共查询到20条相似文献,搜索用时 15 毫秒
1.
Three distinctive stratabound phyllosilicate zones are present at the margins of the syntectonic Mt Isa Cu orebodies and their host rock, the ‘silica‐dolomite’, in northwestern Queensland. The zones show close spatial relationships with adjacent stratiform Pb‐Zn ores within the overall host, the dolomitic Urquhart Shale. The Pb‐Zn orebodies may be either sedimentary‐exhalative or, as suggested recently, late diagenetic in origin, whereas the Cu ores were formed during the third regional deformation event. Talc‐stilpnomelane layers within the footwall of the silica‐dolomite, and biotite‐rich layers at the margins and adjacent to the silica‐dolomite are present in sideritic intervals within the dolomitic sequence. These Fe‐carbonate‐rich layers correlate with the Pb‐Zn orebodies, but have a much greater lateral extent. Chloritic layers occur along the hanging wall contacts of several Pb‐Zn orebodies with overlying silica‐dolomite lobes. Microstructural and petrographic studies suggest that the phyllosilicates grew at the silicification stage during early syn‐D3 alteration that also formed the silica‐dolomite and its Cu orebodies. The stratabound distribution of talc, stilpnomelane and biotite is explained by the chemical control of the sideritic beds on silicification. The origin of the Fe‐carbonates is not known and may be either sedimentary or diagenetic. The chlorite zones may have developed because of more extensive fluid‐rock interactions controlled by higher permeabilities along the brittle shale and ductile galena layering within the Pb‐Zn orebodies. 相似文献
2.
大兴安岭东北部秀山林场一带的早白垩世花岗质火山-侵入杂岩体由喷发旋回期的流纹岩、流纹质熔结凝灰岩-粗面英安岩、粗安岩和浅成侵入期的二长花岗斑岩-晶洞正长花岗岩-文象碱长正长花岗岩构成。晚期侵入岩体充填于火山喷发形成的塌陷破火山口中央, 岩石具文象结构、晶洞构造等特征, 未见碱性暗色矿物。流纹岩(118.20 ±1.90 Ma) 与侵入岩形成时代(116.86~118.3 Ma) 相近。杂岩体岩石大多数属碱性系列, 具高硅、富碱、铝、Ga和高场强元素(HFSE) 的特征, 各岩石微量元素蛛网图上曲线形态基本一致, 均出现Sr、Ba谷, 稀土配分曲线也相似, 呈轻稀土富集的不对称右倾“海鸥”型, δEu 中等亏损。流纹岩与石英正长岩的86 Sr /87 Sr 初始值( 0.708 734 ~ 0.711 488) 、143Nd /144Nd初始值(0.512 485~0.512 503) 相近。杂岩体具时、空、源的一致性, 为铝质A1型火山-侵入杂岩体, 形成于岩石圈伸展机制下的非造山板内拉张构造环境。 相似文献
3.
相山火山—侵入杂岩Nd—Sr—Pb同位素地球化学特征 总被引:8,自引:6,他引:8
对相山火山-侵入杂岩Nd,Sr,Pb同位素组成及其底变质岩Pb同位素组成的研究表明,相山两旋回火山岩及火山期后的次火山岩具有较低的εNd(t)值(-7.46-9.40),较高的Isr值(0.70801-0.71201)和较古老的Nd模式年龄(1.54-1.70Ga),且相对富集放射成因铅(^206Pb/^204Pb,^207Pb/^204Pb,^208Pb/^204Pb分别为17.686-18.323,15.523-15.730,38.143-38.936)。相山火山-侵入杂岩与该区出露的基底变质沉积岩在Nd,Pb同位素组成上既有明显的相似性,又有一定差别,因此,相山火山-侵入杂岩的源区主要为地壳岩石,但并不排除有部分幔源组分介入。ε 相似文献
4.
M. A. Elburg P. D. Bons J. Dougherty-Page C. E. Janka N. Neumann B. Schaefer 《Australian Journal of Earth Sciences》2013,60(5):721-730
Quartz feldspar augen gneisses, quartz augen schists and trondhjemites outcrop at Nooldoonooldoona Waterhole in the southwestern corner of the Proterozoic Mt Painter Inlier, northern Flinders Ranges, South Australia. These rocks were previously interpreted as having different origins and ages. However, we argue that all rock types were the result of deformation and strong metasomatic alteration of one common precursor: the Mt Neill Granite. Our conclusion is based on field observations that show that the different lithologies grade into each other and that intrusive contacts are lacking. Whole rock major and trace element analyses also point to a common protolith. Finally, Pb/Pb dating of magmatic zircons gave the same ca 1576 Ma age for the different rock types. Our findings necessitate a re evaluation of the published regional geology and lithostratigraphy of the Mt Painter Inlier. They also indicate that extreme care should be taken in the classification and genetic interpretation of rocks that have experienced extensive metasomatic alteration, which is common in many high grade terrains in Australia. 相似文献
5.
《International Geology Review》2012,54(6):520-541
The major Gushan iron oxide deposit, typical of the Middle‐Lower Yangtze River Valley, is located in the eastern Yangtze craton. Such deposits are generally considered to be genetically related to Yanshanian subvolcanic‐volcanic rocks and are temporally‐spatially associated with ca. 129.3–137.5 Ma dioritic porphyries. The latter have a very narrow 87Sr/86Sr range of 0.7064 to 0.7066 and low ?Nd(t) values of ?5.8 to ?5.7, suggesting that the porphyries were produced by mantle‐derived magmas that were crustally contaminated during magma ascent. The ore bodies occur mainly along the contact zone between dioritic porphyries and the sedimentary country rocks. The most important ore types are massive and brecciated ores which together make up 90 vol.‐% of the deposit. The massive type generally occurs as large veins consisting predominantly of magnetite (hematite) with minor apatite. The brecciated type is characterized by angular fragments of wall‐rocks that are cemented by fine‐grained magnetite. Stockwork iron ores occur as irregular veins and networks, especially with pectinate structure; they are composed of low‐temperature minerals (e.g. calcite), which indicate a hydrothermal process. The similar rare earth element patterns of apatite from the massive ores, brecciated ores and the porphyries, coupled with high‐temperature fluids (1000°C) suggest that they are magmatic in origin. Furthermore, melt flow structure commonly developed in massive ores and the absence of silicate minerals and cumulate textures suggest that the iron ores formed by the separation of an immiscible oxide melt from the silicate melt rather than by crystal fractionation. Combined with theoretical and experimental studies, we propose that the introduction of phosphorus due to crustal contamination during mantle‐derived magma ascent could have been a crucial factor that led to the formation of an immiscible oxide melt from the silicate magma. 相似文献
6.
7.
Hydrothermal ore deposits are typically characterised by footprints of zoned mineral assemblages that extend far beyond the size of the orebody. Understanding the mineral assemblages and spatial extent of these hydrothermal footprints is crucial for successful exploration, but is commonly hindered by the impact of regolith processes on the Earth's surface. Hyperspectral drill core (HyLogger?-3) data were used to characterise alteration mineralogy at the Mt Olympus gold deposit located 35 km southeast of Paraburdoo along the Nanjilgardy Fault within the northern margin of the Ashburton Basin in Western Australia. Mineralogy interpreted from hyperspectral data over the visible to shortwave (400–2500 nm) and thermal (6000–14500 nm) infrared wavelength ranges was validated with X-ray diffraction and geochemical analyses. Spaceborne multispectral (ASTER) and airborne geophysical (airborne electromagnetic, AEM) data were evaluated for mapping mineral footprints at the surface and sub-surface. At the deposit scale, mineral alteration patterns were identified by comparing the most abundant mineral groups detected in the HyLogger data against lithology logging and gold assays. Potential hydrothermal alteration phases included Na/K-alunite, kaolin phases (kaolinite, dickite), pyrophyllite, white mica, chlorite and quartz, representing low-T alteration of earlier greenschist metamorphosed sediments. The respective zoned mineral footprints varied depending on the type of sedimentary host rock. Siltstones were mainly characterised by widespread white-mica alteration with proximal kaolinite alteration or quartz veining. Sandstones showed (1) distal white mica, intermediate dickite, and proximal alunite + kaolinite or (2) widespread white-mica alteration with associated intervals of kaolinite. In both, sandstones and siltstones, chlorite was distal to gold mineralisation. Conglomerates showed distal kaolinite/dickite and proximal white-mica/dickite alteration. Three-dimensional visualisation of the gold distribution and spatially associated alteration patterns around Mt Olympus revealed three distinct categories: (1) several irregular, poddy, SE-plunging zones of >0.5 ppm gold intersected by the Zoe Fault; (2) sulfate alteration proximal to mineralisation, particularly on the northern side of the Mt Olympus open pit; and (3) varying AlIVAlVISiIV–1(Mg,Fe)VI–1 composition of white micas with proximity to gold mineralisation. Chlorite that developed during regional metamorphic or later hydrothermal alteration occurs distal to gold mineralisation. ASTER mineral mapping products, such as the MgOH Group Content used to map chlorite (±white mica) assemblages, showed evidence of correlation to mapped, local structural features and unknown structural or lithological contacts as indicated by inversion modelling of AEM data. 相似文献
8.
《Applied Geochemistry》2005,20(4):789-805
Mineralogical, hydrochemical and S isotope data were used to constrain hydrogeochemical processes that produce acid mine drainage from sulfidic waste at the historic Mount Morgan Au–Cu mine, and the factors controlling the concentration of SO4 and environmentally hazardous metals in the nearby Dee River in Queensland, Australia. Some highly contaminated acid waters, with metal contents up to hundreds of orders of magnitude greater than the Australia–New Zealand environmental standards, by-pass the water management system at the site and drain into the adjacent Dee River.Mine drainage precipitates at Mt. Morgan were classified into 4 major groups and were identified as hydrous sulfates and hydroxides of Fe and Al with various contents of other metals. These minerals contain adsorbed or mineralogically bound metals that are released into the water system after rainfall events. Sulfate in open pit water and collection sumps generally has a narrow range of S isotope compositions (δ34S = 1.8–3.7‰) that is comparable to the orebody sulfides and makes S isotopes useful for tracing SO4 back to its source. The higher δ34S values for No. 2 Mill Diesel sump may be attributed to a difference in the source. Dissolved SO4 in the river above the mine influence and 20 km downstream show distinctive heavier isotope compositions (δ34S = 5.4–6.8‰). The Dee River downstream of the mine is enriched in 34S (δ34S = 2.8–5.4‰) compared with mine drainage possibly as a result of bacterial SO4 reduction in the weir pools, and in the water bodies within the river channel. The SO4 and metals attenuate downstream by a combination of dilution with the receiving waters, SO4 reduction, and the precipitation of Fe and Al sulfates and hydroxides. It is suggested here that in subtropical Queensland, with distinct wet and dry seasons, temporary reducing environments in the river play an important role in S isotope systematics. 相似文献
9.
10.
This study reviews the origin of two approximately east‐west‐trending synclines in the Lake Julius area at the eastern edge of the Leichhardt Rift. The genesis of one of these structures can be found in a north‐south shortening event (D1) that occurred at the beginning of the compressional Isan Orogeny (at ca 1600 Ma). Metasediments in a cross‐rift were rammed against a competent buttress defined by the pre‐existing rift architecture, producing the approximately east‐west‐trending Somaia Syncline and its associated axial‐plane slaty cleavage. In contrast, the Lake Julius Syncline was produced by reorientation of an originally approximately north‐south‐trending (D2) fold, in a transpressional zone adjacent to a strike‐slip fault, at the end of the Isan orogeny. The effects of late fault movement can be partially reconstructed, based on correlations assuming that regionally developed trains of upright folds formed during the peak of the Isan Orogeny (D2). These folds have been offset, as well as having been tightened and disrupted at the same time as fault movements took place. The overall pattern of movement in the Lake Julius region can be explained as the result of an ‘indentor’ ramming into the ancient edge of the Leichhardt Rift, which acted as a buttress. 相似文献
11.
The Valhalla uranium deposit, located 40 km north of Mount Isa, Queensland, Australia, is an albitite-hosted, Mesoproterozoic
U deposit similar to albitite-hosted uranium deposits in the Ukraine, Sweden, Brazil and Guyana. Uranium mineralisation is
hosted by a thick package of interbedded fine-grained sandstones, arkoses and gritty siltstones that are bound by metabasalts
belonging to the ca. 1,780 Ma Eastern Creek Volcanics in the Western Succession of the Mount Isa basin. Alteration associated
with U mineralisation can be divided into an early, main and late stage. The early stage is dominated by laminated and intensely
altered rock comprising albite, reibeckite, calcite, (titano)magnetite ± brannerite. The main stage of mineralisation is dominated
by brecciated and intensely altered rocks that comprise laminated and intensely altered rock cemented by brannerite, apatite,
(uranoan)-zircon, uraninite, anatase, albite, reibeckite, calcite and hematite. The late stage of mineralisation comprises
uraninite, red hematite, dolomite, calcite, chlorite, quartz and Pb-, Fe-, Cu-sulfides. Brannerite has U–Pb and Pb–Pb ages
that indicate formation between 1,555 and 1,510 Ma, with significant Pb loss evident at ca. 1,200 Ma, coincident with the
assemblage of Rodinia. The oldest ages of the brannerite overlap with 40Ar/39Ar ages of 1,533 ± 9 Ma and 1,551 ± 7 Ma from early and main-stage reibeckite and are interpreted to represent the timing
of formation of the deposit. These ages coincide with the timing of peak metamorphism in the Mount Isa area during the Isan
Orogeny. Lithogeochemical assessment of whole rock data that includes mineralised and unmineralised samples from the greater
Mount Isa district reveals that mineralisation involved the removal of K, Ba and Si and the addition of Na, Ca, U, V, Zr,
P, Sr, F and Y. U/Th ratios indicate that the ore-forming fluid was oxidised, whereas the crystal chemistry of apatite and
reibeckite within the ore zone suggests that F− and were important ore-transporting complexes. δ18O values of co-existing calcite and reibeckite indicate that mineralisation occurred between 340 and 380°C and involved a
fluid having δ18Ofluid values between 6.5 and 8.6‰. Reibeckite δD values reveal that the ore fluid had a δDfluid value between −98 and −54‰. The mineral assemblages associated with early and main stages of alteration, plus δ18Ofluid and δDfluid values, and timing of the U mineralisation are all very similar to those associated with Na–Ca alteration in the Eastern
Succession of the Mount Isa basin, where a magmatic fluid is favoured for this style of alteration. However, isotopic data
from Valhalla is also consistent with that from the nearby Mount Isa Cu deposit where a basinal brine is proposed for the
transport of metals to the deposit. Based on the evidence to hand, the source fluids could have been derived from either or
both the metasediments that underlie the Eastern Creek Volcanics or magmatism that is manifest in the Mount Isa area as small
pegmatite dykes that intruded during the Isan Orogeny. 相似文献
12.
Mount Erebus is an active volcano in Antarctica located on Ross Island. A convecting lava lake occupies the summit crater of Mt. Erebus. Since December 1980 the seismic activity of Mt. Erebus has been continuously monitored using a radio-telemetered network of six seismic stations. The seismic activity observed by the Ross Island network during the 1982–1983 field season shows that: (1)Strombolian eruptions occur frequently at the Erebus summit lava lake at rates of 2–5 per day; (2)centrally located earthquakes map out a nearly vertical, narrow conduit system beneath the lava lake; (3)there are other source regions of seismicity on Ross Island, well removed from Mt. Erebus proper. An intense earthquake swarm recorded in October 1982 near Abbott Peak, 10 km northwest of the summit of Mt. Erebus, and volcanic tremor accompanying the swarm, may have been associated with new dike emplacement at depth. 相似文献
13.
Stratabound mineralization in the Mammoth area of NW Queensland occurs in steeply dipping, faulted Proterozoic arenites and dolomitic rocks overlying basic volcanics. Both syngenetic/diagenetic and epigenetic sulphides are present, with the latter divided into Mammoth- and South Mammoth II-styles. Syngenetic/diagenetic pyrite is distinguished from epigenetic pyrite by higher Co and Ni, and lower As, Mo, Sb and Tl contents. Chalcopyrite is the major copper sulphide associated with syngenetic/diagenetic pyrite and is characterized by low Ag, Bi, Mo, Ni and Tl contents relative to epigenetic chalcopyrite. No substantial wall rock alteration is associated with such sulphides. Disseminated syngenetic/diagenetic sulphides in the mine sequence may have induced deposition of epigenetic Cu mineralization, but alone, even when remobilized, do not reach economic grades.The four epigenetic Mammoth orebodies are all richer in chalcocite and bornite than syngenetic/diagenetic mineralization and have wall rock alteration characterized by alkali depletion and Fe enrichment in the zone between the ore and the fault considered the conduit for the hydrothermal ore-forming fluids. Pyrite associated with Mammoth-style mineralization has high As, Mo, Sb and Tl contents and was formed subsequent to the copper sulphides.Thick, essentially barren, pyritic sequences occur at South Mammoth II where the moderate As, high Mo, Sb and Tl contents reflect their hydrothermal origin but distinguish them from Mammoth-style pyrite. Their low As/Sb ratio and lack of wall rock alteration imply a lower temperature of formation than the Mammoth-style pyrite and possibly such mineralization represents the pre-ore stage of the Mammoth mineralizing hydrothermal system.An essential feature of economic Cu mineralization in NW Queensland is the operation of a hydrothermal system. As all such systems may not necessarily give rise to extensive wall rock alteration, use of the high As, Mo, Sb and Tl contents of hydrothermal pyrite can aid evaluation of mineralization intersected during drilling. 相似文献
14.
Visible near infrared and shortwave infrared (VNIR-SWIR, 350 to 2500 nm) reflectance spectra obtained from an analytical spectral device (ASD) have been used to define alteration zones adjacent to porphyry copper deposits (PCDs), in the central part of Kerman magmatic arc, SE Iran. The spectral analysis identified sericite, illite, halloysite, montmorillonite, dickite, kaolinite, pyrophyllite, biotite, chlorite, epidote, calcite, jarosite, and iron oxyhydroxides (e.g. hematite, goethite) of hydrothermal and supergene origin. Identified alteration zones are classified into six principal types namely phyllic, phyllic/propylitic, propylitic, potassic, argillic and advanced argillic. The iron oxide minerals in the oxidized zone were also identified using spectral analysis. Results of spectral analyses of samples are consistent with mineralogical data obtained from X-ray diffraction (XRD) and petrographic studies. Spectroscopic studies by ASD demonstrate that this tool is very useful for semi-quantitative and cost effective identification of different types of alteration mineral assemblages. Furthermore, it can provide a valuable tool for evaluating aerial distribution of alteration minerals while coupled with remote sensing data analysis. 相似文献
15.
西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿 总被引:37,自引:17,他引:37
驱龙超大型矿床是一个产于后碰撞伸展环境下、与大洋俯冲无关的新型斑岩铜矿。文章通过对驱龙铜矿床地质、蚀变与矿化的详细研究,建立了驱龙中新世岩浆演化序列,初步查明了岩浆浅成侵位的构造控制要素,厘定了主要的围岩蚀变类型及空间展布规律,查明了引起各期蚀变事件的地质记录及矿化的空间分布规律,并探讨了成矿物质沉淀的机制,初步建立了该矿床的成矿模型。研究表明,驱龙铜矿中新世斑岩是闪长质深部岩浆房不断演化的产物,花岗闪长岩中新发现的、结晶时间为22.2Ma左右的闪长质包体可近似代表深部岩浆房组分,依次产出的花岗闪长岩、呈岩株或岩枝产出的P斑岩、X斑岩及最晚期的闪长玢岩(15.7±0.2)Ma,均为深部岩浆房连续演化的产物,岩浆持续6Ma左右。岩浆演化过程中角闪石、斜长石不断的结晶分异,导致了岩石常量元素、稀土元素及微量元素组成的规律性变化,斑岩埃达克质的特征也因岩浆演化过程中角闪石等矿物的不断结晶分异而引起。X斑岩中锆石的Hf同位素特征表明,岩石可能形成于新生下地壳的部分熔融。大面积产出的花岗闪长岩为驱龙铜矿最主要的含矿围岩,容纳了驱龙矿床70%以上的矿体,主要由斜长石、钾长石和石英组成,具花岗结构-似斑状结构,近EW向产出,其浅成就位可能受背斜控制,其后的各期斑岩均沿该侵位中心上侵,而冈底斯地壳中新世的快速抬升与剥蚀是导致含矿斑岩浅成侵位的根本原因;矿区内的SN向裂隙带既不控岩,也不控矿。浅成侵位的斑岩及深部岩浆房均发生了流体出溶。发生了大量流体出溶的深部岩浆房,是矿区早期蚀变流体的主要来源,显微晶洞构造及单向固结结构(UST)是流体出溶的地质记录。蚀变主要有3种类型,分别为早期的钾硅酸盐化、青磐岩化以及晚期的长石分解。钾硅酸盐化可分为2个阶段,即蚀变矿物以次生钾长石为主的早期钾硅酸盐化和以次生黑云母为主的晚期钾硅酸盐化。青磐岩化因产出的岩石类型不同,蚀变矿物组合具有明显差异性:产于叶巴组地层中的青磐岩化相对较强,蚀变矿物以绿帘石为主;产于花岗闪长岩中的青磐岩化相对较弱,蚀变矿物以绿泥石为主。晚期长石分解蚀变以破坏长石类矿物为特征,蚀变矿物主要为绢云母-绿泥石-粘土等。石英和硬石膏贯穿于上述各种蚀变中。空间上,钾硅酸盐化位于斑岩体及其周围地区,青磐岩化位于钾硅酸岩化外侧。后期形成的长石分解蚀变强烈叠加了早期钾硅酸盐化,介于钾硅酸盐化带与青磐岩化带之间。与早期钾长石化有关的脉体主要为不规则石英-钾长石脉,与晚期黑云母化有关的脉体主要为不规则至板状的石英-硬石膏脉、黑云母脉,与青磐岩化有关的脉体主要为板状的绿帘石-石英脉,与晚期长石分解蚀变有关的脉体主要为板状黄铜矿-黄铁矿脉及黄铁矿脉;在早期钾硅酸盐蚀变与晚期长石分解蚀变转换阶段,发育一组板状的石英-硫化物脉。早期不规则的脉体形成于斑岩结晶早期、矿区裂隙小规模发育阶段;晚期的板状脉体形成于斑岩弱固结或固结之后、矿区大规模连通裂隙发育阶段。驱龙矿区的铜矿化分布较为均一,主体产于花岗闪长岩中,其中,铜矿化主体形成于黑云母化蚀变阶段,转变阶段及长石分解阶段也有大量铜的形成;钼主要形成于转换阶段,长石分解蚀变阶段也有产出。黑云母化阶段,铜的沉淀与角闪石黑云母化、斜长石钾长石化过程中Ca2 的大量释放有关;转换阶段,铜钼矿化可能与压力和(或)温度骤降有关;晚期铜矿化与长石矿化蚀变阶段,斜长石绿泥石化、黑云母绿帘石化过程中Ca2 及Fe2 的释放有关。 相似文献
16.
Stratiform sulphide deposits which have been metamorphosed to lower greenschist facies occur within the Paleozoic strata of the Hodgkinson Province, northeast Queensland. Massive cupreous pyrite is ubiquitous and Mt Molloy and Dianne also have layered chalcopyrite-rich and sphalerite-rich lenses. Sulphide 34S values for the mineralisation show a narrow spread, around 02030; at the Dianne and O.K. deposits, but a wider spread and an average several per mil higher at the Mt Molloy area. The minerals can not be used for geothermometry due to isotopic disequilibrium. However, metamorphic effects on the isotopic compositions appear not to have been significant. A decrease in temperature and contact of the ore fluid with sea water probably caused the precipitation of the ore minerals. A magmatic ore fluid with 34SS around 02030; predominated at the Dianne and OK deposits whereas the fluid at Mt Molloy mixed with sea water to acquire a higher 34SS value. 相似文献
17.
The Sanshandao gold deposit (reserves of more than 200 t Au and average grade of 3.96 g/t), located at northwestern edge of the Jiaodong Peninsula, eastern North China Craton, is one of the largest gold deposits in the Jiaodong gold province. In this deposit, disseminated- and stockwork-style ores are hosted in Mesozoic granitoids; mineralization and alteration are largely controlled by the regional Sanshandao–Cangshang fault. Host granitic rocks for the deposit display a complex paragenetic sequence of alteration and mineralization. Activities of the Sanshandao–Cangshang fault created structurally controlled permeability allowing for infiltration of hydrothermal fluids, leading to diffusive K-feldspar alteration on the two fault planes. Later, large scale diffusive sericitization symmetrically developed across the main fault, and partially overprinted the earlier K-feldspar alteration. Following the sericitization, relatively small scale silicification occurred, but now it is only retained in the hanging wall of the main fault. Subsequently, the fault gouge formed as a “barrier layer”, which is impermeable for later fluids to move upward. After that, strong pyrite–sericite–quartz alteration occurred only in the footwall of the main fault, and was accompanied by gold precipitation. The last stage carbonation and quartz-carbonate veins marked the waning of gold-related hydrothermal activity. Mass-balance calculations indicate complex behaviors of different types of elements during fluid–rock interaction. Most major elements were affected by intensive mineral replacement reactions. As expected, the fluid-mobile elements, LILE and LREE, generally show moderate to high mobility. It is notable that even the commonly assumed fluid-immobile elements, such as HREE and HFSE, tend to be changed to various degrees. In addition, Y–Ho, Zr–Hf and Nb–Ta fractionations are observed in altered domains. Studies on alteration assemblages and fluid inclusions suggest that the ore-forming fluids were characterized by low salinity (≤ 8.4 wt.% NaCl equiv.), moderate temperature (300–400 °C), weakly acidic (pH: 3–5), and relatively reducing (log fO2: ~–28) characteristics. In this type of fluids, gold was most likely transported as Au(HS)2− complex. With alteration going on, log (aK+/aH+) of fluids generally decreased due to significant formation of secondary K-bearing minerals. In addition, there might be a decrease of fO2 from pre-gold alteration stage to the main gold mineralization stage, and decrease of fO2 was probably one of the factors controlling gold precipitation. The Sr and Nd isotopic compositions of hydrothermal minerals, combined with previous H–O and He–Ar isotopic studies, indicate that the hydrothermal fluids were mainly derived from crustal sources (e.g., degassing of felsic magmas and meteoric water), but with involvement of mantle derived components. The gold mineralization event just coincided with reactivation of the North China Craton, as marked by asthenosphere upwelling, voluminous igneous rocks, and high crustal heat flow, which may have provided sufficient heat energy and fluid input required for the formation of the gold deposits. 相似文献
18.
本文对西藏厅宫大型铜矿进行了详细研究,矿床详细的地质岩相学-蚀变以及典型剖面填图表明,矿区存在2个岩浆事件高峰,即始新世的钾长花岗岩(~50 Ma)和中新世的斑状二长花岗岩、英云闪长斑岩及闪长玢岩(约13~17 Ma)。野外和室内研究发现,厅宫矿区存在2期重要的矿化事件,即始新世(~50 Ma)铜矿化及中新世(~15Ma)的铜钼矿化。始新世含矿岩体为钾长花岗岩,其最主要的特点是其成矿岩体结构的特殊性,表现在该矿床的成矿岩体没有典型的斑状结构,而是独特的细晶-似伟晶结构,说明含矿岩浆发生过骤冷,可能是流体突然逃逸,矿物结晶的固相点发生漂移所致。同时,该岩体还发育大量显微文象结构、显微晶洞构造等,均说明岩浆曾经富水,并且曾经流体饱和;中新世含矿岩体为具有埃达克岩特征的斑状二长花岗岩,主要以脉状的铜、钼矿化为主。该矿床蚀变分带类似于冈底斯带其他斑岩矿床。时间上,分别为早期的钾硅酸盐化、转换阶段的青磐岩化、随后的绢英岩化及最晚期的泥化蚀变;空间上,以含矿岩体为中心向外依次为钾硅酸盐化、绢英岩化、青磐岩化,最晚期的泥化呈补丁状或条带状叠加早期各类蚀变。铜矿化主要发生在始新世的黑云母化阶段和中新世的绢英岩化阶段,而钼矿化主要发生在中新世的钾硅酸盐化和绢英岩化的转换阶段。 相似文献
19.
山西中条山铜矿峪超大型斑岩铜矿床位于华北板块南部,秦岭造山带北侧,处在聚合板块活动大陆边缘的挤压-伸展的构造转换环境。矿区地层主要为古元古界"铜矿峪亚群",即火山-次火山岩,岩石经变质作用为绿片岩相和低角闪岩相。铜矿床在空间上与元古代钙碱性S型花岗斑(杂)岩体紧密共生,严格受火山机构控制。据辉钼矿Re-Os年龄,成矿时代为(2 108±32)Ma,是我国最古老的斑岩型铜矿床。铜矿床呈厚板状透镜体产出,矿石以细脉浸染状构造为主,有少量块状矿石产出。铜矿平均品位为0.68%,其中30%为富铜矿,并伴生钼、金。成矿热液主要源自深部地幔,也与地壳成分和天水渗入有关。因火山喷气和二次沸腾,在高侵位后,由分离作用形成碱质交代及石英绢云母化叠加红长石化的围岩蚀变,无面型环状分带特征。矿床成因推测为变火山热液斑岩型铜矿床。预测矿床深部可能赋存有岩浆房,找矿潜力很大。 相似文献
20.
Suzanne Beauchemin Y.T. John Kwong Alexandre J. Desbarats Ted MacKinnon Jeanne B. Percival Michael B. Parsons Kumi Pandya 《Applied Geochemistry》2012
This study investigates Sb speciation in sediments along the drainage of the Upper Peter adit at the Bralorne Au mine in southern British Columbia, Canada, and compares the behavior of Sb with that of As. The Upper Peter mineralization consists of native Au in quartz-carbonate veins with 1 wt.% sulfides dominated by pyrite and arsenopyrite although stibnite, the primary Sb-bearing sulfide mineral, can be locally significant. Dissolved Sb concentrations can reach up to 349 μg L−1 in the mine pool. Sediments were collected for detailed geochemical and mineralogical characterization at locations along the 350-m flow path, which includes a 100-m shallow channel within the adit, a sediment settling pond about 45 m beyond the adit portal and an open wetland another 120 m farther downstream. From the mine pool to the wetland outlet, dissolved Sb in the drainage drops from 199 μg L−1 to below the detection limit due to the combined effect of dilution and removal from solution. Speciation analyses using X-ray absorption near-edge structure (XANES) spectroscopy indicate that Sb(III)–S accounts for around 70% of total Sb in the sediments in the main pool at the far end of the adit. At a short distance (24 m) downstream of the main adit pool, however, Sb(III)–O and Sb(V)–O species represent ?50% of total Sb in the bulk sediments, indicating significant oxidation of the primary sulfides inside the adit. Although Sb appears largely oxidized in the bulk samples collected near the portal, Sb(III)–S species are nevertheless present in the <53-μm fraction, suggesting a higher oxidation rate for stibnite in the coarser grains, possibly due to galvanic interaction with pyrite. Secondary Sb species released from the sulfide oxidation are most likely sorbed/co-precipitated with Fe-, Mn-, and Al-oxyhydroxides along the flow channel in the adit and in the sediment settling pond, with the Fe phase being the dominant sink for Sb. 相似文献