首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The purpose of the study is to analyze the state of the Barents Sea euphausiids populations in the warm period (2000–2005) based on the study of their structure dynamics and distribution under the influence of abiotic and biotic factors. For estimation of their aggregations in the bottom layer, the traditional method was used with the help of the modified egg net (0.2 m2 opening area, 564 μm mesh size). The net is used for collecting euphausiids in the autumn–winter period when their activity is reduced, which results in high-catch efficiency. The findings confirmed the major formation patterns of the euphausiids species composition associated with climate change in the Arctic basin. As before, in the warm years, one can see a clear-cut differentiation of space distribution of the dominant euphausiids Thysanoessa genus with localization of the more thermophilic Thysanoessa inermis in the north-west Barents Sea and Thysanoessa raschii in the east. The major euphausiids aggregations are formed of these species. In 2004, the first data of euphausiids distribution in the northern Barents Sea (77–79°N) were obtained, and demonstrated extremely high concentrations of T. inermis in this area, with the biomass as high as 1.7–2.4 g m−2 in terms of dry weight. These data have improved our knowledge of the distribution and euphausiids abundance during periods of elevated sea-water temperatures in the Barents Sea. The oceanic Atlantic species were found to increase in abundance due to elevated advection to the Barents Sea during the study period. Thus, after nearly a 30-year-long absence of the moderate subtropical Nematoscelis megalops in the Barents Sea, they were found again in 2003–2005. However in comparison with 1960, the north-east border of its distribution considerably shifted to 73°50′N 50°22′E. The portion of Meganyctiphanes norvegica also varied considerably—from 10% to 20% of the total euphausiids population in the warm 1950s–1960s almost to complete disappearing in 1970–1990s. The peak of this species’ occurrence (18–26%) took place in the beginning of warm period (1999–2000) after a succession of cold years. The subsequent reduction of the relative abundance of M. norvegica to 7% might have been mostly caused by fish predation during a period of low population densities of capelin. This high predation pressure may therefore have been mediated both by other pelagic fishes (i.e. herring, blue whiting, polar cod) but also by demersal fishes such as cod and haddock. Similar sharp fluctuations in the capelin stock (the major consumer of euphausiids) created marked perturbations in the food web in the Barents Sea in the middle 1980s and the early 1990s.  相似文献   

2.
The principal features of the marine ecosystems in the Barents and Norwegian Seas and some of their responses to climate variations are described. The physical oceanography is dominated by the influx of warm, high-salinity Atlantic Waters from the south and cold, low-salinity waters from the Arctic. Seasonal ice forms in the Barents Sea with maximum coverage typically in March–April. The total mean annual primary production rates are similar in the Barents and Norwegian Seas (80–90 g C m−2), although in the Barents, the production is higher in the Atlantic than in the ice covered Arctic Waters. The zooplankton is dominated by Calanus species, C. finmarchicus in the Atlantic Waters of the Norwegian and Barents Seas, and C. glacialis in the Arctic Waters of the Barents Sea. The fish species in the Norwegian Sea are mostly pelagics such as herring (Clupea harengus) and blue whiting (Micromesistius poutassou), while in the Barents Sea there are both pelagics (capelin (Mallotus villosus Müller), herring, and polar cod (Boreogadus saida Lepechin)) and demersals (cod (Gadus morhua L.) and haddock (Melanogrammus aeglefinus)). The latter two species spawn in the Norwegian Sea along the slope edge (haddock) or along the coast (cod) and drift into the Barents Sea. Marine mammals and seabirds, although comprising only a relatively small percentage of the biomass and production in the region, play an important role as consumers of zooplankton and small fish. While top-down control by predators certainly is significant within the two regions, there is also ample evidence of bottom-up control. Climate variability influences the distribution of several fish species, such as cod, herring and blue whiting, with northward shifts during extended warm periods and southward movements during cool periods. Climate-driven increases in primary and secondary production also lead to increased fish production through higher abundance and improved growth rates.  相似文献   

3.
The aim of the research was to investigate the diet of herring at different stages of its life cycle. For that purpose feeding of 0-group and immature herring in the Barents Sea, as well as of mature fish from the Norwegian Sea, was studied. 0-Group herring was sampled in the Barents Sea in August–September 2002–2005 during the international 0-group and trawl-acoustic survey of pelagic fish, as well as during the trawl-acoustic survey of demersal fish in November–December 2003–2004. Stomach samples of immature herring (1–3 years) were collected in late May and early of June 2001 and 2005 in the south-western part of the Barents Sea during the trawl-acoustic survey for young herring. Stomach samples of mature herring were collected in the Norwegian Sea in 1996, 1998, 1999, 2001, and 2002 in the course of the international trawl-acoustic survey of pelagic fish. Feeding intensity of herring of all age groups varied considerably between years and this was probably associated with availability and accessibility of their prey. The 0-group herring was found to have the most diverse diet, including 31 different taxa. In August–September, copepods, euphausiids, Cladocera, and larvae Bivalvia were most frequent in the diet of 0-group herring, but euphausiids and Calanus finmarchicus were the main prey taken. In November–December, euphausiids and tunicates were major prey groups. It was found that C. finmarchicus in the diet of 0-group herring was replaced by larval and adult euphausiids with increasing fish length. C. finmarchicus was the principal prey of immature herring and dominated in the diet of both small and large individuals and mainly older copepodites of C. finmarchicus were taken. Larval and adult euphausiids were found in stomachs of immature herring as well, but their share was not large. The importance of different prey for mature herring in the Norwegian Sea varied depending on the feeding area and length of the herring. On the whole C. finmarchicus and 0-group fish were the most important prey for mature herring diet, but fish prey were only important in a small sampling area. Hyperiids, euphausiids, tunicates, and pteropods were less important prey, and in 2002 herring actively consumed herring fry and redfish larvae.  相似文献   

4.
A relationship between body size and time of spawning has often been described for both pelagic and non-pelagic fish species that migrate for the purpose of spawning. The present study investigates this relationship for capelin (Mallotus villosus), a pelagic smelt-like species that spawns on the beaches of Newfoundland. Simple linear regressions were carried out separately for three groups of capelin: ovid females, spent females and males in three successive years (1982–1984). Bigger fish arrived near the spawning grounds first, for all three groups in all three years and was most obvious for female capelin. Analyses of stomach contents of Atlantic cod (Gadus morhua), an important predator of capelin in the Newfoundland area, showed a similar decrease in mean size of capelin throughout the capelin spawning season in June, July and August. Furthermore, analyses strongly suggest that early in the spawning seasons, when capelin abundance was high, cod selected for bigger capelin, whereas towards the end of the spawning seasons, when capelin abundance was low, cod did not show any size preference.  相似文献   

5.
Concern about future anthropogenic warming has lead to demands for information on what might happen to fish and fisheries under various climate-change scenarios. One suggestion has been to use past events as a proxy for what will happen in the future. In this paper a comparison between the responses of Atlantic cod (Gadus morhua) to two major warm periods in the North Atlantic during the 20th century is carried out to determine how reliable the past might be as a predictor of the future. The first warm period began during the 1920s, remained relatively warm through the 1960s, and was limited primarily to the northern regions (>60°N). The second warm period, which again covered the northern regions but also extended farther south (30°N), began in the 1990s and has continued into the present century. During the earlier warm period, the most northern of the cod stocks (West Greenland, Icelandic, and Northeast Arctic cod in the Barents Sea) increased in abundance, individual growth was high, recruitment was strong, and their distribution spread northward. Available plankton data suggest that these cod responses were driven by bottom-up processes. Fishing pressure increased during this period of high cod abundance and the northern cod stocks began to decline, as early as the 1950s in the Barents Sea but during the 1960s elsewhere. Individual growth declined as temperatures cooled and the cod distributions retracted southward. During the warming in the 1990s, the spawning stock biomass of cod in the Barents Sea again increased, recruitment rose, and the stock spread northward, but the individual growth did not improve significantly. Cod off West Greenland also have shown signs of improving recruitment and increasing biomass, albeit they are still very low in comparison to the earlier warming period. The abundance of Icelandic cod, on the other hand, has remained low through the recent warm period and spawning stock biomass and total biomass are at levels near the lowest on record. The different responses of cod to the two warm events, in particular the reduced cod production during the recent warm period, are attributed to the effects of intense fishing pressure and possibly related ecosystem changes. The implications of the results of the comparisons on the development of cod scenarios under future climate change are addressed.  相似文献   

6.
The regime shift of the 1920s and 1930s in the North Atlantic   总被引:6,自引:3,他引:6  
During the 1920s and 1930s, there was a dramatic warming of the northern North Atlantic Ocean. Warmer-than-normal sea temperatures, reduced sea ice conditions and enhanced Atlantic inflow in northern regions continued through to the 1950s and 1960s, with the timing of the decline to colder temperatures varying with location. Ecosystem changes associated with the warm period included a general northward movement of fish. Boreal species of fish such as cod, haddock and herring expanded farther north while colder-water species such as capelin and polar cod retreated northward. The maximum recorded movement involved cod, which spread approximately 1200 km northward along West Greenland. Migration patterns of “warmer water” species also changed with earlier arrivals and later departures. New spawning sites were observed farther north for several species or stocks while for others the relative contribution from northern spawning sites increased. Some southern species of fish that were unknown in northern areas prior to the warming event became occasional, and in some cases, frequent visitors. Higher recruitment and growth led to increased biomass of important commercial species such as cod and herring in many regions of the northern North Atlantic. Benthos associated with Atlantic waters spread northward off Western Svalbard and eastward into the eastern Barents Sea. Based on increased phytoplankton and zooplankton production in several areas, it is argued that bottom-up processes were the primary cause of these changes. The warming in the 1920s and 1930s is considered to constitute the most significant regime shift experienced in the North Atlantic in the 20th century.  相似文献   

7.
Food webs and carbon flux in the Barents Sea   总被引:6,自引:3,他引:6  
Within the framework of the physical forcing, we describe and quantify the key ecosystem components and basic food web structure of the Barents Sea. Emphasis is given to the energy flow through the ecosystem from an end-to-end perspective, i.e. from bacteria, through phytoplankton and zooplankton to fish, mammals and birds. Primary production in the Barents is on average 93 g C m−2 y−1, but interannually highly variable (±19%), responding to climate variability and change (e.g. variations in Atlantic Water inflow, the position of the ice edge and low-pressure pathways). The traditional focus upon large phytoplankton cells in polar regions seems less adequate in the Barents, as the cell carbon in the pelagic is most often dominated by small cells that are entangled in an efficient microbial loop that appears to be well coupled to the grazing food web. Primary production in the ice-covered waters of the Barents is clearly dominated by planktonic algae and the supply of ice biota by local production or advection is small. The pelagic–benthic coupling is strong, in particular in the marginal ice zone. In total 80% of the harvestable production is channelled through the deep-water communities and benthos. 19% of the harvestable production is grazed by the dominating copepods Calanus finmarchicus and C. glacialis in Atlantic or Arctic Water, respectively. These two species, in addition to capelin (Mallotus villosus) and herring (Clupea harengus), are the keystone organisms in the Barents that create the basis for the rich assemblage of higher trophic level organisms, facilitating one of the worlds largest fisheries (capelin, cod, shrimps, seals and whales). Less than 1% of the harvestable production is channelled through the most dominating higher trophic levels such as cod, harp seals, minke whales and sea birds. Atlantic cod, seals, whales, birds and man compete for harvestable energy with similar shares. Climate variability and change, differences in recruitment, variable resource availability, harvesting restrictions and management schemes will influence the resource exploitation between these competitors, that basically depend upon the efficient energy transfer from primary production to highly successful, lipid-rich zooplankton and pelagic fishes.  相似文献   

8.
The Atlantic inflow in the Fram Strait(78°50′N) has synoptic scale variability based on an array of moorings over the period of 1998–2010. The synoptic scale variability of Atlantic inflow, whose significant cycle is 3–16 d, occurs mainly in winter and spring(from January to April) and is related with polar lows in the Barents Sea. On the synoptic scale, the enhancement(weakening) of Atlantic inflow in the Fram Strait is accompanied by less(more)polar lows in the Barents Sea. Wind stress curl induced by polar lows in the Barents Sea causes Ekman-transport,leads to decrease of sea surface height in the Barents Sea, due to geostrophic adjustment, further induces a cyclonic circulation anomaly around the Barents Sea, and causes the weakening of the Atlantic inflow in the Fram Strait. Our results highlight the importance of polar lows in forcing the Atlantic inflow in the Fram Strait and can help us to further understand the effect of Atlantic warm water on the change of the Arctic Ocean.  相似文献   

9.
The Barents Sea ecosystem, one of the most productive and commercially important ecosystems in the world, has experienced major fluctuations in species abundance the past five decades. Likely causes are natural variability, climate change, overfishing and predator–prey interactions. In this study, we use an age-length structured multi-species model (Gadget, Globally applicable Area-Disaggregated General Ecosystem Toolbox) to analyse the historic population dynamics of major fish and marine mammal species in the Barents Sea. The model was used to examine possible effects of a number of plausible biological and fisheries scenarios. The results suggest that changes in cod mortality from fishing or cod cannibalism levels have the largest effect on the ecosystem, while changes to the capelin fishery have had only minor effects. Alternate whale migration scenarios had only a moderate impact on the modelled ecosystem. Indirect effects are seen to be important, with cod fishing pressure, cod cannibalism and whale predation on cod having an indirect impact on capelin, emphasising the importance of multi-species modelling in understanding and managing ecosystems. Models such as the one presented here provide one step towards an ecosystem-based approach to fisheries management.  相似文献   

10.
The Barents Sea ecosystem has been associated with large biomass fluctuations. If there is a hidden deterministic process behind the Barents Sea ecosystem, we may forecast the biomass in order to control it. This presentation concludes, for the first time, investigations of a long data series from North Atlantic water and the Barents Sea ecosystem. The analysis is based on a wavelet spectrum analysis from the data series of annual mean Atlantic sea level, North Atlantic water temperature, the Kola section water temperature, and species from the Barents Sea ecosystem.The investigation has identified dominant fluctuations correlated with the 9.3-yr phase tide, the 18.6-yr amplitude tide, and a 74-yr superharmonic cycle in the North Atlantic water, Barents Sea water, and Arctic data series. The correlation between the tidal cycles and dominant Barents Sea ecosystem cycles is estimated to be R=0.6 or better. The long-term mean fluctuations correlate with the 74-yr superharmonic cycle. The wavelets analysis shows that the long-term 74-yr cycle may introduce a phase reversal in the identified 18-yr periods of temperature and salinity. The present analysis suggests that forced vertical and horizontal nodal tides influence the ocean's thermohaline circulation, and that they behave as a coupled non-linear oscillation system.The Barents Sea ecosystem analysis shows that the biomass life cycle and the long-term fluctuations correlate better than R=0.5 to the lunar nodal tide spectrum. Barents Sea capelin has a life cycle related to a third harmonic of the 9.3-yr tide. The life cycles of shrimp, cod, herring, and haddock are related to a third harmonic of the 18.6-yr tide. Biomass growth was synchronized to the lunar nodal tide. The biomass growth of zooplankton and shrimp correlates with the current aspect of lunar nodal tidal inflow to the Barents Sea. The long-term biomass fluctuation of cod and herring is correlated with a cycle period of about 3×18.6=55.8 yr. This analysis suggests that we may understand the Barents Sea ecosystem dynamic as a free-coupled oscillating system to the forced lunar nodal tides. This free-coupled oscillating system has a resonance related to the oscillating long tides and the third harmonic and superharmonic cycles.  相似文献   

11.
This paper describes the main features of the Icelandic marine ecosystem and its response to climate variations during the 20th century. The physical oceanographic character and faunal composition in the southern and western parts of the Icelandic marine ecosystem are different from those in the northern and the eastern areas. The former areas are more or less continuously bathed by warm and saline Atlantic water while the latter are more variable and influenced by Atlantic, Arctic and even Polar water masses to different degrees. Mean annual primary production is higher in the Atlantic water than in the more variable waters north and east of Iceland, and higher closer to land than farther offshore. Similarly, zooplankton production is generally higher in the Atlantic water than in the waters north and east of Iceland. The main spawning grounds of most of the exploited fish stocks are in the Atlantic water south of the country while nursery grounds are off the north coast. In the recent years the total catch of fish and invertebrates has been in the range of 1.6–2.4 million ton. Capelin (Mallotus villosus) is the most important pelagic stock and cod (Gadus morhua) is by far the most important demersal fish stock. Whales are an important component of the Icelandic marine ecosystem, and Icelandic waters are an important habitat for some of the largest seabird populations in the Northeast Atlantic.In the waters to the north and east of Iceland, available information suggests the existence of a simple bottom-up controlled food chain from phytoplankton through Calanus, capelin and to cod. Less is known about the structure of the more complex southern part of the ecosystem. The Icelandic marine ecosystem is highly sensitive to climate variations as demonstrated by abundance and distribution changes of many species during the warm period in the 1930s, the cold period in the late 1960s and warming observed during the recent years. Some of these are highlighted in the paper.  相似文献   

12.
Cod populations in Newfoundland and Labrador waters have shown differing growth, condition and recruitment since near-universal declines in these properties during the cold period of the late 1980s and early 1990s. To assess the influence of variable prey communities on these parameters, we compared cod energetics and diet in populations off Labrador and the northeast and south coasts of Newfoundland. Many properties were highest in the southern group(s) and lowest in the northern group(s), including growth, somatic condition, liver index and age-at-maturity. Most differences could be explained by variations in diet, as measured by stomach contents and stable carbon isotopes (δ13C). The diet of Labrador cod consisted almost entirely of northern shrimp (Pandalus borealis), and these cod displayed the most benthic δ13C signatures. Northeast cod had a more varied diet that included capelin and other fish, but still had mostly benthic δ13C signatures, suggesting the importance of benthic prey like shrimp in this population. South coast cod exhibited the most varied diet, including capelin (Mallotus villosus), zooplankton, crabs and other fish, and had the most pelagic δ13C signatures. Among and within populations, the benefits of a more pelagic diet in medium-sized (30–69 cm) cod included higher somatic condition, higher liver index (lipid stores) and greater spawning potential (decreased incidence of atresia). It is hypothesized that major rebuilding of Newfoundland and Labrador cod stocks will require a return to a system that supports mostly pelagic feeding (i.e. capelin) in cod.  相似文献   

13.
Results from this study suggest that small-scale variability in the Alaska Coastal Current (ACC) and competition between juvenile pollock and capelin are potential mechanisms affecting the distribution and abundance of fishes in the Gulf of Alaska (GOA). Fish distributions in Barnabus Trough, off the east coast of Kodiak Island, were assessed using acoustic data collected with a calibrated echosounder during August–September 2002 and 2004. Trawl hauls were conducted to determine the species composition of the fish making up the acoustic backscatter. Oceanographic data were collected from moorings, conductivity–temperature–depth (CTD) probes, trawl-mounted microbathythermographs (MBT) and expendable bathythermographs (XBT). National Centers for Environmental Prediction (NCEP) reanalysis data were used to assess area winds, and information on regional transport was derived from current meters deployed on moorings north and south of Kodiak Island. The distribution of water-mass properties and fish during 2002 showed variability at the temporal scale of weeks. Juvenile pollock (age-1 and age-2) were initially most abundant in warm, low-salinity water on the inner shelf, whereas capelin were distributed primarily on the outer shelf in cool, high-salinity waters. During a 2-week period juvenile pollock distribution expanded with the offshore expansion of warm, low-salinity water, and capelin abundance in outer-shelf waters decreased. We hypothesize that wind-driven pulsing of the ACC resulted in increased transport of warm, low-salinity water through the study area. In 2004, warm, low-salinity water characterized the inner shelf and cool, high-salinity water was found on the outer shelf. However, the distribution of water-mass properties did not show the weekly scale variability observed in 2002. Area winds were consistently toward the southwest during 2004, such that we would not expect to see the wind-driven pulsing of ACC water that occurred in 2002. Age-1 and age-2 pollock were not observed in Barnabus Trough in 2004. Instead, the midwater acoustic backscatter was composed of capelin mixed with age-0 pollock, and these capelin were not restricted to the outer-shelf waters, but were found primarily in warm, low-salinity inner-shelf waters that had been previously occupied exclusively by age-1 and age-2 pollock. We suggest that this is consistent with inner-shelf waters being preferred foraging habitat for juvenile pollock and capelin. Further study of the mechanisms linking climate change with variability in the ACC is needed, as are studies of the potential for competition between juvenile pollock and capelin.  相似文献   

14.
The Norwegian Ecological Model (NORWECOM) biophysical model system implemented with the ROMS ocean circulation model has been run to simulate conditions over the last 25 years for the North Atlantic. Modeled time series of water volume fluxes, primary production, and drift of cod larvae through their modeled ambient temperature fields have been analyzed in conjunction with VPA estimated time series of 3-year-old cod recruits in the Barents Sea. Individual time series account for less than 50% of the recruitment variability; however, a combination of simulated flow of Atlantic water into the Barents Sea and local primary production accounts for 70% of the variability with a 3-year lead. The associated regression predicts increased recruitment between 2007 and 2008 from about 450–700 million individuals with a standard error of nearly 150 million.  相似文献   

15.
The species composition and trophic structure of the Barents Sea fish assemblage is analysed based on data from research survey trawls and diet analyses of various species. Atlantic cod was the dominant fish species encountered, accounting for more than 55% by abundance or biomass. Only five fish species (long rough dab, thorny skate, Greenland halibut, deepwater redfish and saithe) were sufficiently abundant to be considered as possible food competitors with cod in the Barents Sea. However, possible trophic competition is not high, due to low spatial and temporal overlap between cod and these other species. Analyses of fish assemblages and trophic structures of the Barents Sea and other areas (North Sea, Western Greenland, Newfoundland-Labrador shelf) suggest that Barents Sea cod is the only cod stock for which the ability to recover may not be restricted by trophic relations among fishes, due to a lack of other abundant predatory species and low potential for competition caused by spatial-temporal changes.  相似文献   

16.
DNA adducts in cod embryos and larvae were analysed by 32P-postlabeling to test the hypothesis that anthropogenic substances, which could form reactive intermediates, are involved in the reproductive failure of cod (Gadus morhua) from the Baltic Sea. A comparison with cod from the Barents Sea was performed. The mean value of DNA adducts in cod embryos/larvae from the Baltic Sea was 2.3 nmol of adducts/mol nucleotides, compared to 0.12 nmol of adducts/mol nucleotides in the embryos/larvae from the Barents Sea.  相似文献   

17.
北极各海域海冰覆盖范围的变化特征   总被引:2,自引:1,他引:1  
Sea ice in the Arctic has been reducing rapidly in the past half century due to global warming.This study analyzes the variations of sea ice extent in the entire Arctic Ocean and its sub regions.The results indicate that sea ice extent reduction during 1979–2013 is most significant in summer,following by that in autumn,winter and spring.In years with rich sea ice,sea ice extent anomaly with seasonal cycle removed changes with a period of 4–6 years.The year of 2003–2006 is the ice-rich period with diverse regional difference in this century.In years with poor sea ice,sea ice margin retreats further north in the Arctic.Sea ice in the Fram Strait changes in an opposite way to that in the entire Arctic.Sea ice coverage index in melting-freezing period is an critical indicator for sea ice changes,which shows an coincident change in the Arctic and sub regions.Since 2002,Region C2 in north of the Pacific sector contributes most to sea ice changes in the central Aarctic,followed by C1 and C3.Sea ice changes in different regions show three relationships.The correlation coefficient between sea ice coverage index of the Chukchi Sea and that of the East Siberian Sea is high,suggesting good consistency of ice variation.In the Atlantic sector,sea ice changes are coincided with each other between the Kara Sea and the Barents Sea as a result of warm inflow into the Kara Sea from the Barents Sea.Sea ice changes in the central Arctic are affected by surrounding seas.  相似文献   

18.
Dense water formation and circulation in the Barents Sea   总被引:1,自引:0,他引:1  
Dense water masses from Arctic shelf seas are an important part of the Arctic thermohaline system. We present previously unpublished observations from shallow banks in the Barents Sea, which reveal large interannual variability in dense water temperature and salinity. To examine the formation and circulation of dense water, and the processes governing interannual variability, a regional coupled ice-ocean model is applied to the Barents Sea for the period 1948-2007. Volume and characteristics of dense water are investigated with respect to the initial autumn surface salinity, atmospheric cooling, and sea-ice growth (salt flux). In the southern Barents Sea (Spitsbergen Bank and Central Bank) dense water formation is associated with advection of Atlantic Water into the Barents Sea and corresponding variations in initial salinities and heat loss at the air-sea interface. The characteristics of the dense water on the Spitsbergen Bank and Central Bank are thus determined by the regional climate of the Barents Sea. Preconditioning is also important to dense water variability on the northern banks, and can be related to local ice melt (Great Bank) and properties of the Novaya Zemlya Coastal Current (Novaya Zemlya Bank). The dense water mainly exits the Barents Sea between Frans Josef Land and Novaya Zemlya, where it constitutes 63% (1.2 Sv) of the net outflow and has an average density of 1028.07 kg m−3. An amount of 0.4 Sv enters the Arctic Ocean between Svalbard and Frans Josef Land. Covering 9% of the ocean area, the banks contribute with approximately 1/3 of the exported dense water. Formation on the banks is more important when the Barents Sea is in a cold state (less Atlantic Water inflow, more sea-ice). During warm periods with high throughflow more dense water is produced broadly over the shelf by general cooling of the northward flowing Atlantic Water. However, our results indicate that during extremely warm periods (1950s and late 2000s) the total export of dense water to the Arctic Ocean becomes strongly reduced.  相似文献   

19.
Atlantic Water flow through the Barents and Kara Seas   总被引:2,自引:0,他引:2  
The pathway and transformation of water from the Norwegian Sea across the Barents Sea and through the St. Anna Trough are documented from hydrographic and current measurements of the 1990s. The transport through an array of moorings in the north-eastern Barents Sea was between 0.6 Sv in summer and 2.6 Sv in winter towards the Kara Sea and between zero and 0.3 Sv towards the Barents Sea with a record mean net flow of 1.5 Sv. The westward flow originates in the Fram Strait branch of Atlantic Water at the Eurasian continental slope, while the eastward flow constitutes the Barents Sea branch, continuing from the western Barents Sea opening.About 75% of the eastward flow was colder than 0°C. The flow was strongly sheared, with the highest velocities close to the bottom. A deep layer with almost constant temperature of about −0.5°C throughout the year formed about 50% of the flow to the Kara Sea. This water was a mixture between warm saline Atlantic Water and cold, brine-enriched water generated through freezing and convection in polynyas west of Novaya Zemlya, and possibly also at the Central Bank. Its salinity is lower than that of the Atlantic Water at its entrance to the Barents Sea, because the ice formation occurs in a low salinity surface layer. The released brine increases the salinity and density of the surface layer sufficiently for it to convect, but not necessarily above the salinity of the Atlantic Water. The freshwater west of Novaya Zemlya primarily stems from continental runoff and at the Central Bank probably from ice melt. The amount of fresh water compares to about 22% of the terrestrial freshwater supply to the western Barents Sea. The deep layer continues to the Kara Sea without further change and enters the Nansen Basin at or below the core depth of the warm, saline Fram Strait branch. Because it is colder than 0°C it will not be addressed as Atlantic Water in the Arctic Ocean.In earlier decades, the Atlantic Water advected from Fram Strait was colder by almost 2 K as compared to the 1990s, while the dense Barents Sea water was colder by up to 1 K only in a thin layer at the bottom and the salinity varied significantly. However, also with the resulting higher densities, deep Eurasian Basin water properties were met only in the 1970s. The very low salinities of the Great Salinity Anomaly in 1980 were not discovered in the outflow data. We conclude that the thermal variability of inflowing Atlantic water is damped in the Barents Sea, while the salinity variation is strongly modified through the freshwater conditions and ice growth in the convective area off Novaya Zemlya.  相似文献   

20.
A comparative analysis was conducted on climate variability in four sub-arctic seas: the Sea of Okhotsk, the Bering Sea shelf, the Labrador Sea, and the Barents Sea. Based on data from the NCEP/NCAR reanalysis, the focus was on air–sea interactions, which influence ice cover, ocean currents, mixing, and stratification on sub-seasonal to decadal time scales. The seasonal cycles of the area-weighted averages of sea-level pressure (SLP), surface air temperature (SAT) and heat fluxes show remarkable similarity among the four sub-arctic seas. With respect to variation in climate, all four seas experience changes of comparable magnitude on interannual to interdecadal time scales, but with different timing. Since 2000 warm SAT anomalies were found during most of the year in three of the four sub-arctic seas, with the exception of the Sea of Okhotsk. A seesaw (out of phase) pattern in winter SAT anomalies between the Labrador and the Barents Sea in the Atlantic sector is observed during the past 50 years before 2000; a similar type of co-variability between the Sea of Okhotsk and the Bering Sea shelf in the Pacific is only evident since 1970s. Recent positive anomalies of net heat flux are more prominent in winter and spring in the Pacific sectors, and in summer in the Atlantic sectors. There is a reduced magnitude in wind mixing in the Sea of Okhotsk since 1980, in the Barents Sea since 2000, and in early spring/late winter in the Bering Sea shelf since 1995. Reduced sea-ice areas are seen over three out of four (except the Sea of Okhotsk) sub-arctic seas in recent decades, particularly after 2000 based on combined in situ and satellite observations (HadISST). This analysis provides context for the pan-regional synthesis of the linkages between climate and marine ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号