首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new three-dimensional numerical model is derived through a wave average on the primitive N-S equations, in which both the"Coriolis-Stokes forcing" and the"Stokes-Vortex force" are considered. Three ideal experiments are run using the new model applied to the Princeton ocean model (POM). Numerical results show that surface waves play an important role on the mixing of the upper ocean. The mixed layer is enhanced when wave effect is considered in conjunction with small Langmuir numbers. Both surface wave breaking and Stokes production can strengthen the turbulent mixing near the surface. However, the influence of wave breaking is limited to a thin layer, but Stokes drift can affect the whole mixed layer. Furthermore, the vertical mixing coefficients clearly rise in the mixed layer, and the upper ocean mixed layer is deepened especially in the Antarctic Circumpolar Current when the model is applied to global simulations. It indicates that the surface gravity waves are indispensable in enhancing the mixing in the upper ocean, and should be accounted for in ocean general circulation models.  相似文献   

2.
台风条件下朗缪尔环流对上层海洋混合的影响研究进展   总被引:1,自引:1,他引:0  
回顾了近10年来台风条件下朗缪尔环流影响上层海洋混合的研究进展,朗缪尔致湍流对海洋上混合层的形成和加深的重要作用已形成了基本共识,但对于朗缪尔致湍流对海洋上混合层的混合作用机制和程度仍然存在诸多不确定性。观测表明台风条件下台风眼附近的混合层平均湍流动能受到了较强的抑制,可能与台风不同位置朗缪尔致湍流的特征变异有关;台风条件下,现有的朗缪尔致湍流参数化方案在上层混合过程模拟中还有显著误差。在今后研究中,通过改进斯托克斯漂流剖面的计算方法,优化表征台风条件下海面状况的朗缪尔致湍流参数化计算方案,是进一步揭示台风条件下朗缪尔环流对海洋上层混合的影响机理的必要途径。  相似文献   

3.
利用海浪模式WWIII(Wave Watch III)2008年的模拟结果对海面Stokes漂流、Stokes输运、Stokes深度以及全球Langmuir数的年平均分布特征和季节平均分布特征分别进行了详细的研究与分析。结果表明,海面Stokes漂流和Stokes输运均呈现高纬度偏大的特征,以南极绕极流海域最为突出。全球大部分海域Stokes漂流影响深度在20 m以内,呈现大洋东部偏大,西部偏小的分布特征。全球大部分海域的混合作用是剪切不稳定性和Langmuir湍效应并存的状态,甚至有些海域是以Langmuir湍效应为主。因此,在进行大尺度的海洋数值模拟时,应该考虑波浪导致的混合效应。  相似文献   

4.
Effect of Langmuir circulation on upper ocean mixing in the South China Sea   总被引:2,自引:0,他引:2  
Effect of Langmuir circulation (LC) on upper ocean mixing is investigated by a two-way wave-current coupled model. Themodel is coupled of the ocean circulationmodel ROMS (regional ocean modeling system) to the surface wave model SWAN (simulating waves nearshore) via the model-coupling toolkit. The LC already certified its importance by many one-dimensional (1D) research andmechanismanalysis work. This work focuses on inducing LC’s effect in a three-dimensional (3-D) model and applying it to real field modeling. In ROMS, theMellor-Yamada turbulence closuremixing scheme is modified by including LC’s effect. The SWAN imports bathymetry, free surface and current information fromthe ROMS while exports significant wave parameters to the ROMS for Stokes wave computing every 6 s. This coupled model is applied to the South China Sea (SCS) during September 2008 cruise. The results show that LC increasing turbulence and deepening mixed layer depth (MLD) at order of O (10 m) in most of the areas, especially in the north part of SCS where most of our measurements operated. The coupled model further includes wave breaking which will bringsmore energy into water. When LC works together with wave breaking,more energy is transferred into deep layer and accelerates the MLD deepening. In the north part of the SCS, their effects aremore obvious. This is consistent with big wind event in the area of the Zhujiang River Delta. The shallow water depth as another reasonmakes themeasy to influence the oceanmixing as well.  相似文献   

5.
The impact of Stokes drift on the mixed layer temperature variation was estimated by taking into account an advective heat transport term induced by the Stokes drift in the equation of mixed layer temperature and using the oceanic and wave parameters from a global ocean circulation model (HYCOM) and a wave model (Wave Watch III). The dimensional analysis and quantitative estimation method were conducted to assess the importance of the effect induced by the Stokes drift and to analyze its spatial distribution and seasonal variation characteristics. Results show that the contribution of the Stokes drift to the mixed layer temperature variation at mid-to-high latitudes is comparable with that of the mean current, and a substantial part of mixed layer temperature change is induced by taking the Stokes drift effect into account. Although the advection heat transport induced by the Stokes drift is not the leading term for the mixed layer temperature equation, it cannot be neglected and even becomes critical in some regions for the simulation of the upperocean temperature.  相似文献   

6.
The significant underestimation of sea surface temperature (SST) and the temperature in the upper ocean is one of common problems in present climate models. The influence of the wave-induced mixing on SST and the temperature in the upper ocean was examined based on a global climate model. The results from the model coupled with wave-induced mixing showed a significant improvement in the simulation of SST and the temperature in the upper ocean compared with those of the original model without wave effects. Although there has still a cold bias, the new simulation is much closer to the climatology, especially in the northern ocean and tropical ocean. This study indicates that some important physical processes in the accurate simulation of the ocean may be ignored in present climate models, and the wave-induced mixing is one of those factors. Thus, the wave-induced mixing ( or the effect of surface waves) should be incorporated properly into climate models in order to simulate or forecast the ocean, then climate system, more accurately.  相似文献   

7.
漂浮于自由水面的污染物的的迁移、扩散会受到天然随机海浪的影响。之前的研究(以Herterich和Hasselmann(1982)为代表)普遍认为,随机波浪作用下的斯托克司漂移速度会引起水面污染物的离散,这个离散甚至有可能跟风和海流引起的离散同一量级。本研究就随机波浪作用下的斯托克司漂移速度是否会引起水面漂移物的离散进行理论和试验探讨。从理论推导可知,随机波浪下的质量输移速度是个定常分量,因此它不会随时间变化而引起水面漂移物的离散。随后我们在实验室水槽中进行了漂移物在随机波浪(P-M谱)作用下的漂移过程的测量。试验结果也印证了随机波浪作用下的斯托克司漂移速度不会引起水面漂移物离散的结论。  相似文献   

8.
Spilled oil floats and travels across the water’s surface under the influence of wind, currents, and wave action. Wave-induced Stokes drift is an important physical process that can affect surface water particles but that is currently absent from oil spill analyses. In this study, two methods are applied to determine the velocity of Stokes drift, the first calculates velocity from the wind-related formula based upon a one-dimensional frequency spectrum, while the second determines velocity directly from the wave model that was based on a two-dimensional spectrum. The experimental results of numerous models indicated that: (1) oil simulations that include the influence of Stokes drift are more accurate than that those do not; (2) for medium and long-term simulations longer than two days or more, Stokes drift is a significant factor that should not be ignored, and its magnitude can reach about 2% of the wind speed; (3) the velocity of Stokes drift is related to the wind but is not linear. Therefore, Stokes drift cannot simply be replaced or substituted by simply increasing the wind drift factor, which can cause errors in oil spill projections; (4) the Stokes drift velocity obtained from the two-dimensional wave spectrum makes the oil spill simulation more accurate.  相似文献   

9.
Turbulent mixing in the upper ocean(30-200 m) of the northwestern Weddell Sea is investigated based on profiles of temperature,salinity and microstructure data obtained during February 2014.Vertical thermohaline structures are distinct due to geographic features and sea ice distribution,resulting in that turbulent dissipation rates(ε) and turbulent diffusivity(K) are vertically and spatially non-uniform.On the shelf north of Antarctic Peninsula and Philip Ridge,with a relatively homogeneous vertical structure of temperature and salinity through the entire water column in the upper 200 m,both ε and K show significantly enhanced values in the order of O(10~(-7))-O(10~(-6)) W/kg and O(10~(-3))-O(10~(-2)) m~2/s respectively,about two or three orders of magnitude higher than those in the open ocean.Mixing intensities tend to be mild due to strong stratification in the Powell Basin and South Orkney Plateau,where s decreases with depth from O(10~(-8)) to O(10~(-9)) W/kg,while K changes vertically in an inverse direction relative to s from O(10~(-6)) to O(10~(-5)) m~2/s.In the marginal ice zone,K is vertically stable with the order of10~(-4) m~2/s although both intense dissipation and strong stratification occur at depth of 50-100 m below a cold freshened mixed layer.Though previous studies indentify wind work and tides as the primary energy sources for turbulent mixing in coastal regions,our results indicate weak relationship between K and wind stress or tidal kinetic energy.Instead,intensified mixing occurs with large bottom roughness,demonstrating that only when internal waves generated by wind and tide impinge on steep topography can the energy dissipate to support mixing.In addition,geostrophic current flowing out of the Weddell Sea through the gap west of Philip Passage is another energy source contributing to the local intense mixing.  相似文献   

10.
Based on the theoretical spectral model of inertial internal wave breaking(fine structure) proposed previously, in which the effects of the horizontal Coriolis frequency component f-tilde on a potential isopycnal are taken into account, a parameterization scheme of vertical mixing in the stably stratified interior below the surface mixed layer in the ocean general circulation model(OGCM) is put forward preliminarily in this paper. Besides turbulence, the impact of sub-mesoscale oceanic processes(including inertial internal wave breaking product) on oceanic interior mixing is emphasized. We suggest that adding the inertial internal wave breaking mixing scheme(F-scheme for short) put forward in this paper to the turbulence mixing scheme of Canuto et al.( T-scheme for short) in the OGCM, except the region from 15°S to 15°N. The numerical results of F-scheme by using WOA09 data and an OGCM(LICOM, LASG/IAP climate system ocean model) over the global ocean are given. A notable improvement in the simulation of salinity and temperature over the global ocean is attained by using T-scheme adding F-scheme, especially in the mid- and high-latitude regions in the simulation of the intermediate water and deep water. We conjecture that the inertial internal wave breaking mixing and inertial forcing of wind might be one of important mechanisms maintaining the ventilation process. The modeling strength of the Atlantic meridional overturning circulation(AMOC) by using T-scheme adding F-scheme may be more reasonable than that by using T-scheme alone, though the physical processes need to be further studied, and the overflow parameterization needs to be incorporated. A shortcoming in F-scheme is that in this paper the error of simulated salinity and temperature by using T-scheme adding F-scheme is larger than that by using T-scheme alone in the subsurface layer.  相似文献   

11.
A three-dimensional numerical model for large-eddy simulation (LES) of oceanic turbulent processes is described. The numerical formulation comprises a spectral discretization in the horizontal directions and a high-order compact finite-difference discretization in the vertical direction. Time-stepping is accomplished via a second-order accurate fractional-step scheme. LES subgrid-scale (SGS) closure is given by a traditional Smagorinsky eddy-viscosity parametrization for which the model coefficient is derived following similarity theory in the near-surface region. Alternatively, LES closure is given by the dynamic Smagorinsky parametrization for which the model coefficient is computed dynamically as a function of the flow. Validation studies are presented demonstrating the temporal and spatial accuracy of the formulation for laminar flows with analytical solutions. Further validation studies are described involving direct numerical simulation (DNS) and LES of turbulent channel flow and LES of decaying isotropic turbulence. Sample flow problems include surface Ekman layers and wind-driven shallow water flows both with and without Langmuir circulation (LC), generated by wave effects parameterized via the well-known Craik–Leibovich (C–L) vortex force. In the case of the surface Ekman layers, the inner layer (where viscous effects are important) is not resolved and instead is parameterized with the Smagorinsky models previously described. The validity of the dynamic Smagorinsky model (DSM) for parameterizing the surface inner layer is assessed and a modification to the surface stress boundary condition based on log-layer behavior is introduced improving the performance of the DSM. Furthermore, in Ekman layers with wave effects, the implicit LES grid filter leads to LC subgrid-scales requiring ad hoc modeling via an explicit spatial filtering of the C–L force in place of a suitable SGS parameterization.  相似文献   

12.
介绍了海洋垂直混合过程参数化方案的发展,以及不同参数化方案在海洋模式中的应用情况。首先,介绍不同垂直混合参数化方案的物理问题、理论依据、数学表达和特征,并对不同参数化方案进行了比较。其次,针对中尺度涡、亚中尺度涡以及波浪、潮流混合参数化的最新研究进展进行了总结并对垂直混合参数化的未来发展提出了一些建议。  相似文献   

13.
闫圣  邹志利 《海洋通报》2017,36(4):416-423
为了说明波浪场中浓度输移扩散Stokes漂移效应的欧拉描述方法,采用欧拉方法推导了波浪场中波浪周期平均的浓度输移扩散方程,其对流项是由波浪速度的波动和物质浓度的波动相互作用而产生,所含的对流速度恰是Stokes漂移速度。由此说明,波浪场中浓度扩散问题的Stokes漂移效应可以自动的由欧拉法来考虑,所得到的Stokes漂移效应与拉格朗日描述的结果是等价的。为了进一步说明这一问题,将粒子追踪法的拉格朗日描述的Stokes漂移速度与欧拉法的结果进行了对比,二者是一致的。研究中也数值求解了线性波浪场中σ坐标下浓度扩散方程,将浓度的Stokes漂移、浓度分布和粒子追踪法的结果进行了对比,以证明欧拉描述和拉格朗日描述两种方法的等价性。研究中也根据实验结果对实际波浪场中Stokes漂移效应所引起的浓度漂移进行了讨论,解释了物理模型实验中的观察到的波浪场中浓度漂移现象。  相似文献   

14.
How the role of vertical turbulent mixing (VTM) in sea surface cooling (SSC) varies with the moving speed of a tropical cyclone was examined for Typhoon Rex (1998) by using the Meteorological Research Institute Community Ocean Model (MRI.COM). The MRI.COM well reproduced TRMM/TMI three-day mean sea surface temperature (SST) fields along Rex’s track. During the fast-moving phase of Rex, SSC simulated by the MRI.COM was caused by shear-induced VTM on the right side of the track. During the slowly-moving phase, on the other hand, the Ekman-pumping area mostly overlapped the VTM area right behind Rex’s center. During the recurvature phase, cool water transported by the upwelling was more efficiently entrained into a mixed layer by the VTM for nearly a 1 near-inertial period after the passage of Rex. We then modified the entrainment formulation of Deardorff (1983), which was incorporated into a slab mixed-layer ocean model (SOM) so as to fit to the results simulated by the MRI.COM. The principal modifications are as follows: (1) consideration of turbulent kinetic energy (TKE) production caused by surface wave breaking; (2) increase in the coefficient for estimating dissipation to balance with TKE production due to turbulent transport; and (3) changing the initial guess for the critical Richardson number. These modifications led to an improvement of SST simulations by the SOM. The impact of the modifications on simulated SSTs turned out to be more significant than the impacts of initial mixed-layer depth and the difference between diurnally-varying and daily mean short-wave radiation.  相似文献   

15.
上层海洋对热带气旋的响应与反馈研究进展   总被引:3,自引:0,他引:3  
韩林生 《海洋通报》2012,31(2):233-239
对60年来有关上层海洋与热带气旋(Tropical Cyclone,TC)的响应与反馈的研究进行了回顾,通过观测手段的完善和改进模式的应用,人们的认识不断提高:TC直接激发的近惯性流最大可达1 m/s,其导致的强烈的剪切造成混合层对下层冷水的夹卷是引起混合层降温的主要原因,并往往伴随着混合层深度的增加,这一影响在TC右侧更为最著,并可延续几天到几十天不等。TC导致的混合层降温会使得海洋输出的热通量减少,反过来削弱TC的强度,形成一个负反馈,而海洋特殊的热力和环流结构(如暖涡、洋流等)则对TC有正反馈。所以了解TC经过前的海洋初始场对研究TC与海洋之间的相互作用、对预测,TC的强度、路径变化等尤其重要;通过准确的初始场结合越来越完善的模式可以对TC进行更真实的模拟和预测,使得对TC准确的预报和预警成为可能。  相似文献   

16.
The pattern and magnitude of the global ocean overturning circulation is believed to be strongly controlled by the distribution of diapycnal diffusivity below 1000 m depth. Although wind stress fluctuation is a candidate for the major energy sources of diapycnal mixing processes, the global distribution of wind-induced diapycnal diffusivity is still uncertain. It has been believed that internal waves generated by wind stress fluctuations at middle and high latitudes propagate equatorward until their frequency is twice the local inertial frequency and break down via parametric subharmonic instabilities, causing diapycnal mixing. In order to check the proposed scenario, we use a vertically two-dimensional primitive equation model to examine the spatial distribution of “mixing hotspots” caused by wind stress fluctuations. It is shown that most of the wind-induced energy fed into the ocean interior is dissipated within the top 1000 m depth in the wind-forced area and the energy dissipation rate at low latitudes is very small. Consequently, the energy supplied to diapycnal mixing processes below 1000 m depth falls short of the level required to sustain the global ocean overturning circulation.  相似文献   

17.
破波带内外都有质量输移流存在,其对破波带内污染物输移有怎样的影响,需要进一步深入研究。本文基于实验以及考虑质量输移流的对流扩散数学模型研究了平直斜坡上破波带内质量输移流对污染物输移影响。数学模型包括波浪模型、近岸流模型以及对流扩散模型。首先建立了破波带内污染物输移数学模型,其中波浪场基于波能守恒方程来计算,波导流场基于Longuet-Higgins提出的辐射应力模拟,污染物对流扩散方程中考虑了质量输移流的影响,并利用算例验证该数学模型。其次简要介绍了平直斜坡上破波带内污染物输移实验,并分析了污染物输移特性。连续投放污染物会形成污染带,本文分析了两种波况下不同时刻污染带与岸线夹角的变化,以及污染物在垂直岸线和沿岸线方向的输移速度,结果表明对两种波况来说在初始10-40s污染团向岸线方向输移速度分别约为0.05m/s、0.017m/s,之后速度分别减小为0.001m/s、0.011m/s。数值模拟结果与实验结果比较表明:考虑质量输移流的模拟结果与实验更为吻合。因而,通过实验以及数模研究表明破波带内质量输移流对破波带内污染物在垂直岸线方向的输移有重要影响,而对沿岸方向的输移则影响较小。  相似文献   

18.
The influence of horizontal mixing on the thermal structure of the equatorial Pacific Ocean is examined based on a sigma coordinate model.In general,the distributions of the temperature and currents si...  相似文献   

19.
The effects of biological heating on the upper-ocean temperature of the global ocean are investigated using two ocean-only experiments forced by prescribed atmospheric fields during 1990–2007, on with fixed constant chlorophyll concentration, and the other with seasonally varying chlorophyll concentration. Although the existence of high chlorophyll concentrations can trap solar radiation in the upper layer and warm the surface, cooling sea surface temperature (SST) can be seen in some regions and seasons. Seventeen regions are selected and classified according to their dynamic processes, and the cooling mechanisms are investigated through heat budget analysis. The chlorophyll-induced SST variation is dependent on the variation in chlorophyll concentration and net surface heat flux and on such dynamic ocean processes as mixing, upwelling and advection. The mixed layer depth is also an important factor determining the effect. The chlorophyll-induced SST warming appears in most regions during the local spring to autumn when the mixed layer is shallow, e.g., low latitudes without upwelling and the mid-latitudes. Chlorophyll-induced SST cooling appears in regions experiencing strong upwelling, e.g., the western Arabian Sea, west coast of North Africa, South Africa and South America, the eastern tropical Pacific Ocean and the Atlantic Ocean, and strong mixing (with deep mixed layer depth), e.g., the mid-latitudes in winter.  相似文献   

20.
同化海温观测数据研究波浪破碎对海洋上层结构的影响   总被引:2,自引:0,他引:2  
首先利用考虑波浪破碎效应的Mellor-Yamada 2.5阶湍流闭合方案,探讨了海表温度(SST)对波能因子α和Charnock数β的敏感性问题。然后采用变分数据同化途径,基于Papa海洋天气站(OWS Papa Station)的上层温度观测数据,对该参数化方案中的波能因子α和Charnock数β两个参数进行了最优估计。最优估计的结果表明,当α约为167、β约为4.1×105时,价值函数达到最小值。利用上述参数的最优估计进行海温的数值模拟,可以较好地反映出海表温度的日变化和月变化过程,模拟的上混合层的温度和深度也与观测较为一致。最后利用以上参数的最优估计结果对湍动能方程进行诊断计算,研究了波浪破碎对海洋上层湍能量收支的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号