首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study is confined to the northern part of the Khetri copper belt that extends for about 100 km in northern Rajasthan. Mineralization is more or less strata-bound and is confined to the garnetiferous chlorite schist and banded amphibolite quartzite, occurring towards the middle of the Proterozoic Delhi Supergroup. Preserved sedimentary features and re-estimation of the composition of the pre-metamorphic rocks suggest that the latter were deposited in shallow marine environment characterized by tidal activity. Cordierite-orthoamphibole-cummingtonite rock occurring in the neighbourhood of the ores is discussed, and is suggested to be isochemically metamorphosed sediment. The rocks together with the ores were deformed in two phases and metamorphosed in two progressive and one retrogressive events of metamorphism. Study of the host rocks suggests that the maximum temperature and pressure attained during metamorphism are respectively 550–600°C and < 5.5 kb. Principal ore minerals in Madan Kudan are chalcopyrite, pyrrhotite, pyrite and locally magnetite. In Kolihan these are chalcophyrite, pyrrhotite and cubanite. Subordinate phases are sphalerite, ilmenite, arsenopyrite, mackinawite, molybdenite, cobaltite and pentlandite. The last two are very rare. Gangue minerals comprise quartz, chlorite, garnet, amphiboles, biotite, scapolite, plagioclase and graphite. The ores are metamorphosed at temperatures > 491°C. Sulfide assemblages are explained in terms of fS 2 during metamorphism. Co-folding of the ore zone with the host rocks, confinement of the ores to the carbonaceous pelites or semi-pelitic rocks, strata-bound and locally even stratiform nature of the orebodies, lack of finite wall rock alteration, metamorphism of the ores in the thermal range similar to that for the host rocks, absence of spatial and temporal relationship with the granitic rocks of the region led the authors to conclude that the entire mineralization was originally sedimentary-diagenetic. Any loss of primitive features and development of incongruency are due to subsequent deformation and metamorphism to which the ores and their hosts were together subjected.  相似文献   

2.
Magnetite is common in many ore deposits and their host rocks, and is useful for petrogenetic studies. In the Khetri copper belt in Rajasthan Province, NW India, there are several Cu-(Au, Fe) deposits associated with extensive Cu ± Fe ± Au ± Ag ± Co ± REE ± U mineralization hosted in phyllites, schists and quartzites of the Paleoproterozoic Delhi Supergroup. Ore bodies of these deposits comprise dominantly disseminated and vein-type Cu-sulfide ores composed of chalcopyrite, pyrite, and pyrrhotite intergrown with minor magnetite. There are also Fe-oxide ores with minor or no Cu-sulfides, which are locally overprinted by the mineral assemblage of the Cu-sulfide ores. In addition to the Fe-oxide and Cu-sulfide ores, the protolith of the Delhi Supergroup includes banded iron formations (BIFs) with original magnetite preserved (i.e. magnetite-quartzites) and their sheared counterparts. In the sheared magnetite-quartzites, their magnetite and quartz are mobilized and redistributed to magnetite and quartz bands. Trace elemental compositions of magnetite from these types of ores/rocks were obtained by LA-ICP-MS. The dataset indicates that different types of magnetite have distinct concentrations of Ti, Al, Mg, Mn, V, Cr, Co, Ni, Zn, Cu, P, Ge and Ga, which are correlated to their forming environments. Magnetite grains in magnetite-quartzites have relatively high Al (800–8000 ppm), Ti (150–900 ppm) and V (300–600 ppm) contents compared to those of BIFs in other regions such as the Yilgarn Craton, Western Australia and Labrador, Canada. The high Al, Ti and V contents can be explained by precipitation of the magnetite from relatively reduced, Al–Ti-rich water possibly involving hotter, seafloor hydrothermal fluids derived from submarine mafic volcanic rocks. Magnetite in sheared magnetite-quartzites is generally irregular and re-crystallized, and has Ni, Mn, Al, Cu and P contents lower than the magnetite from the unsheared counterparts, suggesting that the shearing-related mobilization is able to extract these elements from original magnetite. However, elevated contents of Ti, V, Co, Cr, Ge and Mg of the magnetite in the sheared magnetite-quartzites can be ascribed to involvement of external hydrothermal fluids during the shearing, consistent with occurrence of some hydrothermal minerals in the samples.Compositions of magnetite from the Fe-oxide and Cu-sulfide ores are interpreted to be controlled mainly by fluid compositions and/or oxygen fugacity (fO2). Other potential controlling factors such as temperature, fluid–rock interaction and co-precipitating minerals have very limited impacts. Magnetite in the Cu-sulfide ores has higher V but lower Ni contents than that of the Fe-oxide ores, likely indicating its precipitation from relatively reduced, evolved fluids. However, it is also indicated that the two types of magnetite do not show large distinctions in terms of concentrations of most elements, suggesting that they may have precipitated from a common, evolving fluid. We propose a combination of Ge versus Ti/Al and Cr versus Co/Ni co-variation plots to discriminate different types of magnetite from the Khetri copper belt. Our work agrees well with previous studies that compositions of magnetite can be potentially useful for provenance studies, but also highlights that discrimination schemes would be more meaningful for deposits in a certain region if fluid/water chemistry and specific formation conditions reflected in compositions of magnetite are clearly understood.  相似文献   

3.
The Khetri Copper Belt (KCB), a part of the Proterozoic Delhi–Aravalli fold belt in western India, hosts several Cu deposits, which are known to contain considerable Au, Ag, Co and Ni. Although many Co-bearing phases have been reported from the KCB and adjacent areas, detailed textural and geochemical data are either unavailable or scant except for mackinawite. In this study, we describe the textures and compositions (determined by EPMA) of two very rare Co-rich phases, namely cobaltian mackinawite (containing up to 12.68 wt.% Co, 1.90 wt.% Ni and 2.52 wt.% Cu) and cobalt-pentlandite (containing up to 49.30 wt.% Co and 10.19 wt.% Ni), identified based on composition, from the Madan-Kudan deposit. To the best of our knowledge, neither cobalt-pentlandite nor such highly Co-rich mackinawite have previously been reported from this area. The common sulphide minerals viz. chalcopyrite, pyrrhotite and rare pyrite occur in chalcopyrite-pyrrhotite ± pyrite-magnetite-chlorite-blue amphibole (Cl-rich hastingsite-pargasite-sadanagaite) ± marialitic scapolite ± allanite ± uraninite veins in amphibole-bearing feldspathic quartzite and garnetiferous chlorite schist. Cobaltian mackinawite is invariably associated with chalcopyrite and occurs as exsolution and inclusion within chalcopyrite or outside, but at the contact of chalcopyrite. On the other hand, cobalt-pentlandite is invariably associated with pyrrhotite and shows similar textural relation with pyrrhotite as that of mackinawite with chalcopyrite. Mineralogically diverse undeformed sulphide veins comprising Cl-rich amphibole and locally Cl-rich marialitic scapolite suggests epigenetic hydrothermal mineralization involving Cl-rich saline fluid in the Madan-Kudan deposit. Transport of metals, derived from a mafic source rock with high intrinsic Ni:Co ratio, by Cl-rich fluid can suitably explain the high Co:Ni ratio of the studied ore minerals. Presence of such highly Co-rich phases and other circumstantial evidences, enumerated in this work, are consistent with variants of Fe oxide (–Cu–Au) (IOCG) style mineralization, at least for some stages of mineralization in the Madan-Kudan deposit.  相似文献   

4.
Summary A number of small Palaeoproterozoic granitoid plutons were emplaced in the Khetri Copper Belt, which is an important Proterozoic metallogenic terrane in the northeastern part of Aravalli mountain range. Contiguous Biharipur and Dabla plutons are located about 15 km southeast of Khetri, close to a 170 km long intracontinental rift zone. The plutons are composed of amphibole-bearing alkali-feldspar granites, comprising microcline-albite granite, albite granite and late-stage microgranite. The albite granite in Biharipur is confined to the margins of the pluton, and shows extensive commingling with the synchronous mafic plutonics. Geochemically, the albite granites are characterised by low K2O (∼0.5 wt.%) and elevated Na2O (∼7.0 wt.%) abundances. By contrast, the microcline-albite granite does not show any significant mafic-granite interactions and shows normal concentrations of alkali elements. The granitoids display high concentrations of the rare earth (except Eu) and high field strength elements, high values of Ga/Al (>2.5), agpaitic index and Fe*-number. These features together with their alkaline metaluminous and ferroan nature classify the rocks as typical A-type within-plate granites. All the granitoid facies display similar REE and incompatible element profiles indicating their cogenetic nature. These granitoids were emplaced in a shallow crustal chamber under relatively low pressures, high temperature (≥850 °C) and relatively oxidising conditions. The oxidised nature, HFSE concentrations and Nd isotope data (ɛNd = −1.3 to −2.9) favour derivation of these granitoid rocks from crustal protoliths. The generation of albite granite is attributed to the replacement of alkali feldspar and plagioclase of the original granite by pure albite as a consequence of pervasive infiltration of a high Na/(Na + K) fluid at the late-magmatic stage. This model may have wider significance for the generation of albite granites/low-K granites or albitites in other areas. The A-type plutonism under consideration seems to be an outcome of ensialic rifting of the Bhilwara aulacogen.  相似文献   

5.
The Palaeoproterozoic Dabla granitoid pluton of the North Khetri Copper Belt is located to the east of a NNE-SSW trending lineament with numerous albite-rich intrusives, the intraplate ‘albitite line’. The Dabla pluton is essentially made up of calcic amphibole-bearing granitoids, displaying a concentric bimodal distribution of alkali-feldspar granites, comprising a microcline-albite granite and an albite-granite. The dominant rock type is pink-coloured granite, which is characterised by quartz, microcline, albite and hastingsitic hornblende, and occurs in the marginal parts of the pluton. The volumetrically subordinate albite-granite in the central part of the pluton is invariably white in colour, non-foliated and is mainly composed of quartz, albite and amphibole of actinolite to ferro-actinolite composition. The albite-granite is characterised by low K2O (0.06-0.09%), Rb (<5 ppm) and Ba (<20 ppm), high Na2O (7.19-7.36%) and high Na/K ratios (122.4-185.2) as compared to the granite. These rocks are not subjected to any metamorphic overprint, especially the albite-granite, which shows pristine abundances of major and trace elements. The rocks are highly evolved as reflected in their high SiO2 (72 to 78%) contents and high DI (89.5-97) values. The Dabla granitoids are characterised by similar REE and spider patterns, displaying LREE enriched slopes, flat HREE profiles and strong negative Sr, P, Ti and Eu anomalies suggesting their comagmatic nature. Nevertheless, the granite is relatively more fractionated [(La/Yb)N = 3.89-8.19] and show higher REE abundances (466-673 ppm) as compared to the albite-granite [(La/Yb)N = 1.97-2.96; REE = 220-277 ppm]. Distinctive features of these rocks are their low Ca (0.21-1.53%), Mg (<0.02-0.19%), Al (11.84-12.96%) and Sr (12-46 ppm) abundances, high Zr (155-631 ppm), Y (67-156 ppm), Nb (14-91 ppm), and Ga (20-31 ppm) concentrations and high Fe*-number, high Ga/Al ratio and high agpaitic index (AI) values. These features, coupled with their ferroan, alkaline and metaluminous nature, are typical of within-plate aluminous A-type granites. The geochemical data further indicate that the Dabla magma was generated at fairly high temperature, apparently in an upper mantle region, under relatively low H2O activities and reduced conditions and emplaced at a shallow depth in an extensional tectonic environment.  相似文献   

6.
The Aravalli rocks (> 2060 Ma old) which crop out around Udaipur, Western India, comprise a thick sequence of metasediments with stromatolites and basal volcanics resting unconformably over a peneplained basement, known as the Banded Gneissic Complex (ca. 2585 Ma old). The rocks have undergone a very low grade of metamorphism, and display a complex structure resulting from two major and several minor episodes of folding.There are two distinctly different ‘facies sequences’ in the Aravalli rocks, indicating deep-sea and nearshore shelf environments. The stratigraphic sequence of the rocks deposited under the shelf environment starts with basic volcanics and tuffs (altered to greenschists) and quartizites with arkosic conglomerate. In the next sequence carbonates predominate in association with orthoquartzites, carbonaceous phyllites, phyllites, and stromatolitic rock-phosphate. The carbonate sequence passes upward into greywacke-phyllite-lithic arenite in the distal parts and conglomerate-arkose-orthoquartzite in proximal areas. The youngest sequence comprises orthoquartzite with silty arenite.The distribution of different facies, particularly that of dolomite with stromatolitic rock-phosphate, is controlled by sea-floor topography suggesting the presence of an epicontinental sea bounded by a landmass to the west and a series of islands and shoals.Sedimentation in the shelf and epicontinental sea was presumably triggered by development of fault-controlled troughs along craton margins. Terrigenous debris was deposited in newly-developed troughs with contemporaneous volcanicity along trough margins. With the erasing of the ephemeral relief in the provenance, carbonate deposition was initiated. The environment encouraged algal growth and formation of stromatolitic rock phosphate. Carbonaceous phyllites developed in areas of restricted circulation. Rapid influx of terrigenous detritus with renewed tectonism in the next phase resulted in the deposition of a turbidite sequence of greywacke-phyllite and lithic arenite in the deeper parts of the epicontinental sea, and conglomerate-arkose-orthoquartizite in the marginal areas. The final phase of sedimentation was presumably under fluvial conditions which marked the completion of epicontinental trough filling. The nature of the terrigenous clasts indicates a predominantly granitic source of sediments. Supply of sediment was mainly from the continent to the east and partly from a landmass to the west. The cycle of sedimentation noted in the epicontinental Aravalli sea is broadly similar to the model of tectonic stages suggested by Krynine (1942).  相似文献   

7.
Crystallochemical data on metamict davidite from albitites and albitised rocks from the Bichun area (Jaipur district, Rajasthan, India) of Banded Gneissic Complex (BGC) are provided. Davidite occurs as euhedral, subhedral to anhedral crystals in the form of disseminated grains and also as fracture filled veins. The crystals of davidite are up to 8 cm in length and 6 cm in width. The powder X-ray diffraction (XRD) pattern of the heat-treated davidite (at \(900{^{\circ }}\hbox {C}\)) reveals well-defined reflections of crystallographic planes. The calculated unit-cell parameters of the heat treated davidite are: \(\hbox {a}_{0} = \hbox {b}_{0} = 10.3556 \, \text {\AA }\) and \(\hbox {c}_{0} = 20.9067 \, \text {\AA }\), with unit-cell volume \(\hbox {(V)} = 1941.6385 \, \text {\AA }^{3}\); and \({\upalpha }={\upbeta }= 90^{\circ }\) and \({\upgamma }= 120^{\circ }\), which are in agreement with the values of davidite standard. Geochemical data reveals that the investigated davidite contains 51.5–52.6% \(\hbox {TiO}_{2}\), 14.8–15.1% \(\hbox {Fe}_{2} \hbox {O}_{3}\), 9.8–10.2% FeO, 6.97–7.12% \(\hbox {U}_{3} \hbox {O}_{8}\), 6.72–6.92% \(\hbox {RE}_{2} \hbox {O}_{3}\), 3.85–3.61% \(\hbox {K}_{2}\hbox {O}\), 0.9–1.4% \(\hbox {Al}_{2} \hbox {O}_{3}\), and 0.8–1.2% \(\hbox {SiO}_{2}\). The calculated structural formulae of the two davidite crystals are: D-1: \(\hbox {K}_{0.0044/0.004} \hbox {Ba}_{0.0044/0.005} \hbox {Ca}_{0.20/0.20} \hbox {Na}_{0.012/0.012} \hbox {Mn}_{0.053/0.053} \hbox {Mg}_{0.14/0.14} \hbox {Pb}_{0.0076/0.008} \hbox {Fe}_{2.675/2.675} \hbox {Fe}_{1.59/1.59} \hbox {Y}_{0.1175/0.118} \hbox {P}_{0.053/0.053} \hbox {Nb}_{0.008/0.008} \hbox {Sn}_{0.001/0.001} \hbox {Zr}_{0.033/0.033} \hbox {U}_{0.468/0.468} \hbox {Th}_{0.009/0.009} \,\,\hbox {REE}_{0.6829/0.683})_{6.05/6.05} (\hbox {Ti}_{12.15/12.15}\,\, \hbox {Fe}_{1.9022/1.903} \hbox {Si}_{0.372/0.372}\,\, \hbox {Al}_{0.517/0.517}\,\, \hbox {Cr}_{0.018/0.018} \hbox {Co}_{0.009/0.009} \hbox {Ni}_{0.027/0.027})_{15/15} \hbox {O}_{36/36} (\hbox {OH}_{0.319/0.319[]1.681/1.681})_{2/2}\) and D-2: \((\hbox {K}_{0.004/0.004} \hbox {Ba}_{0.005/0.005} \hbox {Ca}_{0.20/0.20} \hbox {Na}_{0.012/0.012} \hbox {Mn}_{0.05/0.05} \hbox {Mg}_{0.094/0.094} \hbox {Pb}_{0.007/0.007} \hbox {Fe}_{2.58/2.58} \hbox {Fe}_{1.71/1.71} \hbox {Y}_{0.112/0.112} \hbox {P}_{0.106/0.106} \hbox {Nb}_{0.006/0.006} \hbox {Sn}_{0.001/0.001} \hbox {Zr}_{0.03/0.03} \hbox {U}_{0.48/0.48} \hbox {Th}_{0.009/0.009} \hbox {REE}_{0.665/0.665})_{6.088/6.088} (\hbox {Ti}_{12.48/12.48} \hbox {Fe}_{1.87/1.87} \hbox {Si}_{0.249/0.249} \hbox {Al}_{0.334/0.334} \hbox {Cr}_{0.019/0.019} \hbox {Co}_{0.008/0.008} \hbox {Ni}_{0.04/0.04})_{15/15} \hbox {O}_{36/36} (\hbox {OH}_{0.098/0.098[]1.90/1.90})_{2/2}\). The calculated structural formulae are not fully stoichiometric, which could be due to metamict nature of davidite. The characteristic feature of distribution pattern of REE in davidite is unusually high concentration of LREE and HREE and substantially low content of MREE. It may be due to the occupation of REEs in two distinct crystallographic sites in davidite structure, i.e., M(1) and M(O) sites. Chondrite-normalised plot of davidite reveals a pronounced negative Eu-anomaly (\(\hbox {Eu}/\hbox {Eu}^{*} = 0.30{-}0.39\)), which suggests extremely fractionated nature of the metasomatising fluids from which davidite had crystallized. Metamict davidite-bearing U ores not only from Rajasthan, but also from other parts of India are likely to yield very high U leachability, thereby making them attractive sources of U, which otherwise are ignored by mineral engineers as uneconomic U ores.  相似文献   

8.
Fine grained sericite deposits occur at the interface between Archean Mewar Gneiss Complex and the Proterozoic Aravalli Supergroup independent of shearing. They show a gradational contact with the basement granites and gneisses and a sharp contact with the overlying quartz pebble conglomeratic quartzites. Rip-up clasts of these sericite schists are found in the overlying conglomerates. The sericite schists are rich in sericite towards the top and contain chlorite towards the base. The sericite in these schists was formed by metasomatic alteration of kyanite and not from the feldspars of the basement granitoids and gneisses. Uni-directional variations of SiO2 and Al2O3, high Al2O3 content (>30%), positive correlation between Al2O3 and TiO2, Ti/Al and Ti/Zr ratios, high pre-metasomatic chemical indices of alteration (> 90), and enrichment of heavy rare earth elements relative to the parent granites and gneisses—all these chemical characteristics combined with field evidence suggest that the sericite schists are formed from a paleosol protolith, which developed on Archean basement between 2.5 and ~2.1 Ga in the Precambrian of Rajasthan. The superimposed metasomatic alteration restricts the use of Fe2+/Ti and Fe3+/Ti ratios of these paleosols for interpretation of PO2 conditions in the atmosphere.  相似文献   

9.
The Aravalli Range runs southwest from Delhi for a distance of about 700 km. Its western margin is well defined, but the eastern margin is diffuse. Five geomorphic provinces are recognized in the study area: the western piedmont plains; the ridge and valley province which in the Central Aravallis occurs at two different heights separated by a fault scarp; the plateau province demarcated from the former by a fault scarp, confined to the Southern Aravallis, and occurring for a short stretch at two heights across another fault scarp; the BGC rolling plains east of the Range; and the BGC uplands south of the above. The scarps coincide with Precambrian faults. A series of rapids and water-falls, together with deeply entrenched river courses across the scarps and the youthful aspects of the escarpments with no projecting spurs, or straight river courses along their feet, all point unmistakably to a recent or post-Neogene vertical uplift along pre-existing faults. Presence of knickpoints at a constant distance from the Range in all west-flowing rivers, the ubiquitous terraces, and river courses entrenched within their own flood-plain deposits of thick gritty to conglomeratic sand, are indicative of a constant disturbance with a gradual rise of the Range east of the knickpoint, wherefrom the coarse materials were carried by the fast west-flowing streams. There is a differential uplift across the plateau scarp together with a right-lateral offset.This epeirogenic tectonism is ascribed to the collision of the Eurasian and the subducting Indian plates and to a locking of their continental crusts. By early Pleistocene, with the MBT gradually dying off, continued plate movement caused a flexural bending of the plate by a moment generated at the back, and a possible delinking of the continental crust along the zone of subduction. The felexural bending ripped open the Precambrian regional faults. The differential uplift and the difference in the distances of the nodes on two sides of the major reactivated fault were possibly caused by a difference in the values of the flexural rigidity and the foundation modulus owing to a slight compositional difference of the constiuent rocks in the two sectors.  相似文献   

10.
Fluid inclusions in mineralized graphite-sillimanite-mica schist from the Rampura-Agucha Pb-Zn-(Ag) deposit, Rajasthan, northwest India, have been investigated by microthermometry and Raman microspectrometry. Three different main types of fluid inclusions in quartz can be distinguished: (1) gaseous (CO2, partially mixed with CH4-N2), (2) low salinity aqueous inclusions (0–8 eq. wt% NaCl) and (3) high salinity aqueous inclusions (NaCl ± MgCl2-CaCl2). Low density CO2-rich and low salinity H2O inclusions are contemporaneous and occur, together with CH4-N2 inclusions, in close association with sulfide mineral inclusions. This indicates immiscibility between the gaseous and aqueous phase and participation of these fluids during the deposition or remobilization of the ore, which occurred over a wide P (1220 to 200 bar) and T (450 to 250 °C). Raman spectra of graphite indicate upper greenschist-facies metamorphic conditions, although host rocks have been metamorphosed at upper amphibolite-facies metamorphic conditions. This indicates that graphite re-equilibrated with the CO2-rich phase during retrograde metamorphism.  相似文献   

11.
The 1.1 Ga volcanogenic massive sulphide deposit at Deri in the Sirohi district of south Rajasthan occurs within a bimodal volcanic suite of tholeiites and rhyolites, with minor amounts of andesites and tourmaline-bearing chert, interlayered with arkosic sediments. The ores and the enclosing rocks have undergone superposed deformation and polymetamorphism initially under amphibolite facies conditions and later under hornblende hornfels facies conditions. Metamorphism, however, has not affected the bulk composition of the rocks to any significant degree.Three distinct semiconformable alteration facies, characterized by their conspicuous magnesian mineralogy, are recognized in the host rocks: (1) hornblende-biotite-plagioclase-quartz schist (AMV); (2) cordierite-anthophyllite-chlorite hornfels (AFV); and (3) biotite-chlorite(-sericite) schist/hornfels (BCS). The first is derived from the mafic volcanics, whereas the other two represent progressive alteration of felsic volcanic protoliths. Fe, Mg and water were added and Na was removed from all the alteration facies in varying amounts. The maximum enrichment is noted in BCS for Mg and Fe, whereas the maximum depletion is seen in this facies for Si, an element which is also depleted significantly in AFV. AMV on the other hand, shows enrichment of Si, Ca and to some extent, in Al. Alumina is also enriched considerably in BCS, probably due to clayey alteration and extreme leaching of silica. Amongst the trace elements, Rb, Ba, Nb and Y are gained in most of the facies, except in BCS, where Ba and Y show distinct depletion. The LREE, from La to Sm, were enriched about 1.5- to 3.0-fold in all the facies with a maximum in AFV where the flux took place at constant inter-REE proportions: 1.0 La, 0.79 Ce, 0.48 Nd and 0.35 Sm. Eu was depleted from both felsic facies, 7-fold in BCS to 4-fold in AFV, during alteration. The HREE (Er to Lu) remained immobile in all the altered facies.The chemical and mineralogical zonation in the alteration facies are interpreted to be due to the progressive reaction of an evolving sea-water hydrothermal fluid with the bimodal volcanic protoliths during convective circulation. Fluid-rock interaction, guided by vertical and lateral thermal gradients, produced a sericite-quartz assemblage in the felsic volcanics at the expense of feldspar during the initial stages (175 °C) which formed a sericite-chlorite zone upon rising temperature (200–250 °C) by base-fixing reactions. A further temperature increase (to ~ 300 °C) and deeper circulation in the mafic pile introduced more Fe and Mg, thereby transforming the previously formed assemblage to a nearly pure chloritic zone and the most intensely altered biotite-chlorite(-sericite) facies.  相似文献   

12.
The Mount Gunson copper deposits occur in essentially unmetamorphosed gently-folded Upper Proterozoic sediments, far from any known igneous intrusions. They consist of a number of small ore bodies which can be divided into two groups on the basis of differences in location, texture and mineralogy. The groups are here termed the off-lagoon deposits, which are extensively oxidized and occur in low hills to the west of Pernatty Lagoon, and the lagoon deposits, which are not significantly oxidized and occur in basins of permeable bedrock under the lagoon floor. The topography and drainage of this region appear to have altered little since the Tertiary. This paper presents the results of a sulphur isotope ratio study of sulphide minerals, groundwaters and gypsum samples from the mineralized areas. The isotope ratios recorded for the lagoon sulphides provide an example of the pattern predicted for metal sulphide precipitation due to bacterial reduction of sulphate in an environment with limited replenishment of sulphate. This finding is in accord with the suggestion that the copper sulphides were precipitated during recent geological times in groundwater traps in the permeable bedrock under the lagoon. However, sulphate from groundwater and gypsum in the lagoon is not enriched in the S34 isotope, and hence it is concluded that no significant bacterial reduction of sulphate is occurring in the areas examined at the present time. The isotope ratios recorded for the off-lagoon sulphides, in contrast, fall in a narrower range. They can be interpreted to reflect metal sulphide precipitation by bacterial reduction of sulphate in a fairly open system, with considerable replenishment of sulphate, but they provide no information concerning the time of this precipitation. Mineralogical studies of the sulphide samples show that individual samples contain a mixture of sulphide minerals and that one mineral is usually dominant. It appears, for samples with co-existing chalcopyrite and djurleite, that S34 is preferentially enriched in the chalcopyrite.
Zusammenfassung Die Mount Gunson-Kupferlagerstätten finden sich in im wesentlichen nicht metamorphisierten, schwach gefalteten ober-proterozoischen Sedimenten, weit entfernt von irgendwelchen bekannten Intrusiven. Sie bestehen aus einer Reihe kleiner Erzkörper, die sich auf Grund ihrer Unterschiede in bezug auf ihren Fundort, ihr Gefüge und ihre Mineralogie in zwei Gruppen unterteilen lassen. Diese beiden Gruppen werden hier als Off-Lagoon-Lagerstätten, die weitgehend oxidiert sind und in niedrigen Hügeln westlich von der Pernatty Lagoon vorkommen, beziehungsweise als Lagoon-Lagerstätten, die nicht significant oxidiert sind und in Becken permeablen Gesteins unter dem Lagunenboden gefunden werden, bezeichnet. Die Topographie und die Abflußverhältnisse scheinen sich in dieser Region seit dem Tertiär nur wenig verändert zu haben. Diese Arbeit zeigt die Ergebnisse einer Analyse der Schwefelisotopen-Verhältnisse von Sulfiden, Grundwasser- und Gips-Proben aus den mineralisierten Bereichen. Die für die Lagunen-Sulfide registrierten Isotopenverhältnisse sind ein Beispiel der für die Metallsulfid-Ausfällung auf Grund von bakterieller Sulfatzufuhr zu erwartenden Verteilung. Dieser Befund stimmt mit der Vorstellung, daß die Kupfersulfide während rezenter geologischer Zeiten in Grundwasserspeichern innerhalb des permeablen Gesteins unter der Lagune ausgefällt worden sind, überein. Die Sulfate aus dem Grundwasser und Gips der Lagune sind jedoch nicht mit dem Isotop S34 angereichert, woraus der Schluß gezogen wird, daß in den untersuchten Gebieten gegenwärtig keine wesentliche bakterielle Reduktion von Sulfaten stattfindet. Im Gegensatz dazu fallen die für die Off-Lagoon-Lagerstätten-Sulfide registrierten Isotopen-Verhältnisse in einen engeren Streuungsbereich. Sie können als Darstellung von Metall-Sulfid-Ausfällung durch bakterielle Reduktion von Sulfaten in einem ziemlich offenen System mit erheblichem Sulfat-Nachschub gedeutet werden, geben aber keine Auskunft über den Zeitpunkt dieser Präzipitation. Mineralogische Untersuchungen der Sulfid-Proben zeigen, daß die einzelnen Proben eine Mischung von Sulfid-Mineralien enthalten und daß gewöhnlich ein Mineral überwiegt. In Proben, die sowohl Kupferkies als auch Djurleit enthalten, scheint S34 vorzugsweise im Kupferkies angereichert zu sein.
  相似文献   

13.
The Banded Gneissic Complex (BGC) of Rajasthan, considered to form the basement underlying the Precambrian (Proterozoic) Aravalli metasediments, shows an erosion surface marked by a conglomerate and an angular unconformity, with gneissic foliation crossing the metasedimentary bands at only a few places. The BGC is a composite gneiss, evolved by extensive migmatization of metasedimentary rocks of diverse composition, and possibly metaigneous rocks. The contact between the BGC and the Aravalli rocks is a gently curved surface, whereas the gneissic foliation, as well as the large-scale metasedimentary enclaves within the gneissic complex, show all the intricate patterns of super-imposed folding traceable in the Aravalli rocks. This implies that the “basement” gneisses have been involved in ductile deformation with the Aravalli rocks, the migmatization being synkinematic with the first deformation in the latter. All these apparently conflicting lines of evidence can be resolved if the gneisses, as we see them now, represent not the original, but the mobilized basement, with the BGC-Aravalli boundary representing, for a large part, a migmatite front, rather than the original basement-cover interface. Only at a few places was there a chance of the original basement escaping mobilization and thus, little chance of identifying this original interface.  相似文献   

14.
《Gondwana Research》2001,4(3):487-495
Balda granite occurs along the western margin of the middle Proterozoic South Delhi Fold Belt. It is a medium grained leucogranite associated with tungsten mineralisation. Wolframite mineralisation is confined to pneumatolytic quartz veins and greisenised pegmatites located mainly along shear zones within Balda granite and neighbouring metasediments. Geochemistry of Balda granite suggests that it is highly evolved, peraluminous and volatile -rich granite formed from the melt derived by partial melting of metasediments. Borates and fluorides in various complexes favoured the concentration of W in the melt, whereas sodium cations, chlorides and phosphates were the carrier of tungsten in fluid. The shear zones developed within Balda granite and neighbouring metasediments provided the channelways for fluid movement and deposition of wolframite.  相似文献   

15.
The Banded Gneissic Complex of central Rajasthan, the only gneissic basement in India considered to underlie an early Precambrian sedimentary suite unconformably, comprises composite gneisses formed by extensive migmatization of metasedimentary rocks of diverse composition. The migmatites and the metasedimentaries maintain a structural continuity in a plan of superposed deformations, with the migmatite front involved in the early folding but transgressing the stratigraphic boundaries. Structures in the metasedimentary palaeosomes within the gneisses match in their entirety those in the migmatite host and the metasedimentary bands outside. On a smaller scale of microsections, migmatites show para tectonic crystallization with reference to the first deformation. The Banded Gneissic Complex thus loses its unique position in the Indian Precambrians as older than the earliest decipherable sedimentary series, but is older than the Aravalli rocks of the type area, the partially migmatized metasedimentaries belonging to an earlier series.  相似文献   

16.
《地学前缘(英文版)》2020,11(3):965-988
The sedimentary sequence containing lignite deposits in Gurha quarry of the Bikaner-Nagaur Basin(Rajasthan)has been investigated.The samples from lignite and allied shale horizons were evaluated for petrographical,palynological,palynofacies and organic geochemical inferences,to depict the source flora and to reconstruct the palaeodepositional conditions prevailed during the sedimentation.An assessment for the hydrocarbon generation potential of these deposits has also been made.The results revealed the dominance of huminite macerals and phytoclasts organic matter(OM) indicating the existence of forested vegetation in the vicinity of the depositional site.A relatively high terrigenous/aquatic ratio(TAR) and the carbon preference index(CPI) are also suggesting the contribution of higher plants in the peat formation.However,the n-alkane distributions,maximizing at n-C17 and n-C29,showed inputs from the algal communities along with the higher plant derived organic matters.Recovered palynomorphs of the families Onagraceae,Meliaceae,Arecaceae,Rhizophoraceae,Rubiaceae,Ctenolophonaceae, etc.together with oleanene and ursane types of triterpenoids suggest the contribution from angiosperms source vegetation.Interestingly,the presence of Araucareaceae and Podocarpaceae pollen grains shows the existence of gymnosperms vegetation.Further,the presence of tetracyclic diterpanes;demethylated entbeyerane,sandaracopimarane,pimarane,and Kaurane type of compounds confirms the contribution of conifers.The variation in the values of the coefficient of non-equality(H:0.68%-7.56%),the standard deviation(8:0.04%-0.16%) and the coefficient of variability(V:16.10%-46.47%),also shows the heterogeneity in the source organic matter.The various petrographical indices,palynological entities,and geochemical parameters indicate that the peatforming vegetation was accumulated under a mixed environment and fluctuating hydrological settings.The interpretation of palynofacies data on APP(Amorphous organic matter-Phytoclast-Palynomorphs) diagram suggests that the accumulation of organic matter occurred in a dysoxic-suboxic condition in a proximal(to land)setting with the shift to an anoxic condition in distal setting towards the termination of sedimentation.The huminite(ulminite) reflectance(R_r) values(av.0.28%) showed a good relationship with average T_(max) value(414℃),suggesting the immaturity.The TOC content ranges of 13-59 wt.%,and HI values vary between 101 and 546 mg HC/g TOC in the studied samples.Collectively,the studied lignite and shale samples have the admixed kerogens(Type Ⅲ-Ⅱ) and exhibit the ability to generate the gaseous to oil hydrocarbons upon maturation.  相似文献   

17.
The paper reviews pollen analytical and palaeoenvironmental work carried out on saline lakes in western Rajasthan, northwest India. The saline lakes are salient geomorphological features within the arid and semi-arid landscapes to the west of the Aravalli mountain ranges. Preliminary palynological work was carried out on two profiles from a gypsum-rich lake depression around Thob (District of Barmer). The varied pollen data are indicative of a fluctuating vegetational assemblage, possibly in response to local hydrological conditions and not necessarily indicative of climatic change. Pollen of Ephedra sp. (a typical desert species) in the lower levels suggests episodes of relatively dry conditions during the early phase of lake sedimentation at the end of the Pleistocene. Other work at four lake sites, on the basis of pollen analysis has indicated shifts in climatic and vegetational belts during the early Holocene, especially during the period of Indus Valley Culture. Later in the Holocene, between 5000 and 3500 yr BP, rainfall variations have been related to the dynamics of the monsoon. Pioneering geoarchaeological studies carried out at the palaeolithic site of 16 R and the adjacent Didwana lake have illustrated palaeoclimatic fluctuations and accompanying changes in cultural stages from the lower palaeolithic to mesolithic. These studies have been extended geochemically and sedimentologically through a detailed study documenting a history of salinity from 20000 to 13000 yr BP and freshwater conditions from 9000 to 6000 yr BP. Later studies have illustrated a sequence of changes reflecting summer and winter precipitation. These have indicated steppe vegetation during the last Glacial Maximum along with hypersaline lake conditions at Didwana, inferring a weakened summer monsoon and relatively high winter precipitation. The taxa indicative of both summer and winter precipitation in the mid-Holocene declined during the late Holocene, at the same time as falling lake levels around 4000 yr BP, a time when other lakes, at Sambhar, Lunkaransar and Pachpadra, also became ephemeral. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
First phase folds F1 developed in polydeformed Ajabgarh Group rocks of Proterozoic age are studied using various geometrical methods of analysis for compatibility of homogeneous strain in both class 1–3 pairs by correlatingt′ ga/α plots with existing curves for competent layers and matchingt ga/α plots with the flattening curves for the incompetent layers. F1 folds were initiated by the process of buckling but underwent [(λ21) = 0.2 to 0.7] for competent layers andR- values of 1.1 to 5 for incompetent layers. The varying flattening is also revealed by the geometry of folds. The apparent buckle shortening of folds which ranges between 49 and 67 per cent with a majority of the folds having shortening values between 50% and 55% (exclusive of layer parallel strain) and inverse thickness method strain up to 50%. Besides flattening, the fold geometry was also modified by the pressure solution. This is borne by the presence of dark seams rich in phyllosilicates and disseminated carbonaceous material offsetting limbs of buckled quartz veins in slates  相似文献   

19.
This paper examines the interrelationships and interactions of the geomorphic features and the various hydrological parameters which control the development of water potential zones in the central Luni basin. Aerial photo-interpretation techniques were used to delineate the boundaries of geomorphological features, and facilitated the identification of twelve types of aquifers in eight geomorphological settings. The water potentials of these aquifers have been evaluated by taking into consideration nine important hydrological parameters which together govern water quality and yield. This investigation has revealed that the development of zones of ground-water potential is principally governed by the geomorphic characteristics of the terrain, which in turn is controlled by lithological variability, geological structure, drainage pattern, climatic characteristics, etc. The relevance of geomorphic characteristics has been evaluated by weight point analysis. Based on these findings, it is suggested that detailed studies of geomorphic features are of paramount significance for the rapid delineation of possible ground-water potential zones in arid and semi-arid regions.  相似文献   

20.
The Nakora Ring Complex(NRC)(732 Ma) occurs as a part of Malani Igneous Suite(MIS) in the West-ern Rajasthan,India.This complex consists of three phases(volcanic,plutonic and dyke).Geochemically,the Na-kora granites are peralkaline,metaluminous and slightly peraluminous.They display geochemical characteristics of A-type granites and distinct variation trends with increasing silica content.The peralkaline granites show higher concentrations of SiO2,total alkalies,TiO2,MgO,Ni,Rb,Sr,Y,Zr,Th,U,La,Ce,Nd,Eu and Yb and lower concen-trations of Al2O3,total iron,Cu and Zn than metaluminous granites.AI content is ≥1 for peralkaline granites and <1 for peraluminous and metaluminous granites.Nakora peralkaline granites are plotted between 4 to 7 kb in pressure and are emplaced at greater depths(16-28 km and 480-840℃) as compared to metaluminous granites which indicate the high fluorine content in peralkaline granites.The primitive mantle normalized multi-element profiles suggest that Nakora granites(peralkaline,metaluminous and peraluminous) are characterized by low La,Sr and Eu and relatively less minima of Ba,Nb and Ti which suggests the aspects related to crustal origin for Nakora magma.The Nakora granites are characterized as A-type granites(Whalen et al.,1987) and correspond to the field of "Within Plate Gran-ite"(Pearce et al.,1984).Geochemical,field and petrological data suggest that Nakora granites are the product of partial melting of rocks similar to Banded Gneiss from Kolar Schist Belt of India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号