首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cobre–Babilonia vein system formed during a single major hydrothermal stage and is part of the Taxco district in Guerrero, southern Mexico. Homogenization and ice melting temperatures range from 160 to 290 °C and from − 11.6 to − 0.5 °C, respectively. We determined an approximate thermal gradient of 17 to 20 °C per 100 m using fluid inclusions. A thermal peak marked by the 290 °C isotherm is interpreted as a major feeder channel to the veins. The highest content of Zn + Pb in ore coincides with the 220 and 240 °C isotherms. Salinities of mineralizing fluids range from 0.8 to 15.6 wt.% NaCl equiv, and are distributed in two populations that can be related with barren or ore-bearing vein sections, with 0.8 to 6 wt.% NaCl equiv and 7 to 15.6 wt.% NaCl equiv, respectively. δ13C and δ18O water values from calcite from the Cobre–Babilonia vein system and the Esperanza Vieja and Guadalupe mantos range − 5.4‰ to − 10.4‰ and 9.9‰ to 13.4‰, respectively. δ34S values range from 0‰ to 3.2‰ and − 0.7‰ to − 4.3‰ in sphalerite, − 4‰ to 0.9‰ in pyrite, and − 1.4‰ to − 5.5‰ in galena. Both fluid inclusion and stable isotope data are compatible with magmatic and meteoric sources for mineralizing fluids. Also, sulfur isotope compositions suggest both magmatic and sedimentary sources for sulfur.  相似文献   

2.
Black and white dolomite crystals (mm to cm width) of different isotopic composition are associated with Triassic diapirism in central Tunisia, as well as with evaporite minerals and clays. The white dolomites occur mostly in the Jabal Hadifa diapir near the contact with Cretaceous limestones, whereas the smaller black dolomites occur in the Jabal Hamra diapir. The former dolomite has a narrow range of δ18O and δ13C values (− 3.83‰ to − 6.60‰ VPDB for δ18O; − 2.11‰ to − 2.83‰ VPDB for δ13C), whereas the latter dolomite has a wider range and more depleted values (− 4.92‰ to − 9.97‰ for δ18O; − 0.55‰ to − 6.08‰ for δ13C). However, the 87Sr / 86Sr ratios of most of the samples are near Triassic seawater values. Dolomite formation is due to at least two different fluids. The main fluid originated from deeper hydrothermal or basinal sources related to the Triassic saliferous rocks and ascended through faults during the diapiric intrusion. The second, less important fluid source is related to meteoric water originating from Cretaceous rocks.  相似文献   

3.
The geochemical and isotopic signature of Quaternary alluvial sediments filling a post-orogenic basin along the Tyrrhenian coasts of Italy (Cornia Plain, Tuscany) was investigated to unravel possible interactions with geothermal fluids from the Larderello geothermal field. Two cores located in the upper (UCP) and lower (LCP) sector of the plain were sampled to depths of up to 80 m. A third core in a neighbouring area not affected by geothermal activity was also sampled (Arno plain at Pisa), and its sediment composition was used as reference. The Cornia sediments (fraction < 65 μm) show high B, Cs and Sb concentrations related to a peculiar chemical enrichment of the clay fraction. They also show remarkable enrichments in As (up to 1000 μg g− 1) reflecting a contribution from local ore deposits.87Sr/86Sr ratios, ranging from 0.71022 to 0.71698, reveal the nature of the weathered mother rocks of the alluvial sediments, whereas the boron isotopic composition, varying from − 20‰ to − 10‰, suggests an interaction between the clay fraction and boron-rich fluids at temperatures greater than 50 °C. This implies that hydrothermal fluids widely circulated within the Cornia basin in the past, ultimately leading to the geochemical anomalies currently recorded in local sediments.Although natural (geogenic) in origin, these anomalies cause severe problems to the regional water management (groundwater exploitation) through leaching of trace elements into circulating groundwater, a phenomenon which has to be carefully studied and monitored.  相似文献   

4.
Previous studies on the coal-bed methane potential of the Zonguldak basin have indicated that the gases are thermogenic and sourced by the coal-bearing Carboniferous units. In this earlier work, the origin of coal-bed gas was only defined according to the molecular composition of gases and to organic geochemical properties of the respective source rocks, since data on isotopic composition of gases were not available. Furthermore, in the western Black Sea region there also exist other source rocks, which may have contributed to the coal-bed gas accumulations. The aim of this study is to determine the origin of coal-bed gas and to try a gas-source rock correlation. For this purpose, the molecular and isotopic compositions of 13 headspace gases from coals and adjacent sediments of two wells in the Amasra region have been analyzed. Total organic carbon (TOC) measurements and Rock-Eval pyrolysis were performed in order to characterize the respective source rocks. Coals and sediments are bearing humic type organic matter, which have hydrogen indices (HI) of up to 300 mgHC/gTOC, indicating a certain content of liptinitic material. The stable carbon isotope ratios (δ13C) of the kerogen vary from −23.1 to −27.7‰. Air-free calculated gases contain hydrocarbons up to C5, carbon dioxide (<1%) and a considerable amount of nitrogen (up to 38%). The gaseous hydrocarbons are dominated by methane (>98%). The stable carbon isotope ratios of methane, ethane and propane are defined as δ13C1: −51.1 to −48.3‰, δ13C2: −37.9 to −25.3‰, δ13C3: −26.0 to −19.2 ‰, respectively. The δD1 values of methane range from −190 to −178‰. According to its isotopic composition, methane is a mixture, partly generated bacterially, partly thermogenic. Molecular and isotopic composition of the gases and organic geochemical properties of possible source rocks indicate that the thermogenic gas generation took place in coals and organic rich shales of the Westphalian-A Kozlu formation. The bacterial input can be related to a primary bacterial methane generation during Carboniferous and/or to a recent secondary bacterial methane generation. However, some peculiarities of respective isotope values of headspace gases can also be related to the desorption process, which took place by sampling.  相似文献   

5.
The presence of dolomite breccia patches along Wadi Batha Mahani suggests large-scale fluid flow causing dolomite formation. The controls on dolomitization have been studied, using petrography and geochemistry. Dolomitization was mainly controlled by brecciation and the nearby Hagab thrust. Breccias formed as subaerial scree deposits, with clay infill from dissolved platform limestones, during Early Cretaceous emergence. Cathodoluminescence of the dolostones indicates dolomitization took place in two phases. First, fine-crystalline planar-s dolomite replaced the breccias. Later, these dolomites were recrystallized by larger non-planar dolomites. The stable isotope trend towards depleted values (δ18O: − 2.7‰ to − 10.2‰ VPDB and δ13C: − 0.6‰ to − 8.9‰ VPDB), caused by mixing dolomite types during sampling, indicates type 2 dolomites were formed by hot fluids. Microthermometry of quartz cements and karst veins, post-dating dolomites, also yielded high temperatures. Hot formation waters which ascended along the Hagab thrust are invoked to explain type 2 dolomitization, silicification and hydrothermal karstification.  相似文献   

6.
The wide boron isotopic variations occurring in natural waters mainly are derived from the 20‰ fractionation between dissolved boric acid and borate anions, associated with the preferential removal from the system of 11B depleted borate ions by adsorption and/or minerals formation. Typical adsorbants of boron dissolved in groundwater are clay minerals of the aquifer matrix. Boron (and strontium) isotopes were used in investigating two alluvial aquifers in Tuscany, where boron concentration is often above 1 mg L− 1 and may attain 8 mg L− 1. The isotopic results indicate that, in the first case (Cecina River basin), the boron contamination is anthropogenic and derives from past discharge into streams of boron-rich industrial wastes. In the second case (Cornia Plain), the dissolved boron is released by boron-rich clayey sediments of the aquifer matrix and has, therefore, a natural origin.  相似文献   

7.
The genesis of Lower Eocene calcite-cemented columns, “pisoid”-covered structures and horizontal interbeds, clustered in dispersed outcrops in the Pobiti Kamani area (Varna, Bulgaria) is related to fossil processes of hydrocarbon migration. Field observations, petrography and stable isotope geochemistry of the cemented structures and associated early-diagenetic veins, revealed that varying seepage rates of a single, warm hydrocarbon-bearing fluid, probably ascending along active faults, controlled the type of structure formed and its geochemical signature. Slow seepage allowed methane to oxidize within the sediment under ambient seafloor conditions (δ18O = − 1 ± 0.5‰ V-PDB), explaining columns' depleted δ13C ratios of − 43‰. Increasing seepage rates caused methane to emanate into the water column (δ13C = − 8‰) and raised precipitation temperatures (δ18O = − 8‰). Calcite-cemented conduits formed and upward migrating fluids also affected interbed cementation. Even higher-energy fluid flow and temperatures likely controlled the formation of “pisoids”, whereby sediment was whirled up and cemented.  相似文献   

8.
The Daduhe gold field comprises several shear-zone-controlled Tertiary lode gold deposits distributed at the eastern margin of the Tibetan Plateau. The deposits are hosted in a Precambrian granite–greenstone terrane within the Yangtze Craton. The gold mineralization occurs mainly as auriferous quartz veins with minor sulphide minerals. Fluid inclusions in pyrite have 3He/4He ratios of 0.16 to 0.86 Ra, whereas their 40Ar/36Ar ratios range from 298 to 3288, indicating a mixing of fluids of mantle and crust origins. The δ34S values of pyrite are of 0.7–4.2‰ (n = 12), suggesting a mantle source or leaching from the mafic country rocks. δ18O values calculated from hydrothermal quartz are between − 1.5‰ and + 6.0‰ and δD values of the fluids in the fluid inclusions in quartz are − 39‰ and − 108‰. These ranges demonstrate a mixing of magmatic/metamorphic and meteoric fluids. The noble gas isotopic data, along with the stable isotopic data suggest that the ore-forming fluids have a dominantly crustal source with a significant mantle component.  相似文献   

9.
Most sulphides from various rock types and mineralization of Archean age exhibit sulphur isotope values (δ34S) near 0‰. This is due to a general absence of conditions suitable for the oxidation-reduction reactions essential for isotopic fractionation. However, some important occurrences of Archean Au mineralization do display significant variations in δ34S). One such occurrence with unusual isotopic compositions is the Hemlo gold deposit: pyrite from the ore typically has δ34S < −6‰ to a minimum value of −17.5‰ The isotopic composition of the pyrite is correlated with the content of Au, indicating that they are genetically related.The sulphur isotope data suggest that sulphur compounds experienced redox reactions in the hydrothermal system at Hemlo and that sulphate was present prior to the Au mineralization. This sulphate may be of exogenic origin from a restricted basin, or of endogenic origin from magmatic-hydrothermal fluids. Other characteristic features of the deposit, such as enrichment in Sb, Tl and Hg, may also be explained by ore deposition under moderately oxidizing conditions.Distinctive δ34S values were also observed in pyrite from Au mineralization at Heron Bay, 30 km west of Hemlo, and from baritic strata 21 to 27 km west and on approximate strike from Hemlo. These occurrences also represent sulphate-bearing hydrothermal systems and, as such, give distant information on the unusual environment of the mineralization at Hemlo. Since the isotopes of sulphur are sensitive to oxidation conditions they may be used to identify hydrothermal activities characteristic of this type of Au mineralization and to explore for other unusual areas of sulphate accumulation in Archean terrains.  相似文献   

10.
Groundwaters and surface water in the Shihongtan sandstone-hosted U ore district, Xinjiang, NW China, were sampled and analyzed for their major-, and trace element concentrations and oxygen, hydrogen, boron and strontium isotope compositions in order to assess the possible origins of the waters and water–rock interactions that occurred in the deep aquifer system. The waters in the study district have been grouped into three hydrochemical facies: Facies 1, potable spring-water, is a pH neutral (7.0), Na–Ca–HCO3 type water with low total dissolved solids (TDS; 0.2 g/l, fresh) and has δ18O of − 8.3‰, δD of − 48.2‰,δ11B of 1.5‰, and 87Sr/86Sr of 0.70627. Facies 2 groundwaters are mildly acidic to mildly alkaline (pH of 6.5–8.0, mean 7.3), Na–Ca–Mg–Cl–SO4 type waters with moderate TDS (8.2 g/l–17.2 g/l, mean 9.3 g/l, brackish) and haveδ18O values in the − 5.8‰ to − 9.3‰ range (mean − 8.1‰), δD values in the − 20.8‰ to − 85.5‰ range (mean − 47.0‰),δ11B values in the + 9.5‰ to + 39.1‰ range (mean + 17.1‰), and 87Sr/86Sr values in the 0.70595 to 0.70975 range (mean 0.70826). Facies 3, Aiting Lake water, is a mildly alkaline (pH = 7.4), Na–Ca–Mg–Cl–SO4 type water with the highest TDS (249.1 g/l, brine) and has δ18O of − 2.8‰, δD of − 45.8‰,δ11B of 21.2‰, and 87Sr/86Sr of 0.70840. The waters from the study district show a systematic increase in major, trace element and TDS concentrations and δ11B values along the pathway of groundwater migration which can only be interpreted in terms of water–rock interaction at depth and strong surface evaporation. The hydrochemical and isotopic data presented here confirm that the groundwaters in the Shihongtan ore district are the combined result of migration, water–rock interaction and mixing of meteoric water with connate waters contained in sediments.  相似文献   

11.
Inorganic gases are commonly seen in eastern China and occasionally in southern China from the shallow water columns above hot and cold springs. The gases contain 68% to nearly 100% CO2, with δ13CCO2 and δ13C1 values in the range of −1.18‰ to −6.00‰ and −19.48‰ to −24.94‰, respectively. All of the 34 large inorganic CO2 and one inorganic methane accumulations discovered in China are distributed in eastern parts of the country, from both onshore and continental shelf basins. No commercial inorganic gas accumulation has been found in central and western China. This is a review of the occurrence and geochemical characteristics of inorganic gas accumulations in Chinese sedimentary basins. A detailed study of gas samples collected from four representative inorganic CO2 pools and one possible inorganic methane pool indicates that inorganic alkane gases typically show δ13C1 values greater than −10‰ versus PDB (mostly −30‰), with a positive stable carbon isotope sequence of δ13C1 < δ 13C2 < δ13C3 < δ 13C4. In contrast, the δ13C1 values of biogenic alkane gases are lighter than −30‰, with a negative isotope sequence (i.e. δ13C1 > δ13C2 > δ 13C3 > δ13C4). Inorganic gases also tend to show less negative δ13CCO2 values (−10‰) than biogenic gases (<−10‰).  相似文献   

12.
Petrological data provide evidence that framboidal pyrite, Fe-carbonates and kaolinite are the major diagenetic minerals developed during burial diagenesis in the Tertiary Niger Delta sandstones and associated mudrocks. The pyrite sulphur, carbonate carbon and oxygen and kaolinite oxygen and hydrogen isotope compositions have been determined. These data (pyrite, δ34S = −24.8 to 21.0‰; “siderite”, δ13C(PDB) = −14.7 to +5.0‰, δ18O(PDB) = −19.1 to −0.6‰; Fe-calcite, δ13C(PDB) = +17.5 to 17.9‰, δ18O(PDB) = −8.3 to −8.0‰; kaolinite, δ18O(SMOW) = +14.7 to 17.5‰, δD (SMOW) = −86 to −43‰) have been used to interpret the isotopic compositions of the precipitating pore fluids and/or the temperatures of mineral formation. The interpretation of these results indicate that in the deltaic depositional setting the syndepositional pore waters had a significant but variable marine influence that favoured the early formation of pyrite. Subsequently the subsurface influence of meteoric waters, showing varying degrees of modification involving organic and/or water-rock reactions, played an increasingly significant role in the development of later diagenetic cements in the sediments when abundant authigenic carbonates and kaolinites were formed.  相似文献   

13.
Elemental (C/N ratio) and C isotope composition (δ13C) of particulate organic C (POC) and organic C content (OC) of total suspended solids (TSS) were determined for two subtropical karstic tributaries of the Yangtze River, the Wujiang (the eighth largest tributary) and Yuanjiang (the third largest tributary). For the latter, two headwaters, the karstic Wuyanghe and non-karstic Qingshuijiang were studied. The Wujiang catchment is subject to intensive land use, has low forest coverage and high soil erosion rate. The δ13C of POC covered a range from −30.6‰ to −24.9‰, from −27.6‰ to −24.7‰, and from −26.2‰ to −23.3‰ at the low-water stage, while at the high-water stage varied in a span between −28.6‰ and −24.4‰, between −27.7‰ and −24.5‰, and between −27.6‰ and −24.2‰ for the Wujiang, Wuyanghe, and Qingshuijiang, respectively. The combined application of C isotopes, C/N ratio, OC, and TSS analyses indicated that catchment soil was the predominant source of POC for the Wujiang while for the Wuyanghe and Qingshuijiang, in-stream processes supplied the main part of POC in winter and summer. A significant increase in δ13C value (1.4‰) of POC was found in the Wujiang during summer, and was attributed to the enhanced soil erosion of the dry arable uplands close to the riverbanks of the main channel. Based on a conservative estimate, POC fluxes were 3.123 × 1010, 0.084 × 1010, and 0.372 × 1010 g a−1 while export rates of POC were 466, 129, and 218 mg m−2 a−1 for the Wujiang, Wuyanghe, and Qingshuijiang, respectively. The POC export rate for the karstic Wujiang, with intensive land use, was 2–3 higher than that of the karstic Wuyanghe or of the non-karstic Qingshuijiang where soil erosion was minor. Such high values imply rapid degradation of related karstic ecosystems impacted by intensive land use activities, and pose a potential threat to the health of the Three Gorges Reservoir.  相似文献   

14.
In the Lower Palaeozoic rocks of the Brabant Massif (Belgium), a recently discovered polysulphide mineralisation is related to a low-angle reverse shear zone. This shear zone has been attributed to the main early Devonian deformation event. Data from boreholes and outcrops allow a detailed investigation of the alteration pattern and palaeofluid flow along this shear zone. Macroscopic observations of the mineralogy and quantitative changes in the phyllosilicate mineralogy indicate that this shear zone is characterised by an envelope of intense sericitisation and silicification. In addition, chloritisation is associated with this alteration. The alteration zone may reach a thickness of 250 m. Ore mineralisation occurred synkinematically and is spatially related to the shear zone. The mineralisation consists of pyrite, marcasite, arsenopyrite, pyrrhotite, chalcopyrite, sphalerite, galena, stibnite and smaller amounts of tetrahedrite and other sulphosalts. It is concentrated in quartz–sulphide veins or occurs diffusely in the host rock. The mineralising fluids have a low-salinity H2O–CO2–CH4–NaCl–(KCl) composition and a minimum temperature of 250–320 °C. The δ18O values of quartz vary between +12.3‰ and +14.5‰ SMOW, and δD compositions of the fluid inclusions in the quartz crystals range from −65‰ to −35‰ V-SMOW. The δD and the calculated δ18O values of the mineralising fluids fall in the range typical for metamorphic fluids and partly overlap with that for primary magmatic fluids. The δ34S values, between +4.7‰ and +10.6‰ CDT, fall outside the interval typical for I-type magmas. Important migration of likely metamorphic fluids, causing a widespread alteration and a polysulphide mineralisation along a low-angle shear zone, has, thus, been identified for the first time in the Caledonian Anglo-Brabant fold belt.  相似文献   

15.
Located at western portion of northern margin of North China craton, the Baotou–Bayan Obo district is one of the most important Fe–REE–Nb and Au metallogenic provinces in China. Presently, about 52 gold deposits and prospects have been discovered, explored and mined, among which Shibaqinhao, Laoyanghao, Houshihua, Saiyinwusu, Wulashan and Donghuofang are the most important ones. All these gold occurrences can be subdivided into three groups (or types) according to its host rocks: (1) hosted by Archean high-grade metamorphic rocks; (2) hosted by Proterozoic sedimentary rocks; (3) hosted by or related to Hercynian alkaline intrusive rocks. The first group contains the Shibaqinhao, Laoyanghao and Houshihua gold deposits. Gold mineralization at these three deposits occurs within Archean amphibolite, gneiss and granulite as gold-bearing quartz veins and veinlet groups containing native gold, electrum, pyrite and chalcopyrite. The Saiyinwusu deposit belongs to the second group, and occurs within Proterozoic sandstone, quartzite and carbonaceous slate as quartz veins and replacement bodies along the fracture zones. Pyrite, marcasite, arsenopyrite, native gold and electrum are identified. The third group includes the Wulashan, Donghuofang and Luchang deposits. Gold mineralization at these three deposits occurs predominantly within the Hercynian alkaline syenite or melagabbro stocks and dyke swarms or along their contacts with Archean metamorphic wall rocks as K-feldspar–quartz veins, dissemination and veinlets. Pyrite, galena, chalcopyrite, native gold and calaverite are major metallic minerals.δ34S value of sulfides (pyrite, galena and pyrrhotite) separates from groups 1 and 2 varies from −4.01‰ to −0.10‰ and −3.01‰ to 2.32‰, respectively. δ34S values of Archean and Proterozoic metamorphic wall rocks for groups 1 and 2 deposits range from −20.2‰ to −17.0‰ and −15.8‰ to −16.2‰, respectively. The values are much lower than their hosted gold deposits. All these pyrite separates from Hercynian alkaline intrusions associated with the gold deposits show positive δ34S values of 1.3‰ to 4.8‰, which is higher than those Precambrian metamorphic wall rocks and their hosted gold deposits. δ34S values of the sulfides (pyrite and galena) from the Donghuofang and Wulashan deposits (group 3) increase systematically from veins (−14.8‰ to −2.4‰) to the Hercynian alkaline igneous wall rocks (2.8‰ to 4.8 ‰). All of these deposits in groups 1, 2 and 3 show relatively radiogenic lead isotopic compositions compared to mantle or lower crust curves. Most lead isotope data of sulfides from the gold ores plot between the Hercynian alkaline intrusions and Precambrian metamorphic wall rocks. Data are interpreted as indicative of a mixing of lead from mantle-derived alkaline magma with lead from Precambrian metamorphic wall rocks.Isotopic age data, geological and geochemical evidence suggest that the ore fluids for the groups 1 and 2 deposits were generated during the emplacement of the Hercynian alkaline syenite and mafic intrusions. The Hercynian alkaline magma may provide heat, volatiles and metals for these groups 1 and 2 deposits. Evolved metamorphic fluids produced by the devolatilization, which circulated the wall rocks, were also progressively involved in the alkaline magmatic hydrothermal system, and may have dominate the ore fluids during late stage of ore-forming processes. Most of these gold deposits hosted by Archean high-grade metamorphic rocks occur at or near the intersections of the NE- and E–W-trending fracture systems. The ore fluid of the group 3 deposits may have resulted from the mixing of Hercynian alkaline magmatic fluids and evolved meteoric waters. The deposits are believed to be products of Hercynian alkaline igneous processes along deep-seated fault zones within Archean terrain.  相似文献   

16.
This study was undertaken to determine whether wallrocks around the Twin Creeks Carlin-type gold deposits exhibit oxygen isotope haloes similar to those found around other types of hydrothermal deposits. Mineralization at Twin Creeks is hosted by Ordovician Sequence shales containing some carbonate minerals and by Pennsylvanian–Permian Etchart Formation limestone. Analysis of orthophosphate-soluble carbonate from these rocks shows that oxygen isotope haloes are detectable in Ordovician Sequence shales but not in Etchart Formation limestone. The soluble fraction of Ordovician Sequence shales at Twin Creeks has δ18O values of 12 to 24‰ and δ13C values of 0 to −10‰. Most samples fall along a poorly defined trend that extends from δ18O of about 24‰ and δ13C values of about 0, which are typical of unaltered limestones, toward lower values for both isotope systems, which are typical of rocks that have undergone alteration by hydrothermal fluids. Plots of these values along two sections through the ore body show that δ18O values of wallrocks are lowest in the ore zone and increase outward, forming a halo several hundred meters in size. In the same plots, δ13C values of the wallrocks do not show systematic spatial variations. The soluble fraction of Etchart Formation limestones at Twin Creeks have δ18O values of 25 to 5‰ and δ13C values of 4 to −10‰, but do not show any systematic spatial variation relative to mineralization at the scale of our samples. Failure of the Etchart Formation samples to show detectable haloes is probably related to deposition of post-ore carbonate minerals or lower ore fluid : rock ratios. Material balance calculations used to model the isotopic composition of average Ordovician Sequence shales indicate that changes in temperature and water : rock ratio were probably not sufficient to account for the wide range of isotope compositions observed in these rocks. The most likely additional factor contributing to this range of values was a change in the composition of the altering fluid, probably by mixing of the ore fluid with surrounding meteoric water. These results suggest that Carlin-type gold deposits are surrounded by haloes of low δ18O values, but that detection of these haloes could be complicated by local compositional variations and post-ore modification of the wallrocks.  相似文献   

17.
The calcite cement in the Lower Ordovician Majiagou Formation in the Ordos basin in northern China can be subdivided into three groups based on preliminary results of oxygen and carbon isotopes and fluid inclusion microthermometry. Group 1 has low oxygen isotopes (− 14‰ to − 18‰), low Th values (92–103 °C), and low salinities (1.7–4.9 wt.% NaCl equivalent) and is interpreted to have precipitated during early burial from porewater influenced by meteoric water. Group 2 has much higher oxygen isotope values (− 5‰ to − 8‰), which, coupled with the higher Th values (136–151 °C), suggest that the calcite was precipitated from fluids that were significantly enriched in 18O, possibly resulting from fluid–rock reaction during burial. Group 3 occurring along fractures is characterized by high salinities (21–28 wt.% NaCl equivalent) and is interpreted to have been precipitated from locally preserved residual evaporitic brines. The occurrence of primary hydrocarbon inclusions and its low carbon isotopes (− 11‰ to − 15‰) suggest that precipitation of group 3 calcite took place in the presence of hydrocarbons.  相似文献   

18.
A carbon and oxygen isotope survey based on 42 samples from the Amba Dongar carbonatite complex of Gujarat, India, indicates that the magmatic differentiation series sövite → alvikite → ankeritic carbonatite is beset with a distinct isotope trend characterized by a moderate rise in 13C coupled with a sizeable increase in 18O. From an average of −4.6 ± 0.4 ‰ [PDB] for the least differentiated (coarse) sövite member, δ13C values slowly increase in the alvikite (−3.7 ± 0.6 ‰) and ankeritic fractions (−3.0 ± 1.1 ‰), whereas δ18O rises from 10.3 ± 1.7 ‰ [SMOW] to 17.5 ± 5.8 ‰ over the same sequence, reaching extremes between 20 and 28 ‰ in the latest generation of ankeritic carbonatite. While an apparent correlation between δ13C and δ18O over the δ18O range of 7–13 ‰ conforms with similar findings from other carbonatite complexes and probably reflects a Rayleigh fractionation process, the observed upsurge of 18O notably in the ankeritic member is demonstrably related to a late phase of low-temperature hydrothermal activity involving large-scale participation of 18O-depleted groundwaters. As a whole, the Amba Dongar carbonatite province displays the characteristic 13C/12C label of deep-seated (primordial) carbon, reflecting the carbon isotope composition of the subcontinental upper mantle below the Narmada Rift Zone of the Indian subcontinent.  相似文献   

19.
Different types of free water have been analysed for their deuterium and chemical composition in order to evaluate their source, mixing phenomena, and the underground dynamics. All types of ground water (mineral, geothermal and wellhead water) display δD values (− 82.6‰ to − 72.6‰) similar to surface waters from the studied area (− 77.1‰ to − 73.6‰). The global salt content varies from 1102 to 8707 mg/l for the groundwater, and from 46 to 392 mg/l for the surface water. From the co-variation between the δD values and the chemical composition of the waters, as well as from the seasonal variation of these two parameters, it is evident that the free water from Tuşnad Băi are meteoric in origin. The mineralization of the mineral water took place by means of an intense underground circulation, probably in the fault system developed within the Neogene magmatites.  相似文献   

20.
Fe isotopes are a potential tool for tracing the biogeochemical redox cycle of Fe in the ocean. Specifically, it is hypothesized that Fe isotopes could enable estimation of the contributions from multiple Fe sources to the dissolved Fe budget, an issue that has received much attention in recent years. The first priority however, is to understand any Fe isotope fractionation processes that may occur as Fe enters the ocean, resulting in modification of original source compositions. In this study, we have investigated the Fe inputs from a basalt-hosted, deep-sea hydrothermal system and the fractionation processes that occur as the hot, chemically reduced and acidic vent fluids mix with cold, oxygen-rich seawater.The samples collected were both end-member vent fluids taken from hydrothermal chimneys, and rising buoyant plume samples collected directly above the same vents at 5°S, Mid-Atlantic Ridge. Our analyzes of these samples reveal that, for the particulate Fe species within the buoyant plume, 25% of the Fe is precipitated as Fe-sulfides. The isotope fractionation caused by the formation of these Fe-sulfides is δFe(II)–FeS = +0.60 ± 0.12‰.The source isotope composition for the buoyant plume samples collected above the Red Lion vents is calculated to be −0.29 ± 0.05‰. This is identical to the value measured in end-member vent fluids collected from the underlying “Tannenbaum” chimney. The resulting isotope compositions of the Fe-sulfide and Fe-oxyhydroxide species in this buoyant plume are −0.89 ± 0.11‰ and −0.19 ± 0.09‰, respectively. From mass balance calculations, we have been able to calculate the isotope composition of the dissolved Fe fraction, and hypothesize that the isotope composition of any stabilised dissolved Fe species exported to the surrounding ocean may be heavier than the original vent fluid. Such species would be expected to travel some distance from areas of hydrothermal venting and, hence, contribute to not only the dissolved Fe budget of the deep-ocean but also it’s dissolved Fe isotope signature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号