首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
The southern Patagonian stock(SPS) of Argentinian shortfin squid, Illex argentinus, is an economically important squid fishery in the Southwest Atlantic. Environmental conditions in the region play an important role in regulating the population dynamics of the I. argentinus population. This study develops an environmentally dependent surplus production(EDSP) model to evaluate the stock abundance of I. argentines during the period of 2000 to 2010. The environmental factors(favorable spawning habitat areas with sea surface temperature of 16–18°C) were assumed to be closely associated with carrying capacity(K) in the EDSP model. Deviance Information Criterion(DIC) values suggest that the estimated EDSP model with environmental factors fits the data better than a Schaefer surplus model without environmental factors under uniform and normal scenarios.The EDSP model estimated a maximum sustainable yield(MSY) from 351 600 t to 685 100 t and a biomass from 1 322 400 t to1 803 000 t. The fishing mortality coefficient of I. argentinus from 2000 to 2010 was smaller than the values of F_(0.1) and F_(MSY). Furthermore, the time series biomass plot of I. argentinus from 2000 to 2010 shows that the biomass of I.argentinus and this fishery were in a good state and not presently experiencing overfishing. This study suggests that the environmental conditions of the habitat should be considered within squid stock assessment and management.  相似文献   

2.
It is important to find a reliable method to estimate maximum sustainable yield(MSY) or total allowable catch(TAC) for fishery management, especially when the data availability is limited which is a case in China. A recently developed method(CMSY) is a data-poor method, which requires only catch data, resilience and exploitation history at the first and final years of the catch data. CMSY was used in this study to estimate the biological reference points for Largehead hairtail(Trichiurus lepturus, Temminck and Schlegel) in the Yellow Sea and Bohai Sea, based on the fishery data from China Fishery Statistical Year Books during 1986 to 2012. Additionally,Bayesian state-space Schaefer surplus production model(BSM) and the classical surplus production models(Schaefer and Fox) performed by software CEDA and ASPIC, were also projected in this study to compare with the performance of CMSY. The estimated MSYs from all models are about 19.7×104–27.0×104 t, while CMSY and BSM yielded more reasonable population parameter estimates(the intrinsic population growth rate and the carrying capacity). The biological reference points of B/BMSY smaller than 1.0, while F/FMSY higher than 1.0 revealed an over-exploitation of the fishery, indicating that more conservative management strategies are required for Largehead hairtail fishery.  相似文献   

3.
Temporal changes in biological characteristics of small yellow croaker Larimichthys polyactis in the Yellow Sea were examined for the period of 1960–2008. The body size and age of small yellow croaker decreased substantially, in particular, average length of fish in 2008 was reduced by ~85% than those occurring in 1985, and at that time ~93% of the total catch was dominated by one-year-old individuals. Correspondingly, growth parameters also varied significantly over the years, i.e., k(growth coefficient) and t_0(zero-length age) gradually increased from 0.26 and –0.58 year in 1960 to 0.56 and –0.25 year in 2008, respectively. Although, L∞(body length)sharply decreased from 34.21 cm in 1960 to 24.06 cm in 2008, and t_r(inflexion age) decreased from 3.78 year in1960 to 1.61 year in 2008. There was a great increase both in natural mortality coefficient and fishing mortality coefficient. However, according to the gray correlation analysis, changes in the biological characteristics of small yellow croaker were induced by different stressors ranked as: fishing vessel powerfeeding gradesea surface temperature. This study suggests that the active fishery management measures for biological characters of fish populations should be considered.  相似文献   

4.
Many fish stocks in the world are depleted as a result of overexploitation, which reduces stock productivity and results in loss of potential yields. In this study we analyzed the catch trends and approximate thresholds of sustainable fishing for fished stocks to estimate the potential loss of catch and revenue of global fisheries as a result of overexploitation during the period of 1950–2010 in 14 FAO fishing areas. About 35% of stocks in the global marine ocean have or had suffered from overexploitation at present. The global catch losses amounted to 332.8 million tonnes over 1950–2010, resulting in a direct economic loss of US$298.9 billion(constant 2005 US$).Unsustainable fishing caused substantial potential losses worldwide, especially in the northern hemisphere.Estimated potential losses due to overfishing for different groups of resources showed that the low-value but abundant small-medium pelagics made the largest contribution to the global catch loss, with a weight of 265.0 million tonnes. The geographic expansion of overfishing not only showed serial depletion of world's fishery resources, but also reflected how recent trends towards sustainability can stabilize or reverse catch losses.Reduction of global fishing capacity and changes in fishery management systems are necessary if the long-term sustainability of marine fisheries in the world is to be achieved.  相似文献   

5.
Simple sequence repeat (SSR) markers were obtained for the large yellow croaker Pseudosciaena crocea using 1 205 expressed sequences tags (ESTs) from the NCBI database. Primers for 48 ESTSSR loci were designed and screened with 30 P.crocea specimens captured from Guanjingyang sea area in Fujian Province of China. Sixteen of the loci were polymorphic, which were amplified with 3 to 11 alleles per locus and the mean of 6.13. The observed and expected heterozygosity per locus ranged from 0.091 to 0.844 (mean 0.544) and from 0.118 to 0.892 (mean 0.644), respectively. Polymorphic information content (PIC) ranged from 0.115 to 0.866 (mean 0.593). The results for cross-species amplification of the 16 large yellow croaker EST-SSRs on P. polyactis, C. niveatus, C. lucidus, A. argentatus and J. belengeri revealed that 14, 12, 11, 7 and 6 loci were successfully amplified with 1 to 10 alleles with an average of 4.5 per locus, respectively, which are suitable for population genetics studies of these species and useful for phylogenetic relationship analysis among these species. Overall, this study provides a set of type I markers for population genetics studies and genome mapping for large yellow croaker and its closely related species.  相似文献   

6.
In recent years, the small pelagic fishery on the Pacific northwest coast of Mexico has significantly increased fishing pressure on thread herring Opisthonema spp. This fishery is regulated using a precautionary approach(acceptable biological catch(ABC) and minimum catch size). However, due to fishing dynamics, fish aggregation habits and increased fishing mortality, periodic biomass assessments are necessary to estimate ABC and assess the resource status. The Catch-MSY approach was used to analyze historical series of thread herring catches off the western Baja California Sur(BCS, 1981–2018) and the Gulf of California(GC, 1972–2018) to estimate exploitable biomass and target reference points in order to obtain catch quotas. According to the results, in GC,the maximum biomass reached in 1972(at the beginning of fishery) and minimum biomass reached in 2015; the estimated exploitable biomass for 2019 was 42.2×10~4 t; and the maximum sustainable yield(MSY) was 15.4×10~4 t.In the western BCS coast, the maximum biomass was reached in 1981(at the beginning of fishery) and minimum biomass was reached in 2017; the estimated exploitable biomass for 2019 was 3.2×10~4 t; and the MSY was 1.2×10~4 t.Both stocks showed a decrease in biomass over the past years and were currently near to point of full exploitation.The results suggest that the use of the Catch-MSY method is suitable to obtain annual biomass estimates, in order to establish an ABC, to know the current state of the resource, and to avoid overcoming the potential recovery of the stocks.  相似文献   

7.
Oxygen and carbon isotope ratios(δ~(18)O and δ~(13)C) in otoliths were used to identify the stock structure of small yellow croaker,Larimichthys polyactis.Otoliths were collected from fish at five locations across the Yellow Sea and the Bohai Sea representing most of their distributional range and fisheries areas.The significant differences in the isotopic signatures showed that the five locations could be chemically distinguished and clearly separated,indicating stock subdivision.Correlation of δ~(18)O and δ~(13)C values suggested that population of L.polyactis could be divided into the Bohai Sea group,the southern Yellow Sea group and the central Yellow Sea group.Discriminant analysis of δ~(18)O and δ~(13)C values demonstrated a high significant difference with 85.7% classification accuracy.The spatial separation of L.polyactis indicated a complex stock structure across the Yellow Sea and the Bohai Sea.These results indicate that optimal fisheries management may require a comprehensive consideration on the current spatial arrangements.This study has provided further evidence that measurement of the stable isotopes ratios in otolith can be a valuable tool in the delineation of fishery management units.  相似文献   

8.
Wang  Kun  Du  Jing  Liu  Ming  Wu  Jin-hao  Jiang  Heng-zhi  Jin  Sheng  Song  Lun 《中国海洋工程》2019,33(2):185-197
The Bohai Sea is a seasonal icy sea area that has the lowest latitude of any sea experiencing icing in the northern hemisphere, and simulation studies on oil spills during its sea ice period are the key to analyzing winter oil spill accidents. This study applied the three-dimensional free surface to establish a high-resolution hydrodynamic model and simulate tidal distributions in the Bohai Sea. Then, the oil spill model of the open sea area and thermodynamic model were combined to establish a numerical model for the Bohai oil spill during the winter sea ice period. The hydrodynamic model and sea ice growth and melting model were verified, and the parameters were adjusted based on the measured values, which indicate that the numerical model established in this paper is of high accuracy,stability and ubiquity. Finally, after checking the calculations repeatedly, the diffusion coefficient for the Bohai Sea was determined to be 1.0×10~(–7 )m~2/s. It is better that the comprehensive weathering attenuation coefficient is lower than that of a non-winter oil spill, with 1.3×10~(–7 )m~2/s being the most appropriate coefficient. This study can provide the reliable technical support for the operational safety and reduction in losses caused by winter oil spill accidents for the petroleum industry.  相似文献   

9.
An abnormally high temperature produces a stress response in turbot causing large economic losses in the turbot aquaculture industry of China. A genetic improvement of the upper thermal tolerance (UTT) of turbot could allow cultured fi sh to adapt. A genetic evaluation of UTT is required for determining the practicability of including this trait into a breeding program. In this study, data were recorded from a temperature tolerance test conducted on 3 200 individual turbots from 32 full-sib groups. A cross-sectional linear model and a cross-sectional threshold probit model were used to analyze the test-period survival and a cross-sectional threshold logit model was used to analyze the test-day survival. In addition, phenotypic and genetic correlations between body weight and survival data were estimated. The estimated heritability values obtained from the cross-sectional linear model (CSL), the cross-sectional threshold (probit) model (THRp), and the cross-sectional threshold (logit) model (THRl) were 0.247 9±0.108 3, 0.288 3±0.161 2, and 0.106 9±0.045 2, respectively. The correlation coeffi cients among the full-sib family estimated breeding values (EBVs) obtained from the three models were greater than 0.998 6 and all models produced an almost identical family ranking. The accuracies of selection obtained with the CSL, THRp, and THRl model were 0.773 8, 0.775 4, and 0.784 4, respectively, the greatest from the THRl model. The genetic correlations between body weight and survival data EBVs from the CSL, THRp, and THRl models were 0.020 1,-6.201 1×10^-4 , and -3.115 4×10^-4 , respectively, and the phenotypic correlations between the two traits were -0.837 1 and -0.667 1, respectively. The findings of this study provide background information to determine the best strategy of selection for the genetic improvement of UTT in turbot.  相似文献   

10.
China(herein referred as China’s mainland,and excluding Hong Kong,Macao and Taiwan)ranks as the world’s leading fishing nation,with approximately 11.1 million tons of domestic marine catch acquired in 2017.Marine fisheries resources in China are mainly exploited by its 11 coastal provinces and municipalities,and the development of fishing industry varies among them.However,few studies have examined the exploitation history of the 11 coastal provinces and municipalities.In this paper,we systematically quantified the exploitation history of marine fishery resources in China and then measured the vulnerability of the 11 coastal provinces and municipalities of China to a reduction in marine catches.Our analysis suggested that Chinese marine fisheries experienced rapid growth from the mid-1980 s to the end of the 20 th century,and this rapid increase in marine catches were mainly promoted by increased fishing effort.The total primary production required level amounted to approximately 80%of the average primary productivity in 2017,and Zhejiang,Fujian,Shandong,Hainan and Guangdong provinces were the main fishing provinces in China.By assessing three dimensions of vulnerability(exposure,sensitivity and adaptive capacity)to the impacts of a reduction in marine catches in the 11 coastal provinces and municipalities,we found that Hainan,Guangxi,Zhejiang and Fujian provinces had high or very high vulnerability,while the municipalities of Shanghai and Tianjin had low vulnerability.Identifying suitable adaptation policies and management plans based on the differences in vulnerability among coastal provinces is important in sustainable fisheries management.  相似文献   

11.
基于渔业统计数据的南海区渔业资源可捕量评估   总被引:6,自引:1,他引:5  
科学确定海洋渔业可捕量是开展捕捞限额管理的前提和关键。南海区渔业资源种类繁多,无明显大宗经济鱼种,且产量统计不够完善,使得可捕量的量化评估较为困难。根据渔业产量统计数据,利用一种简化的产量模型对南海区渔业资源总可捕量以及11个重要经济类群的可捕量进行了评估。结果表明,南海区渔业资源最大可持续产量为308.6万t,总可捕量为246.9万~277.8万t。从11个重要经济类群的评估结果来看,这些类群在20世纪90年代后均遭受过不同程度的过度捕捞。目前状态较好,未处于过度捕捞状态的有蓝圆鲹和竹荚鱼、沙丁鱼类、马面鲀类、鲷类、鳓类和鲐类等6个恢复力较高的类群;而其他5个恢复力较低的类群,尤其是海鳗类和石斑鱼类,目前处于过度捕捞状态。  相似文献   

12.
杨春蕙  刘琦  王迎宾 《海洋与湖沼》2022,53(5):1219-1224
当渔业资源出现衰退时,加强资源增殖放流以养护渔业资源、提高渔业产量对于渔业资源可持续利用具有重要意义;与此同时,增殖放流的实施会对基于资源开发与管理的评估的结果产生影响。基于2001~2015年间东海北部海域三疣梭子蟹(Portunus trituberculatus)渔业数据,采用增殖剩余产量模型,对东海北部海域三疣梭子蟹的最大可持续产量(MSY)及取得MSY时所需捕捞努力量(EMSY)和原存生物量(BMSY)进行了评估,并与传统Schaefer模型评估结果进行了比较。结果表明,当年增殖放流量约在3×106~95×106尾之间时,三疣梭子蟹年产量逐渐增加, MSY在14.2×104 t和14.6×104 t之间, EMSY基本在15×104吨位左右。增殖放流量增加,其对应的MSY也越高,能承受的EMSY也越高(从15×104~15.4×104吨位之间),相反BMSY则减小(从188.4×104 t降至186.6×104 t)。与传统的Schaefer模型评估结果相比,增殖剩余产量模型由于考虑了增殖放流生物量的因素,得到了MSY和EMSY有所增加,而BMSY有所下降的结论。研究结果有望为该研究海域三疣梭子蟹可持续地捕捞、放流与管理提供科学依据。  相似文献   

13.
小黄鱼是我国近海四种最重要的经济鱼类之一,在过去的几十年中小黄鱼种群及其两个地理亚种群经历了巨大的变化。小黄鱼的种群动力学研究,对于维持这一重要渔业的可持续管理是至关重要的。目前仅有的两个小黄鱼种群动力学模型只涵盖了较短的时间,且没有关注其空间差异。本文研究了1968年至2015年间黄渤海和东海小黄鱼的种群动力学模型,包含和不包含空间分层结构的两种贝叶斯模型被用于分析其种群动力学的大尺度空间异质性。本文分析了不同的假设,来研究小黄鱼种群动力学潜在的变化趋势。研究结果表明小黄鱼种群动力学特征具有明显的时间和空间变化。种群的增长速度从20世纪八十年代开始增加,而可捕系数从1981年到2015年增加了两倍多。与黄渤海亚种群相比,东海的小黄鱼亚种群生长速度更快,遭受的捕捞压力也更大。基于最大可持续产量MSY的参考点表明,无论是整个小黄鱼种群还是两个亚种群,近年来都有非常高的过度捕捞风险。因此我国小黄鱼的渔业管理急需更加保守的管理策略,同时考虑其地域差异。本文所用的方法可以应用于其他种类的资源评估和渔业管理,尤其是具有空间异质性和数据有限的种类。  相似文献   

14.
Projection models are commonly used to evaluate the impacts of fishing. However, previously developed projection tools were not suitable for China's fisheries as they are either overly complex and data-demanding or too simple to reflect the realistic management measures. Herein, an intermediate-complexity projection model was developed that could adequately describe fish population dynamics and account for management measures including mesh size limits, summer closure, and spatial closure. A two-patch operating model was outlined for the projection model and applied to the heavily depleted but commercially important small yellow croaker(Larimichthys polyactis) fishery in the Haizhou Bay, China, as a case study. The model was calibrated to realistically capture the fisheries dynamics with hindcasting. Three simulation scenarios featuring different fishing intensities based on status quo and maximum sustainable yield(MSY) were proposed and evaluated with projections. Stochastic projections were additionally performed to investigate the influence of uncertainty associated with recruitment strengths and the implementation of control targets. It was found that fishing at FMSY level could effectively rebuild the depleted stock biomass, while the stock collapsed rapidly in the status quo scenario. Uncertainty in recruitment and implementation could result in variabilities in management effects; but they did not much alter the management effects of the FMSY scenario. These results indicate that the lack of science-based control targets in fishing mortality or catch limits has hindered the achievement of sustainable fisheries in China. Overall, the presented work highlights that the developed projection model can promote the understanding of the possible consequences of fishing under uncertainty and is applicable to other fisheries in China.  相似文献   

15.
The present study assessed trends in resource-use, partitioning and management in the Ungwana Bay fishery, Kenya, using surplus production models. The fishery is one of East Africa’s important marine fisheries sustaining a bottom trawl commercial fishery and a resident-migrant artisanal fishery. Two models: Schaefer (1954) and Gulland and Fox (1975) were applied to catch-effort data over a 21-year period to model maximum sustainable yield (MSY) and optimal effort (fMSY) to examine the status of resource exploitation and provide reference points for sustainable management. In the artisanal fishery, model MSYs range from 392-446 t to 1283-1473 t for shrimps and fish respectively compared to mean annual landings of 60 t for shrimp and 758 t for fish. These landings represent <50% of the model MSYs suggesting under exploitation in the sub-sector. Moreover, current fishing effort applied stands at <0.5 fMSY. On the other hand, mean annual landings in bottom trawl commercial fishery, at about 330 t for shrimps and 583 t and fish represent about 90% of the model MSYs of 352-391 t and 499-602 t for shrimps and fish respectively. Therefore, the bottom trawl commercial fishery is likely under full exploitation. Similarly, the current effort is estimated at >0.7 fMSY. Resource management in the bay is faced with numerous problems including resource-use conflicts, poor economic conditions in artisanal fishery, poor legislation, and inadequate research augmented by poor reporting systems for catch-effort statistics. Thus, the fishery lacks clearly defined exploitation regimes. Fisheries research and assessment of the marine resources are important for sustainability of the fishery. Moreover, income diversification in the poverty ridden artisanal fishery would go a long way in addressing resource-use conflicts and use of deleterious fishing methods in the sub-sector. Borrowing from the successes of the Japanese community-based fisheries resource management (CBFRM) which has easily resolved numerous fisheries management issues in coastal small-scale commercial fisheries, and the beach management unit (BMU) system which has been applied to the artisanal fisheries of south coast Kenya with enormous benefits, it is envisaged that a hybrid CBFRM-BMU system presents the best approach to sustainable resource-use in the Ungwana Bay fishery.  相似文献   

16.
东海捕虾桁拖网选择性能不佳,对渔业资源的保护和渔业的合理管理带来了负面的影响.刚性栅栏是实现拖网渔具种类选择性捕捞的主要装置,本文根据在吕四渔场开展刚性栅栏海上生产试验,结合SELECT模型分析不同栅条间距(15、20和25mm)的刚性栅栏对短吻舌鳎、小黄鱼和棘头梅童鱼的分隔效率.结果表明,随着栅条间距的增大,栅栏对鱼类的重量分隔率逐渐减小,分隔栅栏对鱼类的50%选择体长(L50S))逐渐增大;对于短吻舌鳎,个体接触分隔栅栏的概率可使用常数来表示,即接触概率与个体尺寸无关,接触概率在0.2-0.4之间,并随着栅条间距的增大而增大(不显著,P>0.05):对于小黄鱼和棘头梅童鱼,所有进入网囊的个体都将接触刚性栅栏;不同鱼类接触栅栏概率的显著差异说明不同鱼类在网囊中的不同行为习性.  相似文献   

17.
以本课题组选育的“闽优1 号”及未经选育的普通大黄鱼(Larimichthys crocea)养殖群体为研究对象, 比较了两者的白细胞吞噬活性、血清溶菌酶活性、杀菌活力、白蛋白及免疫球蛋白含量、血清及血细胞超氧化物歧化酶(SOD)活性等免疫指标的差异。结果表明: 选育的“闽优1 号”大黄鱼血清溶菌酶和血细胞SOD 活力显著高于对照组(P<0.05), 而血清中的免疫球蛋白含量低于普通养殖群体。在病原菌攻毒后8 d 内, 选育群体累积死亡率显著低于非选育群体, 提示非特异性免疫在大黄鱼抗病免疫的早期阶段可能起着重要作用。  相似文献   

18.
本研究根据2011年及2013—2016年春季和秋季在海州湾及其邻近海域进行的底拖网调查数据,结合同步采集的底层海水温度、底层海水盐度、水深、底质类型,以及脊腹褐虾(Crangon affinis)、细螯虾(Leptochela gracilis)、鳀(Engraulis japonicus)、赤鼻棱鳀(Thrissa kammalensis)等小黄鱼(Larimichthys polyactis)主要饵料生物的资源丰度数据,采用条件数κ和方差膨胀因子(VIF)度量多重共线性的程度,选取关键环境因子,再应用基于Tweedie分布的广义可加模型(GAM)研究不同季节和不同生长阶段的小黄鱼资源丰度与环境因子的关系。多重共线性的检验表明,所有初始变量之间没有显著的多重共线性,均可作为解释变量代入模型。结果表明:不同季节和生长阶段,影响小黄鱼资源分布的主要因子及其偏差解释率各不相同,各变量所对应的适宜范围也不同。例如:影响春季小黄鱼幼体资源分布的主要因子有底层海水温度、底层海水盐度、水深和脊腹褐虾的分布,其中偏差解释率最大的因子为水深(16.09%);而影响春季成体资源分布的因子为底层海水温度、底层海水盐度、水深及脊腹褐虾和鳀的分布,其中偏差解释率最大的因子为底层海水盐度(13.56%)。本研究表明,海州湾及其邻近海域不同季节和不同生长阶段小黄鱼的资源分布与其自身的生态习性、海洋环境以及饵料生物的分布密切相关。  相似文献   

19.
由哈维氏弧菌(Vibrio harveyi)等细菌感染引起的弧菌病对我国大黄鱼(Larimichthys crocea)的养殖造成了严重危害。通过哈维氏弧菌人工感染大黄鱼建立易感组和抗病组,采用PCR扩增和直接测序法对大黄鱼干扰素刺激基因ISG15双拷贝(ISG15-1ISG15-2)进行单核苷酸多态性(SNPs)检测和分型,并与其哈维氏弧菌抗性进行关联分析。结果表明,从大黄鱼ISG15-1ISG15-2基因中分别筛选到10个和4个SNP位点并进行了成功分型。经统计分析,ISG15-1基因的186G/C和318C/T位点以及ISG15-2基因的297G/T位点的基因型频率和等位基因频率在易感群体和抗病群体中均存在极显著差异,表明这3个SNP位点与大黄鱼哈维氏弧菌抗性显著相关。连锁不平衡分析结果显示,ISG15-1的SNPs可形成1个单倍块和11种单倍型,而ISG15-2的SNPs可形成1个单倍块和5种单倍型。其中,ISG15-1基因的单倍型H2(CCCCGGTACC)、H6(TCCCACTGTC)和H9(TCCCAGTGCC)与大黄鱼哈维氏弧菌抗性显著相关;ISG15-2基因的单倍型H1(CCCG)和H4(TCCG)与大黄鱼哈维氏弧菌抗性极显著相关。这些ISG15-1ISG15-2基因的SNP位点以及单倍型可以作为抗哈维氏弧菌病大黄鱼选育的候选分子标记。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号