首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
To study the effect of uncertain factors on the temperature field of frozen soil, we propose a method to calculate the spatial average variance from just the point variance based on the local average theory of random fields. We model the heat transfer coefficient and specific heat capacity as spatially random fields instead of traditional random variables. An analysis for calculating the random temperature field of seasonal frozen soil is suggested by the Neumann stochastic finite element method, and here we provide the computational formulae of mathematical expectation, variance and variable coefficient. As shown in the calculation flow chart, the stochastic finite element calculation program for solving the random temperature field, as compiled by Matrix Laboratory (MATLAB) software, can directly output the statistical results of the temperature field of frozen soil. An example is presented to demonstrate the random effects from random field parameters, and the feasibility of the proposed approach is proven by comparing these results with the results derived when the random parameters are only modeled as random variables. The results show that the Neumann stochastic finite element method can efficiently solve the problem of random temperature fields of frozen soil based on random field theory, and it can reduce the variability of calculation results when the random parameters are modeled as spatially random fields.  相似文献   

2.
One of the main construction problems in permafrost regions is protecting permafrost thermal stability. Although ventilating ducts and crushed-rock layers were successfully used in railway embankment construction, their effects might not meet large-width expressway requirements. The convection-intensifying composite embankment composed of perforated ventilation ducts and crushed-rock layers was numerically studied to investigate its cooling effects. Adopting a numerical model, the temperature fields for two kinds of composite embankment with and without air doors were analyzed considering air flow and heat transfer characteristics in porous media. The results show that wind velocity in the crushed-rock zone is intensified by the perforated ventilation duct. The underlying permafrost temperature obviously decreases, and the 0 °C isotherm position rises significantly due to composite embankment. The composite embankment with air doors is more effective than that without air doors. Therefore, the new convection-intensifying composite embankment is potentially a highly efficient cooling measure for construction in permafrost regions.  相似文献   

3.
As one of the widely used upgrading way in road engineering, the widening embankment(WE) has suffered evident differential deformation, which is even severer for highway in permafrost regions due to the temperature sensitivity of frozen soil and the heat absorption effect of the asphalt pavement. Given this issue, a full-scale experimental highway of WE was performed along the Qinghai-Tibet Highway(QTH) to investigate the differential deformation features and its developing law. The continuous three years' monitoring data taken from the experimental site, including the ground temperature and the layered deformation of WE and original embankment(OE), were used to analyze the thermal-deformation process. The results indicate that the widening part presented the remarkable thermal disturbance to the existing embankment(EE). The underlying permafrost was in a noteworthy degradation state, embodying the apparent decrease of the permafrost table and the increase of the ground temperature. Correspondingly, the heat disruption induced by widening led to a much higher deformation at the widening side compared to the original embankment, showing a periodic stepwise curve. Specifically, the deformation mainly occurred in the junction of the EE and the widening part, most of which was caused by the thawing consolidation near the original permafrost table. In contrast, the deformation of EE mainly attributed to the compression of the active layer. Furthermore, it was the deformation origination differences that resulted in the differential deformation of WE developed gradually during the monitoring period, the maximum of which reached up to 64 mm.  相似文献   

4.
Snow covers the road embankments in winter in high latitude permafrost zones. The effect of snow cover on embankments was simulated based on field measurements of boundary conditions and initial ground temperature profile in Mohe, China. The effect of thermosyphons on the embankment warmed by snow cover was evaluated by numerical simulations as well. The results indicate that the difference of thermal regimes between non-thermosyphon and thermosyphon embankments reaches to 22 m in depth below the ground surface. It is much warmer in the non-thermosyphon embankment body in winter. Affected by the snow cover, heat flux gradually spreads into the deep ground of the subgrade over time. The permafrost table under the slope toe of a thermosyphon embankment is 1.2 m higher than that of a non-thermosyphon embankment in the 20th year. In addition, the permafrost table at the slope toe of a thermosyphon embankment is 26 cm deeper over 20 years. These results indicate that thermosyphons can greatly weaken the warm effect of snow cover. However, thermosyphons cannot avoid the degradation of permafrost under the scenarios of snow cover. Therefore, composite measures need to be adopted to keep embankment stability in snowy permafrost zones.  相似文献   

5.
A coupled water and heat transport mode is established based on the Richards equation to study water flow and heat transport in soil during freezing process. Both the finite difference and finite element method are used in the discretization, respectively. Two different computer programs are written and used to simulate an indoor unidirectional frozen test. The freezing depth, freezing rate and temperature variation are compared among lab tests, finite difference calculation simulation and finite element calculation simulation. Result shows that: the finite difference method has a better performance in freezing depth simulation while the finite element method has a better performance in numerical stability in one-dimensional freezing simulation.  相似文献   

6.
The unfrozen water content and ice content of frozen soil change continuously with varying temperatures, resulting in the temperature dependence of mechanical properties of frozen soil. Thus the dynamic behavior of embankment in permafrost regions under train loading also alters with seasons. Based on a series of strong-motion tests that were carried out on the traditional embankment of Qinghai-Tibet Railway(QTR) in permafrost regions, the acceleration waveforms recorded at the embankment shoulder and slope toes were obtained. Testing results show an obvious attenuation effect on the vertical train loading from road shoulder to slope toes. Furthermore, numerical simulations of a traditional embankment under vertical train loading in different seasons were conducted, and the dynamic behavior of the embankment was described. The results show that the vibration attenuation in the cold season is greater than that in the warm season. The maximum acceleration of vibration drops to about 5% when the train vibration load is transferred through the embankment into the permafrost, and the high-frequency components are absorbed when the vibration transmits downward. Moreover, the dynamic stress under the dynamic train loading decreases exponentially with an increasing depth in different seasons. The results can be a reference for design and maintenance of embankments in permafrost regions.  相似文献   

7.
Wei M  Tuo Chen 《寒旱区科学》2015,7(6):645-653
By large-scale dynamic tests carried out on a traditional sand-gravel embankment at the Beilu River section along the Qinghai-Tibet Railroad, we collected the acceleration waveforms close to the railway tracks when trains passed. The dynamic train loading was converted into an equivalent creep stress, using an equivalent static force method. Also, the creep equation of frozen soil was introduced according to the results of frozen soil rheological triaxial tests. A coupled creep model based on a time-hardening power function rule and the Druker-Prager yield and failure criterion was established to analyze the creep effects of a plain fill embankment under repeated train loads. The temperature field of the embankment in the permafrost area was set at the current geothermal conditions. As a result, the permanent deformation of the embankment under train loading was obtained, and the permanent deformation under the train loads to the total embankment deformation was also analyzed.  相似文献   

8.
This article discusses the current concepts of dam design and construction in permafrost regions. It is demonstrated that embankment dams often change their state from frozen to thawed and back during the operation period. It is shown that these transitions are not always attributable to observed climate warming. Where geotechnical, hydrogeological, and permafrost conditions are complicated, proper performance of embankment dams can only be provided by adhering to a selected thermal design for, as an example, a frozen state.  相似文献   

9.
In order to study the stability of the Qinghai-Tibet Highway embankment at Chumaerhe in the permafrost region of northwest China, the ground temperature and deformation at different depths were monitored under the left and right shoulders of the embankment where thermosyphons were set up only on the left shoulder. Based on the monitored data, characteristics of ground temperature and deformation of the left and right shoulders are analyzed and discussed. The results show that the start time of freezing or thawing of the seasonal active layer was about one to two months later than that of the embankment body itself. The stability of each shoulder was mainly controlled by the settlement of different soil layers,whereasfrost heave of soil had scarcely any effect on the stability of the embankment. For the left shoulder, the settlement was mainly influenced by the seasonal active layer and then by the embankment body itself,due to freeze-thaw cycles which may change the soil properties; however, the permafrost layer remained fairly stable. For the right shoulder, creep of the warm permafrost layer was the main influence factor on its stability, followed by settlement of embankment body itself, and finally settlement of the seasonal active layer. Compared with the deformation of the left shoulder, the permafrost layer under the right shoulder was less stable, which indicates that the thermosyphons had a significantly positive effect on the stability of warm permafrost.  相似文献   

10.
The degradation of permafrost stability in China over the past 30 years is evaluated using a new, high-resolution near-surface air temperature reanalysis dataset. Results show that the permafrost extent clearly decreased by 22% from 1980 to 2010, that is, a loss of 12.684;104 km2. The degradation occurred not only in the transition regions between permafrost and seasonally frozen ground, but also and more importantly, in the interior of the permafrost regions. The degradation in the interior of permafrost regions accounted for 87% of the total degraded areas. The degradation occurred mainly during the 1980s to 1990s in the northeast permafrost area and the Qilian Mountains, and during the 1990s to 2000s in most areas of the Qinghai-Tibet Plateau (QTP). This degradation will have systemic impacts on engineered infrastructures in permafrost regions, the water balance, and the global carbon budget. A more robust physical model should be used to evaluate the permafrost thermal stability at finer resolution in the future.  相似文献   

11.
ZhiQiang Liu  Hao Lu 《寒旱区科学》2009,1(4):0316-0321
The effect of temperature rising for frozen soil because of dynamic load was investigated by indoor tests.Roadway and railway embankments are always loaded by dynamic loads such as earthquakes and vehicles.Because the Qinghai-Tibetan Plateau is a re-gion where earthquakes occur frequently,it is essential to consider the temperature-rising effect of earthquakes or vehicles on railway and road embankment.In this paper and according to the theories of heat transfer and dynamic equilibrium equations,as-suming frozen soil as thermal elastic-viscoplastic material,taking the combination of thermal and mechanical stresses into account,we present the numerical formulae of this dynamic problem,and the computer program of the two-dimensional finite element is written.Using the program,the dynamic response analyses for embankments loaded by earthquake are worked out.Analysis in-dicated that the temperature-rising effect result from earthquakes for embankment in nonuniform distribution in some small areas,the maximum rising temperature is 0.16 ?C for consideration in this paper.  相似文献   

12.
After the construction of Qinghai-Tibet Highway and Railway, the Qinghai-Tibet Power Transmission(QTPT) line is another major permafrost engineering project with new types of engineering structures. The changing process and trend of ground temperature around tower foundations are crucial for the stability of QTPT. We analyzed the change characteristics and tendencies of the ground temperature based on field monitoring data from 2010 to 2014. The results reveal that soil around the tower foundations froze and connected with the artificial permafrost induced during the construction of footings after the first freezing period, and the soil below the original permafrost table kept freezing in subsequent thawing periods. The ground temperature lowered to that of natural fields, fast or slowly for tower foundations with thermosyphons,while for tower foundations without thermosyphons, the increase in ground temperature resulted in higher temperature than that of natural fields. Also, the permafrost temperature and ice content are significant factors that influence the ground temperature around tower foundations. Specifically, the ground temperature around tower foundations in warm and ice-rich permafrost regions decreased slowly, while that in cold and ice poor permafrost regions cooled faster. Moreover, foundations types impacted the ground temperature, which consisted of different technical processes during construction and variant of tower footing structures. The revealed changing process and trend of the ground temperature is beneficial for evaluating the thermal regime evolution around tower foundations in the context of climate change.  相似文献   

13.
Permafrost in China includes high latitude permafrost in northeastern China, alpine permafrost in northwestern China and high plateau permafrost on the Tibetan Plateau. The high altitude permafrost is about 92% of the total permafrost area in China. The south boundary or lower limit of the seasonally frozen ground is defined in accordance with the 0 oC isothermal line of mean air temperature in January, which is roughly corresponding to the line extending from the Qinling Mountains to the Huaihe River in the east and to the southeast boundary of the Tibetan Plateau in the west. Seasonal frozen ground occurs in large parts of the territory in northern China, including Northeast, North, Northwest China and the Tibetan Plateau except for permafrost regions, and accounting for about 55% of the land area of China. The southern limit of short-term frozen ground generally swings south and north along the 25o northern latitude line, occurring in the wet and warm subtropic monsoon climatic zone. Its area is less than 20% of the land area of China.  相似文献   

14.
中国冻土研究进展   总被引:6,自引:0,他引:6  
Permafrost in China includes high latitude permafrost in northeastern China, alpine permafrost in northwestern China and high plateau permafrost on the Tibetan Plateau. The high altitude permafrost is about 92% of the total permafrost area in China. The south boundary or lower limit of the seasonally frozen ground is defined in accordance with the 0 ℃ isothermal line of mean air temperature in January, which is roughly corresponding to the line extending from the Qinling Mountains to the Huaihe River in the east and to the southeast boundary of the Tibetan Plateau in the west. Seasonal frozen ground occurs in large parts of the territory in northern China, including Northeast, North, Northwest China and the Tibetan Plateau except for permafrost regions, and accounting for about 55% of the land area of China. The southern limit of short-term frozen ground generally swings south and north along the 25° northern latitude line, occurring in the wet and warm subtropic monsoon climatic zone. Its area is less than 20% of the land area of China.  相似文献   

15.
Studies on frozen ground of China   总被引:5,自引:0,他引:5  
1ThestatusoffrozengroundinChinaBased on previous studies, Zhou and Guo (1982) summarized the distribution characteristics of permafrost in China and indicated that the permafrost area in China is about 215×104 km2, in which about 163.4×104 km2 is on the Tibetan Plateau. After mapping and zonation of frozen ground in 1983, Xu and Wang suggested that the areas of permafrost, seasonally frozen ground and temporal frozen ground in China were 206.8×104 km2, 513.7×104 km2 and 229.1×104 km2 …  相似文献   

16.
AnHua Xu 《寒旱区科学》2011,3(2):0132-0136
At present, embankment longitudinal cracks are a major problem in highways through permafrost regions, and seriously affect traffic safety and the normal operations of the highway. In the past, roadbed height in permafrost regions was relatively low, and embankment cracks were rare and did not affect traffic safety. Thus, highway designers and researchers paid little attention to this problem, and they knew very little about distribution laws and mechanism of embankment longitudinal cracks. Due to this lack of knowledge, there is no uniform opinion on this problem, making it difficult to find measures that will mediate the impact of longitudinal cracks. Temperature is a major factor that affects and controls embankment stability in permafrost regions, especially in ice-rich and high-temperature regions, and solar radiation is the principal factor that determines surface temperatures. Under higher embankment, the difference of temperature will be larger between a sunny slope and a shady slope. Hence, the probability for longitudinal cracks generation is higher. In this paper, a survey and analysis of longitudinal cracks along the Qinghai-Tibet Highway were carried out. The longitudinal cracks are found to be related to the road strikes. Solar radiation is considered to play an important role in the generation of longitudinal cracks.  相似文献   

17.
In order to maintain the thermal stability of very wide highway embankments in permafrost regions, the thermal isolation material EPS is often utilized. To examine the effects of this insulation on the China National Highway (G214), two-dimensional finite element analysis of temperature fields was conducted for varying widths of highway embankments with and without EPS insulation. The numerical results show that in permafrost regions the effect of thermal aggregation on asphalt pavement is more obvious when highway embankments are wider, and, specifically for the G214 highway, the insulation should be more than 25 cm thick for 24-m-wide embankments. However, considering other factors such as the structural rationality of the embankments and high engineering costs, it might not be feasible to install EPS insulation in 24-m-wide embankments of the G214 highway when the height of the embankments is less than 3.65 m.  相似文献   

18.
刘侦海  王绍强  陈斌 《地理学报》2021,76(5):1231-1244
中蒙俄经济走廊东段位于欧亚大陆多年冻土区东南缘及森林线南界接近区,冻土及生态环境脆弱.本文基于MERRA-Land陆面模式离线运行产品分析了中蒙俄经济走廊东段2000-2015年间冻土冻融的时空变化模式,以及冻土变化对返青期和全年不同阶段植被生长状态的影响.研究表明:2000-2015年间研究区多年冻土及季节冻土均持续...  相似文献   

19.
As one part of the National Highway Network Planning in China, the Qinghai-Tibet Expressway (QTE) from Golmud to Lhasa will be built in the interior of the Qinghai-Tibet Plateau (QTP) across about 630 km of permafrost lands. Due to the problematic interactions between the engineering foundations and permafrost, the frozen-soil roadbed of the QTE will be subjected to the more intense thermal disturbances due to the wider black surface. The design and construction for long-term thermal and mechanical stability will face more severe challenges than those in ordinary highways and railways in the same region. In order to provide scientific support for cold regions engineering practices, the QTE Experimental Demonstration Project (EDP) was constructed in situ in the vicinity of the Beilu'he Permafrost Station in the interior of the QTP. In this paper, the anticipated problems of the proposed QTE project are enumerated, and the structures of the test sections for QTE EDP are described. Through numerical simulations, it was found that the heat transfer processes occurring in each specific road structure are significantly different. The heat accumulation in the highway embankment is mainly due to the black bituminous pavement, but in the railway embankment with its gravel surfaces, it mainly comes from the side slopes. As a result, the net heat accumulation of the highway embankment is three times higher than that in the railway. In expressway, the heat accumulation is further increased because of the wider pavement so that significantly more heat will be accumulated in the roadbed beneath the centerline area. Thus, the thermal stability of the fro- zen-soil roadbed and the underlying permafrost of the QTE can be seriously threatened without proper engineering measures protection against thawing. Based on research and practical experiences from the operating Qinghai-Tibet Railway (QTR) and the Qinghai-Tibet Highway (QTH), combined with the predicted characteristics of heat transfer in an expressway embankment, nine kinds of engineering measures for mitigating the thaw settlement of foundation soils through the cooling the roadbed soils were built and are being tested in the EDP. The design of the monitoring system for the EDP and the observed parameters were also described.  相似文献   

20.
In the last several decades, the underlying surface conditions on the Qinghai-Tibet Plateau have changed dramatically, causing permafrost degradation due to climate change and human activities. This change severely influenced the cold regions environment and engineering infrastructure built above permafrost. Permafrost is a product of the interaction between the atmosphere and the ground. The formation and change of permafrost are determined by the energy exchange between earth and atmosphere system. Fieldwork was performed in order to learn how land surface change influenced the thermal regime in permafrost regions. In this article, the field data observed in the Fenghuo Mountain regions was used to analyze the thermal conditions under different underlying surfaces on the Qinghai-Tibet Plateau. Results show that underlying surface change may alter the primary energy balance and the thermal conditions of permafrost. The thermal flux in the permafrost regions is also changed, resulting in rising upper soil temperature and thickening active layer. Vegetation could prevent solar radiation from entering the ground, cooling the ground in the warm season. Also, vegetation has heat insulation and heat preservation functions related to the ground surface and may keep the permafrost stable. Plots covered with black plastic film have higher temperatures compared with plots covered by natural vegetation. The reason is that black plastic film has a low albedo, which could increase the absorbed solar radiation, and also decrease evapotranspiration. The "greenhouse effect" of transparent plastic film might effectively reduce the emission of long-wave radiation from the surface, decreasing heat loss from the earth's surface, and prominently increasing ground surface temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号