The latter may bea ubiquitous part of the asthenosphere but is preferentiallytapped at small degrees of partial melting. Volcanism in Jordanappears to be the result of melting lithospheric mantle in responseto lithospheric extension. With time, thinning of the lithosphereallowed progressively deeper mantle (asthenosphere?) to be activatedand melts from this to mix with the shallower lithospheric mantlemelts. Although Jordanian intraplate volcanism is isotopicallysimilar to examples of Late Cenozoic volcanism throughout theArabian peninsula (Israel, Saudi Arabia), subtle chemical andisotopic differences between Yemen and Jordan intraplate volcanismsuggest that the Afar plume has not been channelled northwestwardsbeneath the Arabian plate and played no role in producing thenorthern Saudi Arabian and Jordan intraplate volcanic fields. KEY WORDS: asthenosphere; intraplate volcanism; Jordan; lithospheric mantle; Sr–Nd–Pb isotopes  相似文献   

16.
Glasses from a 2600 km section of the Southeast Indian Ridgewest of the Australian–Antarctic Discordance all possessNd–Pb–Sr isotopic signatures typical of Indian Oceanridge basalt. The boundary between Pacific- and Indian-Ocean-typeridge basalt within the Discordance thus marks the westernmostextent of shallow Pacific-type asthenosphere beneath the ridge.Along-axis He, Nd, Pb, and Sr isotopic patterns are largelyindependent of ridge segmentation, but a weak tendency is evidentfor the most strongly Indian-Ocean-type mantle to be relativelyfusible and for shallower asthenosphere to have lower 3He/4He.On average,  相似文献   

17.
This paper presents field, geochemical and isotopic (Sr, Nd,Pb) results on basalts from the Antipodes, Campbell and ChathamIslands, New Zealand. New 40Ar/39Ar age determinations alongwith previous K–Ar dates reveal three major episodes ofvolcanic activity on Chatham Island (85–82, 41–35,5 Ma). Chatham and Antipodes samples comprise basanite, alkaliand transitional basalts that have HIMU-like isotopic (206Pb/204Pb>20·3–20·8, 87Sr/86Sr <0·7033,143Nd/144Nd >0·5128) and trace element affinities(Ce/Pb 28–36, Nb/U 34–66, Ba/Nb 4–7). Thegeochemistry of transitional to Q-normative samples from CampbellIsland is explained by interaction with continental crust. Thevolcanism is part of a long-lived (100 Myr), low-volume, diffusealkaline magmatic province that includes deposits on the Northand South Islands of New Zealand as well as portions of WestAntarctica and SE Australia. All of these continental areaswere juxtaposed on the eastern margin of Gondwanaland at >83Ma. A ubiquitous feature of mafic alkaline rocks from this regionis their depletion in K and Pb relative to other highly incompatibleelements when normalized to primitive mantle values. The inversionof trace element data indicates enriched mantle sources thatcontain variable proportions of hydrous minerals. We proposethat the mantle sources represent continental lithosphere thathost amphibole/phlogopite-rich veins formed by plume- and/orsubduction-related metasomatism between 500 and 100 Ma. Thestrong HIMU signature (206Pb/204Pb >20·5) is consideredto be an in-grown feature generated by partial dehydration andloss of hydrophile elements (Pb, Rb, K) relative to more magmaphileelements (Th, U, Sr) during short-term storage at the base ofthe lithosphere. KEY WORDS: continental alkaline basalts; lithospheric mantle, mantle metasomatism; New Zealand; OIB, HIMU; Sr, Nd and Pb isotopes; West Antarctica  相似文献   

18.
We report Sr-, Nd- and Pb-isotopic compositions for the lavasof Mauritius, the second youngest volcanic island in the Réunionhotspot. The lavas of the Older Series (7·8–5·5Ma) have identical isotopic compositions (87Sr/86Sr = 0·70411to 0·70422,143Nd/144Nd = 0·512865 to 0·512854,and 206Pb/204Pb = 19·016 to 19·041) to those ofRéunion, where the center of volcanic activity is currentlylocated. The lavas of the Intermediate Series (3·5–1·9Ma) and Younger Series (0·70–0·17 Ma) areshifted to lower Sr-isotopic compositions (0·70364–0·70394,with 143Nd/144Nd = 0·512813 to 0·512948 and 206Pb/204Pb= 18·794 to 18·984). The Intermediate Series lavashave similar trace-element characteristics (e.g. Zr–Nb,Ba–Y) to those of Rodrigues, in both cases requiring theinvolvement of an enriched mantle-like component in the mantlesource. During the volcanic history of Mauritius, the magmaslost the principal isotopic characteristics of the Réunionhotspot with time, and became gradually imprinted with the isotopicsignature of a shallower mantle source that produced the CentralIndian Ridge basalts. KEY WORDS: hotspot; isotopes; Mauritius; Réunion; trace element  相似文献   

19.
The voluminous, bimodal, Silurian Topsails igneous suite consistsmainly of ‘A-type’ peralkaline to slightly peraluminous,hypersohnis to subsolvus granites with subordinate syenite,onzonite and diabase, plus consanguineous basalts and highsilicarhyolites. Nd(T) values from the suite range from –1.5to +5.4; most granitoid components exhibit positive Nd(T) values(+1.1 to +3.9). Granitoid initial 87Sr/86Sr and most 18 O valuesare in the range expected for rocks derived from mantle-likeprotoliths (0.701–0.706 and +6 to +80/). Restricted 207Pb/204Pbvariation is accompanied by significant dispersion of 206Pb/204Pband 208Pb/204Pb. Superficially, petrogenesis by either direct(via fractionation from basalt) or indirect (via melting ofjuvenile crust) derivation from mantle sources appears plausible.Remelting of the granulitic protolith of Ordovician are-typegranitoids can be ruled out, because these rocks exhibit negativeNd(T) and a large range in 207Pb/204Pb. Geochemical and isotopicrelationships are most compatible with remelting of hybridizedlithospheric mantle generated during arc-continent collision.A genetic link is suggested among collision-related delaminationor slab break-off events and emplacement of ‘post-erogenic’granite suites. A-type granites may recycle previously subductedcontinental material, and help explain the mass balance notedfor modern arcs. However, they need not represent net, new,crustal growth. KEY WORDS: A-type granites; juvenile crust; isotopes; Newfoundland *Telephone: (613) 995-4972. Fax: (613) 995-7997. e-mail: jwhalen{at}gsc.emr.ca  相似文献   

20.
Submarine volcanic rocks dredged during RV Meteor cruise M43-1 comprise alkali basalts, basanites, nephelinites and their differentiates representing both basement-shield and young post-shield volcanics of Gran Canaria, Tenerife, La Palma and El Hierro. The primitive lavas vary widely in trace element composition (e.g., Zr/Y=6.6-11.7, (La/Sm)N=2.3-5.4, and Ba/Yb=71-311), and they are characterized by steep, rare-earth element patterns with mean (La/Yb)N=16, and by pronounced, positive primitive mantle-normalized Nb and Ta and negative K anomalies similar to HIMU-type basalts. Rocks from the submarine flanks west and north of Gran Canaria are isotopically and geochemically identical to rocks of the subaerial Miocene shield stage, but they are distinct from rocks of the post-shield stages (Zr/Nb=6.3-8.9, 87Sr/86Sr=0.70327-0.70332, 143Nd/144Nd=0.51289-0.51293, 206Pb/204Pb=19.55-19.88). Most rocks dredged from the submarine flanks of Tenerife are isotopically and geochemically similar to rocks of the adjacent subaerial shield remnants, but a few resemble rocks of the subaerial post-shield stages (total range in Zr/Nb=4.6-6.1, 87Sr/86Sr=0.70300-0.70329, 143Nd/144Nd=0.51281-0.51292, 206Pb/204Pb=19.51-19.96). Rocks from the southern submarine ridge of La Palma cover the entire compositional range of the subaerial rocks of that ridge. Additionally, they comprise a high Zr/Nb group which resembles rocks of the ca. 1-Ma-old Taburiente shield of northern La Palma (total range in Zr/Nb=3.0-6.4, 87Sr/86Sr=0.70297-0.70314, 143Nd/144Nd=0.51288-0.51296, 206Pb/204Pb=19.21-19.79). Rocks from the southern submarine ridge of El Hierro compositionally resemble subaerial rocks of the island (Zr/Nb=4.1-6.2, 87Sr/86Sr=0.70296-0.70314, 143Nd/144Nd=0.51291-0.51297, 206Pb/204Pb=19.25-19.91). The degree of melting in the subcanarian mantle is interpreted to decrease from east to west across the archipelago whereas the proportion of depleted mantle component in the melting anomaly increases, as illustrated by Sr, Nd and Pb isotopes. The isotopic characteristics of the mantle source beneath the Canary Islands represents a mixture of HIMU, DMM and EM I. The overall isotopic signature is intermediate between that of Madeira to the north, which trends towards more depleted compositions, and that of the Cape Verde Islands to the south which shows a pronounced trend towards enriched mantle compositions. A clear trend towards the EM II component is only evident in more evolved rocks dredged from a seamount between Tenerife and Gran Canaria, some of which contain terrigenous sedimentary xenoliths. We propose a genetic model which relates similar mantle source signatures of volcanic archipelagos off West Africa to a common, large-scale lower mantle upwelling which, according to geophysical data, becomes more diffuse in the upper mantle. Narrow plumes or blobs feeding the volcanic centers along the passive margin may rise from this thermal anomaly due to upwelling in small, continent-parallel upper-mantle convection cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号