首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of the North Aegean Sea is studied through the development of three deep basins: the North Aegean Trough, the North Skyros Basin and the Ikaria Basin. Bathymetric data, a 2D seismic dataset and the well-investigated stratigraphic records of the onshore deep basins of northern Greece and Western Turkey were used to make structural and seismic stratigraphic interpretations. The study area shows two sharp unconformities that correspond to the Eocene-Oligocene transition and the Miocene-Pliocene shift. These discontinuities were used as marker horizons for a more detailed structural and seismic stratigraphic interpretation resulting in the identification of several seismic units. A general seismic signature chart was established using onshore basin stratigraphy and well data, which was then used to constrain the ages of the different seismic units. The main features observed in the basins are interpreted as: 1) trans-tensional growth patterns in Pliocene and Quaternary sediments that combine NE–SW trending and steeply dipping fault zones that likely correspond to strike-slip corridors and E-W/WNW-ESE trending normal faults, 2) regional erosional truncations of Miocene sediments, likely related to the Messinian Salinity Crisis (MSC), 3) thick delta-turbidite deposits of Neogene age. Only the North Aegean Trough shows evidence of earlier development and polyphase deformation through inversion structures, and additional seismic units. Extension processes in the Aegean region have been driven by the Hellenic slab rollback since the middle Eocene. The widespread development of Neogene basins at the whole Aegean scale attests to a major tectonic change due to an acceleration of the trench retreat in the middle Miocene. The present study shows that the Neogene basins of the North Aegean Sea developed in dextral transtension with the northward migration of the associated NE-SW trending strike-slip faults. At regional scale, this tectonic pattern indicates that the westward escape of Anatolia started to interact with the trench retreat in the middle Miocene, around 10 Myr before the arrival of the North Anatolian Fault in the North Aegean Sea.  相似文献   

2.
The Edremit Gulf, which developed during the Neogene-Quaternary, is a seismically active graben in NW Anatolia (Turkey) surrounded by the Sakarya continent. The sedimentary deposits in the gulf overlie the bedrock unconformably and can be separated into two parts as upper and lower deposits based on similarity of their seismic characteristics, and because the contact between them is clear. The lower deposits are characterized in the seismic profiles by the absence of well defined, continuous reflectors and are strongly disturbed by faults. A tectonic map and structural model of the Edremit Gulf was derived from interpreting 21 deep seismic profiles trending NE–SW and NW–SE within the gulf. Two fault systems were distinguished on the basis of this compilation. The NNW–SSE trending parallel faults are low-angle normal faults formed after compression. They controlled and deformed the lower basin deposits. A syncline and anticline with a broad fold-curvature length resulted in folds that developed parallel to basin boundaries in the lower basin deposits. The ENE–WSW trending high-angle faults have controlled and deformed the northern basin of the Edremit Gulf. The folds developed within the northern lower deposits originated from the listric geometry of the faults. These faults are normal faults associated with regional N–S extension in western Anatolia. The Edremit Gulf began to open under the control of low-angle NNW–SSE trending faults that developed after the compression of western Anatolia in an E–W direction in the early Neogene. Subsequently, regional N–S extensional stress and high-angle normal faults cut the previous structures, opened the northern basin, and controlled and deformed the lower basin deposits in the gulf. As a result, the Edremit Gulf has not been controlled by any strike-slip faults or the Northern Anatolian Fault. The basin developed in the two different tectonic regimes of western Anatolia as an Aegean type cross-graben from the Neogene to Holocene.  相似文献   

3.
The seafloor spreading evolution in the Southern Indian Ocean is key to understanding the initial breakup of Gondwana. We summarize the structural lineaments deduced from the GEOSAT 10 Hz sampled raw altimetry data as well as satellite derived gravity anomaly map and the magnetic anomaly lineation trends from vector magnetic anomalies in the West Enderby Basin, the Southern Indian Ocean. The gravity anomaly maps by both Sandwell and Smith 1997, J. Geophys. Res. 102, 10039–10054 and 10 Hz raw altimeter data show almost the same general trends. However, curved structural trends, which turn from NNW–SSE in the south to NNE–SSW in the north, are detected only from gravity anomaly maps by 10 Hz raw altimeter data just to the east of Gunnerus Ridge. NNE–SSW structural trends and magnetic anomaly lineation trends that are perpendicular to them are observed between the Gunnerus Ridge and the Conrad Rise. To the west of Gunnerus Ridge, structural elements trend NNE–SSW and magnetic polarity changes are normal to them. In contrast, almost NNW–SSE structural trends and ENE–WSW magnetic polarity reversal strikes are dominant to the east of Gunnerus Ridge. Curved structural trends, which turn from WNW–ESE direction in the south to NNE–SSW direction in the west, and magnetic polarity reversal strikes that are almost perpendicular to them are observed just south of Conrad Rise. The magnetic polarity reversals may be parts of the Mesozoic magnetic anomaly sequence that formed along side of the structural lineaments before the long Cretaceous normal polarity superchron. Curved structural trends, detected only from gravity anomaly maps by 10 Hz raw altimeter data, most likely indicate slight changes in spreading direction from an initial NNW–SSE direction to NNE–SSW. Our results also suggest that these curved structural trends are fracture zones that formed during initial breakup of Gondwana.  相似文献   

4.
In this paper, we demonstrate the effectiveness of steerable filters as a method of delineating the boundaries of subsurface geological structures. Steerable filters, generally used for edge detection on 2-D images, have the properties of band pass filters with certain directions and are applied to many image processing problems. We first tested the method on synthetic data and then applied it to the aeromagnetic data of İskenderun Basin and adjacent areas.İskenderun Basin is located in the Northeastern Mediterranean where African–Arabian and Anatolian plates are actively interacting. The basin fill records a complex tectonic evolution since the Early Miocene, involving ophiolite emplacement, diachronous collision of Eurasian and Arabian plates and subsequent tectonic escape related structures and associated basin formation. Geophysical investigations of the tectonic framework of İskenderun Basin of Turkey provide important insights on the regional tectonics of the Eastern Mediterranean and Middle East. In this study we show geological structures, which are responsible for the magnetic anomalies in İskenderun Basin and enlighten the structural setting of the Northeastern Mediterranean triple junction using steerable filters. We obtained a magnetic anomaly map of the region from the General Directorate of Mineral Research and Exploration as raw data and then evaluated this by steerable filters. We determined the magnetic anomaly boundaries for İskenderun Basin by using various types of steerable filters and correlated these to drilling data and seismic profiles from the Turkish Petroleum Corporation. The result of the steerable filter analysis was a clarified aeromagnetic anomaly map of İskenderun Basin. The tectonic structure of İskenderun Basin is divided into regions by an N–S trending oblique-slip fault defined by the steerable filter outputs. We propose a new tectonic structure model of İskenderun Basin and modify the direction of the East Anatolian Fault Zone. In our model, East Anatolian Fault Zone cross-cuts the basin as a narrow fault zone and continues towards the Cyprus arc.  相似文献   

5.
胶州湾地磁场特征及其工程地质意义   总被引:4,自引:2,他引:2  
通过对胶州湾进行大比例尺磁力测量,绘制了胶州湾磁力异常图。胶州湾磁异常呈以下特征:在胶州湾中北部为变化较平缓的正磁异常区,梯度变化较小。西部则是NW向条带状强磁变化异常区,磁异常正负变化剧烈,呈明显的条带状展布。胶州湾东北角磁异常则表现为团块状分布,并以正异常为主。南部表现为混合异常,上部(大致为胶州湾最中间地带)磁异常为近东西向条带状展布,而胶州湾南部基本呈NE向正负相间分布。上述磁异常现象表明,胶州湾的断裂构造比较发育,在NE向断裂构造大背景下,从磁异常分布图上可以清楚地判别出NW向及近东西向断裂分布,这些断裂对胶州湾的工程建设将产生不利的影响。  相似文献   

6.
Complementary to previous work mainly based on seismic interpretation, our compilation of geophysical data (multibeam bathymetry, gravity, magnetic and seismic) acquired within the framework of the ZoNéCo (ongoing since 1993) and FAUST (1998–2001) programs enables us to improve the knowledge of the New Caledonia Basin, Fairway Basin and Fairway Ridge, located within the Southwest Pacific region. The structural synthesis map obtained from geophysical data interpretation allows definition of the deep structure, nature and formation of the Fairway and New Caledonia Basins. Development of the Fairway Basin took place during the Late Cretaceous (95–65 Ma) by continental stretching. This perched basin forms the western margin of the New Caledonia Basin. A newly identified major SW–NE boundary fault zone separates northern NW–SE trending segments of the two basins from southern N–S trending segments. This crustal-scale fault lineament, that we interpret to be related to Cretaceous-early Cainozoic Tasman Sea spreading, separates the NW–SE thinned-continental and N–S oceanic segments of the New Caledonia Basin. We can thus propose the following pattern for the formation of the study area. The end of continental stretching within the Fairway and West Caledonia Basins ( 65–62 Ma) is interpreted as contemporaneous with the onset of emplacement of oceanic crust within the New Caledonia Basin’s central segment. Spreading occurred during the Paleocene (62–56 Ma), and isolated the Gondwanaland block to the west from the Norfolk block to the east. Finally, our geophysical synthesis enables us to extend the structural Fairway Basin down to the structural Taranaki Basin, with the structural New Caledonia Basin lying east of the Fairway Basin and ending further north than previously thought, within the Reinga Basin northwest of New Zealand.  相似文献   

7.
About 16,000 km of multichannel seismic (MCS), gravity and magnetic data and 28 sonobuoys were acquired in the Riiser-Larsen Sea Basin and across the Gunnerus and Astrid Ridges, to study their crustal structure. The study area has contrasting basement morphologies and crustal thicknesses. The crust ranges in thickness from about 35 km under the Riiser-Larsen Sea shelf, 26–28 km under the Gunnerus Ridge, 12–17 km under the Astrid Ridge, and 9.5–10 km under the deep-water basin. A 50-km-wide block with increased density and magnetization is modeled from potential field data in the upper crust of the inshore zone and is interpreted as associated with emplacement of mafic intrusions into the continental margin of the southern Riiser-Larsen Sea. In addition to previously mapped seafloor spreading magnetic anomalies in the western Riiser-Larsen Sea, a linear succession from M2 to M16 is identified in the eastern Riiser-Larsen Sea. In the southwestern Riiser-Larsen Sea, a symmetric succession from M24B to 24n with the central anomaly M23 is recognized. This succession is obliquely truncated by younger lineation M22–M22n. It is proposed that seafloor spreading stopped at about M23 time and reoriented to the M22 opening direction. The seismic stratigraphy model of the Riiser-Larsen Sea includes five reflecting horizons that bound six seismic units. Ages of seismic units are determined from onlap geometry to magnetically dated oceanic basement and from tracing horizons to other parts of the southern Indian Ocean. The seaward edge of stretched and attenuated continental crust in the southern Riiser-Larsen Sea and the landward edge of unequivocal oceanic crust are mapped based on structural and geophysical characteristics. In the eastern Riiser-Larsen Sea the boundary between oceanic and stretched continental crust is better defined and is interpreted as a strike-slip fault lying along a sheared margin.  相似文献   

8.
Potential field anomalies of the Sea of Okhotsk region are analyzed for compiling a map of the basement’s tectonic structures. A 3D density model of the Earth’s crust is constructed using seismogeological and experimental-petrophysical data, which made it possible to obtain a visual image of main structures of the region reflecting the observable geophysical anomalies. The obtained data allow a domain located in the central part of the Sea of Okhotsk beyond the limits of the exclusive economic zone of the Russian Federation to be considered as a natural continuation of the continental shelf since the latter is structurally similar to western Kamchatka. The deep structural boundaries rise beneath the large sedimentary Deryugin and Tinro basins, which is characteristic of petroliferous basins.  相似文献   

9.
渤海海域构造应力场演化及其在油气聚集中的作用   总被引:3,自引:0,他引:3  
渤海海域位于渤海湾盆地东部,在盆地区域动力学背景下,形成了渤海海域特征的沉积和构造环境。渤海海域新生代具有早期断陷、后期拗陷的特点,断裂以NE—NNE走向为主,其次是EW走向,再次是NW走向。通过区域构造演化和沉积体系的深入研究,将海域新生代地质构造活动按构造应力的方向、大小和其他构造形变参数划分为4个期次:①古新世;②始新世—渐新世;③中新世—早更新世;④晚更新世至今。在一系列构造演化过程中,构造应力场的变化对海域内的3组主要断裂具有重要的影响。不同方向的断裂在不同阶段应力场的作用下,所表现的特征和对油气的控制作用是不同的,尤其是NNE—NE向断裂在构造演化过程中多次具有走滑活动,油气主要聚集在走滑作用所派生的局部圈闭或附近存在的构造弱化带中。  相似文献   

10.
北黄海位于辽东半岛,山东半岛与朝鲜之间,海域及周围地区广泛发育了北东东向和北北西向断裂,据物探资料,它们控制了中、新生代盆地的成生与发展。我们通过部分同方向断裂的岩组学研究,将岩组动力学分析的观点引进岩组图的解释,获得了几点新认识: (1)显微统计测量得到的信息与宏观构造分析有机地结合起来,是对一个地区进行变形史分析的有效研究方法。 (2)以石英在变形过程中仅能以菱面或锥面为主要滑动面为基础,分析北黄海围域断裂的岩组图形,得出了与宏观一致的结论。 (3)北黄海及周围地区的北东东向和北北西向断裂,在第三纪末改变了一次动力学性质,是起因于太平洋板块运动方向的变更。  相似文献   

11.
《Marine Geology》2001,172(3-4):359-381
The Upper Triassic–Lower Liassic sequence of the Atlantic margin of Morocco is primarily composed of fine-grained detrital sedimentary rocks containing basaltic intercalations. Its age is Carnian to Hettangian. Well data, outcrop observations and seismic sequence analysis suggest that rifting started earlier (Carnian) in the eastern and southern parts of the margin, and later proceeded towards the west and the north, resulting in the formation of the Central Atlantic rift. On the Moroccan margin, the rift was composed of: (i) eastern basins, relatively narrow and bounded by E-dipping faults, which are reactivated Hercynian structures; (ii) a central horst; and (iii) western basins bounded by W-dipping faults. The 020° trending basins are separated by W-dipping faults. The 020° trending basins are separated by 070° striking transfer faults.Estimations of the amount of lithospheric extension along the Moroccan external rift system show a thinning ratio decreasing northward and probably associated to a necking of the lithosphere. Rift evolution on the part of the Moroccan margin shows good correlation to the conjugate North American margin.  相似文献   

12.
An isopach map of the Aegean Sea, based on a regionally comprehensive seismic-profile network, reveals the highly irregular distribution of unconsolidated sediments of post-Miocene age. Geologically recent structural activity has considerably modified the seafloor configuration of the north and south Aegean, and depositional patterns are to varying degree related to the complex Aegean physiography. From north to south, a series of ridges, islands, and plateaus have acted as effective barriers behind which sediments are trapped, primarily in depressions. Sources of sediment in the north Aegean troughs and basins include rivers and suspensate-rich water masses; material was also provided by the erosion of plateaus and ridges during phases of Pliocene uplift and regressions and Quaternary eustatic low sea-level stands when the Aegean became virtually land-locked and isolated from the Black Sea. Volcanic as well as terrigenous material has accumulated in the central and south Aegean. However, the rapid depositional rates in the south Aegean are more closely related to the flow exchange with the Levantine Basin and the consequent ponding of material behind the Peloponnesus-Crete and Crete-Rhodes ridges.  相似文献   

13.
伶仃洋南部断裂构造特征   总被引:2,自引:0,他引:2  
利用综合地球物理调查资料研究了伶仃洋南部断裂构造的位置、延伸方向和产状特征。结果表明,在伶仃洋南部的断裂是陆域断裂在海域的延伸,以基岩断裂为主,少数断裂影响到第四系沉积物,并表现出分段活动性。海域NE—ENE向断裂与两侧陆域的NE—ENE向断裂连接在一起,构成一条完整的NE—ENE向断裂构造体系。NW向断裂活动时代晚于NE—ENE向断裂,其右行走滑运动将NE—ENE向断裂截切和错移。形成这一构造格局的主要动力来自新生代以来南海的拉张作用以及澳洲板块南北向的推挤作用。  相似文献   

14.
In this paper, regional analog gravity anomaly map obtained from the General Directorate of Mineral Research and Exploration (MTA) was digitized and used for the calculation of the crustal thickness (Moho depth) variations in the Eastern Mediterranean and the southern part of the Aegean Region. In the gravity anomaly map, there are mainly E–W trending apparent gravity anomalies represented by the contours up to 150 mGal. They are generally parallel to the shorelines of Africa, Turkey and Crete. Crustal thickness variations were calculated from the gravity anomalies, using an empirical equation in this study. Obtained thicknesses (Moho depths) were mapped and correlated with the previous investigations and seismological findings. According to the estimations, crustal thicknesses are about 25–30 km along the coastal regions and more than 30 km on the onshore part of Turkey increasing up to 42 km through the eastern Anatolia. However, there are thin crustal zones around 17 km in the offshore Egypt, to the NW part of Cyprus and about 19 km to the north of Crete. They may be related with the main tectonic trends in this region except the circular thinning to the south of Kas (southwestern part of Turkey). In order to determine the locations and boundaries of prominent tectonic elements, Analytic Signal (AS) and maxspots maps of the gravity anomalies were also prepared in this study. All produced maps are generally consistent to each other and the boundaries of main tectonic units were apparently illustrated in the maxspots map from the horizontal gradient of Bouguer anomalies.  相似文献   

15.
The Uruguayan continental margin comprises three sedimentary basins: the Punta del Este, Pelotas and Oriental del Plata basins, the genesis of which is related to the break-up of Gondwana and the opening of the Atlantic Ocean. Herein the continental margin of Uruguay is studied on the basis of 2D multichannel reflection seismic data, as well as gravity and magnetic surveys. As is typical of South Atlantic margins, the Uruguayan continental margin is of the volcanic rifted type. Large wedges of seaward-dipping reflectors (SDRs) are clearly recognizable in seismic sections. SDRs, flat-lying basalt flows, and a high-velocity lower crust (HVLC) form part of the transitional crust. The SDR sequence (subdivided into two wedges) has a maximum width of 85 km and is not continuous parallel to the margin, but is interrupted at the central portion of the Uruguayan margin. The oceanic crust is highly dissected by faults, which affect post-rift sediments. A depocenter over oceanic crust is reported (deepwater Pelotas Basin), and volcanic cones are observed in a few sections. The structure of continental crust-SDRs-flat flows-oceanic crust is reflected in the magnetic anomaly map. The positive free-air gravity anomaly is related to the shelf-break, while the most prominent positive magnetic anomaly is undoubtedly correlated to the landward edge of the SDR sequence. Given the attenuation, interruption and/or sinistral displacement of several features (most notably SDR sequence, magnetic anomalies and depocenters), we recognize a system of NW-SE trending transfer faults, here named Río de la Plata Transfer System (RPTS). Two tectono-structural segments separated by the RPTS can therefore be recognized in the Uruguayan continental margin: Segment I to the south and Segment II to the north.  相似文献   

16.
The continental shelf in the Arctic north of Russia consists of a series of epicontinental seas, which are the offshore continuation of potentially oil and gas basins on land. The geology of all these epicontinental seas is poorly known, due to the remoteness, the extreme climatic conditions and the extensive costs associated with seismic exploration. Radar altimeter sensors thus provide an invaluable tool for studying the geological structures off the coast. The unique ERS-1 contribution comes from its high latitude coverage (81.5 deg south to north), and the space and time density of its measurements (168-day repeat-orbit).The gravity anomaly field is derived from the geoid height measurements by computing the deflections of the vertical in the north-south and east-west directions and transforming these deflections into gravity anomalies. The gravimetry reveals interesting features of the basement of the Barents and Kara Seas which have not been chartered in recent, previous compilation maps of sedimentary thickness in the Arctic Ocean (Jackson and Oakey, 1988; Gramberg and Puscharovski, 1989). We obtain no indication of the SE-NW offshore Baikalian trend described by Fichler et al (1997) using ERS-1 gravimetry. Instead, the data indicate the presence of a north-south trending gravity high associated with the maximum sediment thickness within the South Barents Sea and the North Barents Sea Basins. Further geological studies are needed to interpret the gravimetric data, which directly addresses the problem of understanding the gravity signature of deep, old, sedimentary basins.  相似文献   

17.
我国东部海区及邻域1:1 000 000地质地球物理系列图将于2008年底出版,区域构造图是其中的主要专业图件之一。讨论了该专业图件的编图方法、地质构造单元的划分方法和主要地质构造单元。首次对黄海东海区进行了全面剥皮编图,剥去了Q+N2地层。对于沉积盆地用等厚度线表示出了新生界的厚度。地质构造单元划分方法是以板块构造理论为指导并以现今的构造特征为主要划分依据。板块内构造单元的划分是在总结国内外多种构造单元划分方法的基础上进行了修改完善,完成了对我国东部海区及邻域的地质构造单元的划分。区内一级构造单元为板块(太平洋板块、欧亚板块和菲律宾海板块),二级构造单元为构造域(东亚大陆构造域、东亚大陆边缘构造域和西太平洋构造域)。西太平洋构造域主要包括太平洋板块的西部及菲律宾海板块。欧亚板块在该区的部分可分为东亚大陆边缘构造域和东亚大陆构造域。东亚大陆边缘构造域由日本琉球岛弧、冲绳海槽弧后盆地、日本海弧后盆地等次级构造单元构成。东亚大陆构造域在该区内由中朝地块、扬子地块、华南地块等次级构造单元构成。各地块又可划分出盆地、隆褶带、隆起区等多个次一级地质构造单元。最低一级的地质构造单元为凸起和凹陷。  相似文献   

18.
Quantitative analyses of coccolithophores, planktonic foraminifers, dinoflagellate cysts and pollen assemblages were carried out on shallow (NS-14) and deeper (NS-40) sediment cores from the south-eastern Aegean Sea. Nine coccolithophore (ACE 1–9) and nine planktonic foraminifer (APFE 1–9) ecozones, correlated with dinoflagellate cyst evidence, have been defined for the last ~14.5 cal. ka. Additionally, eight pollen assemblage zones (PAZ 1–8) have been recognised and correlated with the plankton ecozones. Although generally consistent with existing schemes for the central and eastern Mediterranean, the established high-resolution ecostratigraphy has led to an expanded palaeoecological reconstruction of the Late Glacial–Holocene archive in the south-eastern Aegean Sea, defining two warm and humid phases at 9.3–8.6 and 7.6–6.4 cal. ka b.p., associated with the deposition of the early Holocene sapropel S1, and a third one between 5.2 and 4.2 cal. ka b.p. The high sedimentation rates which characterise the study area enabled the detection of even minor and brief climatic events in the Aegean Sea during S1 deposition times. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Sufyan Sub-basin is an East-West trending Sub-basin located in the northwestern part of the Muglad Basin (Sudan), in the eastern extension of the West and Central Africa Rift System (WCARS). The trend of the Sufyan Sub-basin (E-W) is different from the general trend of Muglad Basin (NW-SE) and similar to Baggara basin in the west of Sudan and other basins in east Chad. The unique E-W trend, suggests that this Sub-basin originated by a mechanism different from Muglad Basin that is considered more extensional in origin. Five regional seismic lines are included to illustrate the structural and stratigraphic variation across the Sub-basin. Fault polygons maps for six horizons, four isopach maps, five cross-sections, and two associated kinematic models are presented in this study. Sufyan Sub-basin is characterized by rhombic geometry with three boundary faults; two of those faults exhibit dextral strike slip movement, with two depocenters at the western and eastern segments of the southern fault. Structural interpretation of Sufyan Sub-basin based on 2D seismic data highlights the style of strike-slip related structure. Negative flower structures, en-echelon faults, and rhombic geometry all suggest a significant component of a pull-apart transtensional movement in Sufyan Sub-basin. Other alternative scenarios for evolutionary history and the forming mechanism were introduced such as the oblique extension model. The Sufyan Sub-basin is believed to be highly affected by the Central African Shear Zone (CASZ). In this study, several transtension and oblique rift related features interpreted from Bouguer gravity map and seismic data are briefly described and illustrated. Based on this study, the favorable areas for hydrocarbon accumulation are the areas of flower structure and the areas that near to the two depocenters that controlled by the southern boundary fault.  相似文献   

20.
We consider a plane problem of generation of barotropic seiches in the case of motion of a region of disturbances of atmospheric pressure over a bounded basin. The nonlinear system of equations of long waves with regard for the quadratic dependence of bottom friction is solved by the finite-difference method. The calculations are carried out for three basins of variable depth corresponding to rectangular sections of the Black Sea and Sea of Azov. It is shown that the passage of the baric anomaly over the basin is accompanied by the generation of the lowest seiches. The oscillations of fluid are especially intense in the shallow-water zones of the basins. Seiches exhibit a trend to intensification as the velocity of motion of the atmospheric disturbance increases. The dependence on the width of the baric anomaly is not monotonic. In the shelf zone, the amplitude of oscillations of the level can be several times higher that the pure hydrostatic response of the sea surface. In the analyzed basins, the influence of nonlinearity on the seiches is weak. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 6, pp. 3–15, November–December, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号