首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphite occurs as a major rock-forming constituent in pyroxenitic pegmatites near the platiniferous Merensky Reef in the western Bushveld. It is associated with amphibole, biotite, low-K phyllosilicates, chlorite, sulphides and platinum-group minerals (RhAsS-IrAsS). Locally, rocks with up to 80% graphite occur. Chlorine is a significant constituent in both, hydrous silicates (0.1–0.3% Cl) and graphite (0.2–1.9%). Magnetite and quartz also occur with the above association. This facilitates estimation ofT (500–600°C) andfO2 (10−21 to 10−23 bar) during graphite deposition, which took place from COHS fluids at an oxygen fugacity in the vicinity of QMF in equilibrium with maximum H2O mole fraction. The latter accounts for the widespread association of graphite with hydrous silicates. There is evidence for buffering offO2 of the melt by fluid phase; this process may be more widespread than hitherto assumed. COHS fluids are considered instrumental not only in the formation of graphite-rich pegmatites and associated mineralization, but also in the genesis of pothole depressions, and in the general development of stratiform pegmatites (such as the Merensky Reef) in layered igneous complexes.  相似文献   

2.
Mineral separates of pure magnetite from the upper zone of the Bushveld Complex have been analysed for Cr. Detailed sampling within layers of massive magnetite indicates that the Cr content frequently shows an extremely rapid but regular depletion with height (for example, by a factor of seven over 85 cm of massive magnetite), with sudden reversals of variable magnitude. Rayleigh Law fractionation, from a homogeneous liquid of the volume now seen as cumulate rocks overlying the sampled horizons, cannot satisfy these observed concentration gradients. A diffusion-controlled crystallization model is preferred. In another vertical section of massive magnetite the Cr content remains constant with increasing height, and is interpreted as indicating a steady state situation where the rate of depletion of Cr by magnetite fractionation is balanced by the rate of diffusive addition into the crystallization zone. Reversals in Cr content sometimes occur in the middle of pure magnetite layers and are attributed to convective overturn in the magma chamber. These results provide geochemical support for the model of convection cells and bottom crystallization in large magma reservoirs as proposed by Jackson [20]. Depletion of compatible elements in this bottom layer causes chemical inhomogeneity in the magma.Sections, composed of several layers of magnetite sandwiched between magnetite-bearing gabbro, have also been studied. In one case, a steady decrease in Cr content with increasing height in the separated magnetite was observed; in another, several irregular reversals were found. There appears to be no systematic relation between convection cycles, the depletion in Cr and the formation of pure magnetite layers, indicating that the chemical composition of the magma does not control the production of monomineralic layers. The fluctuating pressure model envisaged by Cameron [16] for the formation of such layers is entirely consistent with these data.  相似文献   

3.
Neodymium isotope and REE analyses of recent volcanic rocks and spinel lherzolite nodules from the Afar area are reported. The143Nd/144Nd ratios of the volcanic rocks range from 0.51286 to 0.51304, similar to the range recorded from Iceland. However, the87Sr/86Sr ratios display a distinctly greater range (0.70328–0.70410) than those reported from the primitive rocks of Iceland. Whole rock samples and mineral separates from the spinel lherzolite nodules exhibit uniform143Nd/144Nd ratios (ca. 0.5129) but varied87Sr/86Sr ratios in the range 0.70427–0.70528.The SrNd isotope variations suggest that the volcanic rocks may have been produced by mixing between two reservoirs with distinct isotopic compositions. Two possible magma reservoirs in this area are the source which produced the “MORB-type” volcanics in the Red Sea and Gulf of Aden and the anomalous source represented by the nodule suite. The isotopic composition of the volcanics is compatible with mixing between these two reservoirs.It is shown that the anomalous source with a high87Sr/86Sr ratio cannot have been produced by simple processes of partial melting and mixing within normal mantle. Instead the high87Sr/86Sr is equated with a fluid phase. A primitive cognate fluid, subducted seawater or altered oceanic lithosphere may have been responsible for the generation of the source with a high87Sr/86Sr ratio.  相似文献   

4.
Historical volcanic rocks of the Aeolian islands range in composition from shoshonitic basalts to rhyolites, which might reflect fractional crystallization of a shoshonitic parent magma. However Sr and Pb isotopic data indicate a more complex history. The shoshonitic basalts at present erupted at Stromboli, although chemically similar to the postulated parent magma, are genetically unrelated to the other studied rocks. Sr isotopes indicate that Vulcano, Vulcanello and Lipari had independent magma sources. It is proposed that crustal contamination raised the Sr isotopic composition of the Lipari rhyolites. The rocks of these island are related by a common very steep trend of207Pb/204Pbvs. 206Pb/204Pb. Such a trend is a common feature of orogenic magmas and shows that Pb was derived by mixing of at least two components. Presently it is impossible to constrain precisely either the timing or the physical meaning of the Pb end members. The Pb isotopic trend in the Eolian island is very distinct from those recorded in volcanic rocks both from behind the arc (Etna, Iblean Mts.) and from Central and Southern Italy.  相似文献   

5.
During the 1929 activity of Hokkaido-Komagatake volcano, the Plinian eruption of a phenocryst-rich andesite was preceded by a small eruption of more mafic magma formed by magma mixing. A similar eruption sequence has been reported for some other eruptions (Pallister et al. 1996; Venezky and Rutherford 1997), suggesting that eruption of a mixed magma is a precursor of phenocryst-rich magmas. For the purpose of understanding the tapping processes of the phenocryst-rich magma chamber, we investigated the temporal variation in the erupted magma and estimated the viscosity and density of the end-member and mixed magmas with constraints drawn from petrography. For the precursory mixed magma we estimate 33dž vol.% phenocrysts, andesitic-dacitic melt composition, 3 wt.% H2O content, and temperature of 1040°C. In comparison, for the climactic, silicic end-member magma we estimate 48Dž vol.% phenocryst, high-silica rhyolitic melt, 3 wt.% H2O, and temperature of 950°C, respectively. The mafic end-member magma, which was not erupted, is thought to be an almost aphyric basaltic-andesitic magma, based on mass balance calculation of the phenocryst content. The proportion of the mafic end-member magma component in the mixed magma was calculated to be 20-40 wt.%. On the basis of these data, we estimate magma viscosities of 103.9, 106.9, and 102.0 Pa s for the mixed, silicic end-member, and mafic end-member magmas, respectively. The calculated density differences among these magmas are inconsequential when possible errors are considered. We calculate the minimum excess pressure required for dike propagation to be 31 MPa for the silicic end-member magma and 8 MPa for the mixed magma, using the estimated viscosity and dike propagation model of Rubin (1995). If we assume that excess pressure is limited by the wall rock strength of the magma chamber, excess pressure retainable in the magma chamber is less than ca. 20 MPa. This suggests that the mixed magma was able to ascend to the surface without freezing, whereas the viscous silicic end-member magma could not. The formation and precursory eruption of the mixed magma are, therefore, effective and necessary initiation processes for the phenocryst-rich, viscous magma eruption.  相似文献   

6.
Frost CD  Toner RN 《Ground water》2004,42(3):418-432
87Sr/86Sr ratios of ground waters in the Bighorn and Laramie basins' carbonate and carbonate-cemented aquifer systems, Wyoming, United States, reflect the distinctive strontium isotope signatures of the minerals in their respective aquifers. Well water samples from the Madison Aquifer (Bighorn Basin) have strontium isotopic ratios that match their carbonate host rocks. Casper Aquifer ground waters (Laramie Basin) have strontium isotopic ratios that differ from the bulk host rock; however, stepwise leaching of Casper Sandstone indicates that most of the strontium in Casper Aquifer ground waters is acquired from preferential dissolution of carbonate cement. Strontium isotope data from both Bighorn and Laramie basins, along with dye tracing experiments in the Bighorn Basin and tritium data from the Laramie Basin, suggest that waters in carbonate or carbonate-cemented aquifers acquire their strontium isotope composition very quickly--on the order of decades. Strontium isotopes were also used successfully to verify previously identified mixed Redbeds-Casper ground waters in the Laramie Basin. The strontium isotopic compositions of ground waters near Precambrian outcrops also suggest previously unrecognized mixing between Casper and Precambrian aquifers. These results demonstrate the utility of strontium isotopic ratio data in identifying ground water sources and aquifer interactions.  相似文献   

7.
Experimental evidence for the role of accessory phases in magma genesis   总被引:1,自引:0,他引:1  
Recent experimental studies have established petrogenetic models based on melting processes involving major phases. The possible residual character of trace-element-enriched accessory phases is not considered for temperatures well above the solidus in these models. In contrast, geochemists, applying trace element data to independently test the experimentally-based models, have concluded that residual (or fractionating) accessory phases may have an essential role in controlling the trace element (especially REE) distributions in magmas.Some recent experimental work provides data on the stability of potentially significant accessories such as sphene, rutile, apatite, zoisite and mica in basaltic compositions at elevated P and T. Sphene is stable to 1000°C with 60% melting of a hydrous tholeiite at 15 kbar. At higher pressure, rutile is the only Ti-rich accessory phase, and is present to at least 1000°C and high degrees of melting. Published REE data on sphene and rutile suggest that these phases may be important in controlling REE distribution in some magmas. For example, island are high-Mg, low-Ca-Ti tholeiites with low REE abundances and U-shaped patterns (Hickey and Frey, 1979) may reflect the role of sphene. In addition to rutile, similar close-packed Ti-rich accessory phases such as priderite, perovskite, crichtonite and loveringite may occur in mantle-derived magmas. These phases readily accommodate the REE but their possible role needs experimental confirmation.Apatite is recorded in hawaiite (1.16% P2Os) with 2% H2O added at 5–6 kbar and 1050°C within 30°C of the liquidus, but at present no other experimental data are available on its high P, T stability, although thermodynamic calculations indicate that F may increase its stability markedly. Apatite is well known in high-pressure inclusions and as a phenocryst phase in rocks of the alkaline and calc-alkaline series.Ilmenite is known as a near-liquidus phase in some mafic magmas at 5–10 kbar, but its stability decreases to near-solidus at 25–30 kbar. Zoisite occurs in hydrous mafic compositions at mantle pressures, but it is confined to temperatures < 780°C. Finally, mica has a wide temperature range of stability at mantle pressures, especially in potassic magmas, and phlogopitic mica is stable to 1040°C at 20–25 kbar in a hydrous, K-rich “tholeiite” (1.6% K2O).  相似文献   

8.
The concentrations and isotopic compositions of strontium in interstitial waters from several DSDP sites, where sediments consist chiefly of carbonate oozes and chalks, are used as indicators of carbonate diagenesis by reference to a recently-produced curve showing detailed variations in the87Sr/86Sr ratio of seawater with time. Carbonate sediments of the Walvis Ridge show increases in interstitial Sr2+ concentrations in the upper carbonate-ooze sections with the highest concentrations near the ooze-chalk boundary where maximum rates of carbonate recrystallization occur. Below this, in situ production of Sr2+ diminishes and there is a diffusive flux of Sr to an underlying sink, presumably volcanogenic sediments or basalts, leading to Sr isotopic disequilibrium between carbonates and interstitial waters. In some other sites, however, there is no apparent Sr sink at depth and isotopic equilibrium is retained. Overall, diffusive smoothing of profiles exerts an important control on the87Sr/86Sr ratios, although lower ratios than contemporaneous seawater values in the carbonate oozes often correlate with zones of Mg2+ loss and reflect a combination of a flux of Sr2+ from the zone of maximum recrystallization rates together with a contribution from the in situ alteration of volcanic matter.  相似文献   

9.
Spherical aggregates of orthopyroxene are reported from some parts of the Bushveld Complex in a variety of host rocks.Detailed mapping has shown that these spherical aggregates, comprising pyroxenite spheroids in a quartz-norite matrix, are contact phenomena and not stratigraphic markers. Orthopyroxene, biotite and amphibole are enriched in spheroids relative to matrix; their mineral chemistry showing a fairly constant orthopyroxene and plagioclase composition through the spheroids and into the matrix, indicating in-situ formation.Bulk chemistry shows spheroid to matrix tie-lines orthogonal to those generally accepted for silicate liquid immiscibility, but other chemical information is consistent with the occurrence of immiscibility.The formation of the aggregates may be related to the industrial process of spherical agglomeration, by which spheroids are formed by the introduction of an immiscible “bridging liquid” to the melt — probably derived from the floor rocks in this case. The mechanism accounts for the field relationships, petrography and chemistry of the aggregate-matrix system. The petrology of the process equates with a special case of silicate liquid immiscibility induced by local contamination and ageing of the original magma.A similar “bridging liquid” mechanism could also account for the formation of the so-called “boulder bed” beneath the Merensky Reef.  相似文献   

10.
Detailed petrographic analysis of calcalkaline volcanic rocks of Shirouma-Oike volcano, Japan, reveals that the complex phenocryst assemblage (Ol+Cpx+Opx+Hb+Bt+Qz+Pl+Mt+Hm) in the younger group volcanic rocks can be divided into two groups, a high temperature group (Ol+Cpx±An-rich Pl) and a low temperature group (Op+Hb+Bt+Qz±Ab-rich Pl+Mt+Hm). Compositional zonation of the phenocrystic minerals, normal zoning in olivine and clinopyroxene, and reverse zoning in orthopyroxene and plagioclase, indicate that these two groups of phenocrysts precipitated from two different magmas which mixed before the eruption. The low temperature magma is a stagnant magma in a shallow magma chamber, to which high temperature basaltic magma is intermittently supplied. Magma mixing is also indicated in olivine-bearing two pyroxene andesite of the older group volcanic rocks, by the coexistence of normally zoned Mg-rich clinopyroxene phenocrysts and reversely zoned Fe-rich clinopyroxene phenocrysts, and by reverse zoning in orthopyroxene phenocrysts. It is concluded that magma mixing is an important process responsible for the generation of the disequilibrium features in calc-alkaline volcanic rocks.  相似文献   

11.
Plagioclases in the 1974 high-Al basalt from Fuego Volcano have δO18 values of +6.0 to +8.5 per mil. Meteoric water cannot have played a significant role in Fuego’s magma. Large, weakly zone clear phenocrysts had δO18 values in the accepted mantle range, while patchyzoned and oscillatory-zoned plagioclases inferred to have formed later and shallower levels have slightly heavier oxygen isotopic ratios.  相似文献   

12.
New Pb, Sr and O isotopic analyses of rocks from the Skaergard intrusion indicate the following: (1) initial87Sr/86Sr of the gabbroic magma was less than or equal to 0.7041; (2) limited contamination of magma with crustal Sr and Pb may have occurred in a deep reservoir below the presently exposed parts of the intrusion; (3) marked crustal contamination occurred at high level in marginal border group rocks, but these rocks effectively shielded the main magma body from further interaction with country rock gneisses; (4) subsolidus interaction between Skaergard gabbros and hydrothermal fluids modified δ18O values but had little effect on Sr and perhaps Pb isotopic ratios; (5) late-stage melanogranophyres may be comagmatic with the Skaergard magma, but silicic granophyres are not; (6) silicic granophyres contain large and varied proportions of crustal Sr and Pb; some may be largely anatectic melts derived from the deep crust whereas others may represent mixing of such anatectic melts with late-stage differentiated liquids of the Skaergard intrusion (e.g. Sydtoppen sill).  相似文献   

13.
The strontium isotopic geochemistry is given for three Puerto Rican intrusive rocks: the granodioritic Morovis and San Lorenzo plutons and the Rio Blanco stock of quartz dioritic composition. The average calculated initial87Sr/86Sr ratios are 0.70370, 0.70355 and 0.70408, respectively. In addition, the San Lorenzo data establish a whole-rock isochron of71 ± 2m.y., which agrees with the previously reported K-Ar age of 73 m.y. Similarity of most of the intrusive rocks in the Greater Antilles with respect to their strontium isotopic geochemistry regardless of their major element composition indicates that intrusive magmas with a wide range of composition can be derived from a single source material. The most likely source material, in view of the available isotopic data, is the mantle wedge overlying the subduction zone.  相似文献   

14.
Influence of fluids and magma on earthquakes: seismological evidence   总被引:3,自引:0,他引:3  
In this paper, we present seismological evidence for the influence of fluids and magma on the generation of large earthquakes in the crust and the subducting oceanic slabs under the Japan Islands. The relationship between seismic tomography and large crustal earthquakes (M=5.7-8.0) in Japan during a period of 116 years from 1885 to 2000 is investigated and it is found that most of the large crustal earthquakes occurred in or around the areas of low seismic velocity. The low-velocity zones represent weak sections of the seismogenic crust. The crustal weakening is closely related to the subduction process in this region. Along the volcanic front and in back-arc areas, the crustal weakening is caused by active volcanoes and arc magma resulting from the convective circulation process in the mantle wedge and dehydration reactions in the subducting slab. In the forearc region of southwest Japan, fluids are suggested in the 1995 Kobe earthquake source zone, which have contributed to the rupture nucleation. The fluids originate from the dehydration of the subducting Philippine Sea slab. The recent 2001 Geiyo earthquake (M=6.8) occurred at 50 km depth within the subducting Philippine Sea slab, and it was also related to the slab dehydration process. A detailed 3D velocity structure is determined for the northeast Japan forearc region using data from 598 earthquakes that occurred under the Pacific Ocean with hypocenters well located with SP depth phases. The results show that strong lateral heterogeneities exist along the slab boundary, which represent asperities and results of slab dehydration and affect the degree and extent of the interplate seismic coupling. These results indicate that large earthquakes do not strike anywhere, but only anomalous areas which can be detected with geophysical methods. The generation of a large earthquake is not a pure mechanical process, but is closely related to physical and chemical properties of materials in the crust and upper mantle, such as magma, fluids, etc.  相似文献   

15.
Lead isotopic results obtained on komatiites and basalts from Gorgona Island provide evidence of large isotopic variations within a restricted area (8 × 2.5 km). The variations are correlated with differences in volcanic rock type. The highest isotopic ratios (206Pb/204Pb~ 19.75) correspond to tholeiites which make up most of the island. The lowest ratios (18.3) correspond to the komatiites of the west coast of the island. Other rock types (komatiites of the east coast, K-tholeiites, picrites and tuffs) have isotopic characteristics intermediate between these two extreme values. These results are explained by the existence of two distinct mantle source regions, and by mixing or contamination between them.  相似文献   

16.
The physical mechanism by which chemical zonation develops in magma chambers has been controversial partly because unambiguous geological constraints have been lacking. The 11,000 years B.P. eruption of Laacher See Volcano produced a zoned tephra deposit and also ejected crystal-rich nodules which provide a snapshot of the materials crystallising at the magma chamber margins. New data on petrography and chemical compositions of nodules, their cumulate minerals and interstitial glasses are used to deduce the chemical evolution of the phonolite melt due to fractional crystallisation of the mineral assemblages. These data, together with those on the vertical zonation of the melt in the bulk of the chamber, are shown to be consistent with a model of stratification of the chamber by convective fractionation, in which a thin boundary layer of residual melt from fractional crystallisation ascends at the chamber side and accumulates at the roof. Crystallisation could have provided buoyancy to drive convection by enriching incompatible volatile components (mainly water) in the residual melt. Available fluid dynamic studies of single- and double-diffusive boundary layers are used to assess convection in the Laacher See chamber. The boundary layer is likely to have been: (1) laminar, which implies that the density gradient in the chamber steepened upwards; (2) in the counterflow regime, in which compositional and thermal layers flow in opposite directions; and (3) thin ( 10 cm), estimated from theory for a flat wall, suggesting that wall morphology could be important in determining boundary layer characteristics. Estimates of mass transfer rates due to this mechanism suggest that the chamber could have become stratified in a time of the order of 103 years.  相似文献   

17.
The intracratonic Bushveld igneous province that formed 2.1–1.9 Ga ago contains three contrasting suites of siliceous rocks that are demonstrably of magmatic origin. The oldest of these are the high-Mg (HMF) and low-Mg (LMF) felsites, which form interstratified flows in the Rooiberg Group. Bushveld granites intrude the Rooiberg Group and constitute the youngest component of the province.Well-defined interelement variation trends illustrate that the granites do not share the same petrogenetic history as the Rooiberg magmas. Nd isotope measurements indicate that the two eruptive suites probably formed under similar differentiation conditions but from parental magmas that were derived from compositionally different sources. On trace-element discrimination diagrams, the Bushveld granites and LMF are usually correctly assigned to a within-plate setting but, conversely, the HMF are generally misclassified as subduction-related eruptives. It is argued that the trace-element signatures of the granites and felsites do not identify their tectonic setting per se, but rather point to the melting and crystallization histories of the source regions from which their parent magmas were extracted. As such, tectonic discrimination diagrams may provide valuable pointers to processes that have affected igneous source materials in much earlier magmatic cycles.  相似文献   

18.
During the present tectonic activity in the volcanic rift zone in NE-Iceland it has become apparent that the attenuation of seismic waves is highly variable in the central region of the Krafla volcano. Earthquakes associated with the inflation of the volcano have been used to delineate two regions of high attenuation of S-waves within the caldera. These areas are located near the center of inflation have horizontal dimensions of 1–2 km and are interpreted as the expression of a magma chamber. The top of the chamber is constrained by hypocentral locations and ray paths to be at about 3 km depth. Small pockets of magma may exist at shallower levels. The bottom of the chamber is not well constrained, but appears to be above 7 km depth. Generally S-waves propagate without any anomalous aftenuation through laver 3 (vp=0.5 km sec?1) across the volcanic rift zone in NE-Iceland. The rift zone therefore does not appear to be underlain by an estensive magma chamber at crustal levels. The Krafla magma chamber is a localized feature of the Krafla central volcano.  相似文献   

19.
A new measurement technique enables the complex dielectric properties of the geological strata comprising the UG1–UG2 (Upper Group 1–Upper Group 2) unit of the Bushveld Complex in South Africa to be determined with unprecedented detail at radio frequencies (RF). Results of non-destructive laboratory measurements of representative diamond drill core samples from the UG1–UG2 unit are presented at 25 MHz. These data establish that the UG1 and UG2 chromitite layers are embedded in rock strata (norite, pyroxenite and anorthosite) which are translucent in the HF spectral band, whereas the chromitite layers themselves exhibit significant velocity contrast, making them good radar reflectors. The data presented here is useful for calibration of the radar system, and for predicting the range and resolution performance of borehole radars operating in both the hanging and footwalls of the economically important platiniferous UG2 reef.  相似文献   

20.
Hornblende-biotite andesites erupted from Mount Price and Clinker Peak volcanoes, southwestern British Columbia, contain two texturally and compositionally distinct calcic amphiboles: pargasitic hornblende xenocrysts and magnesio-hornblende microphenocrysts. Disequilibrium relationships exhibited by these amphiboles and associated minerals suggest that the magnesio-hornblendes precipitated under chemical and thermal conditions that were intermediate between those under which pargasitic hornblende and biotite, respectively, crystallized. Experimental studies of crystallization in double-diffusive systems (Chen and Turner, 1980; Turner, 1980; McBirney, 1980) suggest that these varied magmatic environments can be explained as a consequence of progressive crystallization within a zoned magma chamber. Although gravitational settling may have played a role, the observed mineral assemblages probably developed by convective mixing of crystals precipitated at the cooling margins with those crystallized in the interior of the compositionally stratified magma column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号