首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
利用双差定位法对宁波皎口水库2009—2021年地震进行重新定位,通过HASH方法计算了较大地震的震源机制解,基于精确定位后的地震震源位置分布、深度分布以及总体震源机制解特征,结合区域地质构造背景、库区地质条件以及水库水位变化,对发震构造及孕震机理进行探讨。结果表明,皎口水库2009—2012年地震序列与2018—2021年地震序列孕震机理相似,区域性断裂长兴—奉化可能为发震断层;库水通过断裂破碎带下渗,孔隙水压力扩散及库水对岩石的软化弱化长时间作用,造成断层面及其深部某些薄弱部位变为不稳定区域,最后在库水变化导致的加卸荷应力场作用下触发地震。  相似文献   

2.
金沙江向家坝水库是目前中国第三大水库,2012年底水库开始蓄水,水位升高71m;2013年6月底再次蓄水,升高的水位淹没到库尾段。该水库以及上游的溪洛渡水库布设了地震台网,有35台仪器连续记录,能够很好地控制库区及周边的地震。水库地震台网在2007年9月—2013年6月记录了库尾一带1级以上地震共计38次,平均每月发生0.66次。而2013年7—9月则记录ML≥1.0地震186次,平均水平达到每月62次,已经接近以往月均值的100倍,可判别为诱发地震。同期还记录1级以下地震553次,在强震背景区发生大量小地震已经引起巨大反响。震源位置采用3维速度模型进行重新修订,发现这些地震有94%发生在0~5km深度范围。利用水库地震台网的观测资料,取垂直向记录到直达P、S波的最大振幅,得到库尾一带蓄水之前9个、蓄水后69个小地震的震源机制,并进一步利用这些震源机制反演了南、北2个区的应力场,以期通过分析震源机制和应力场变化,探索水库诱发地震发生的特点及成因。结果显示,在蓄水后69个震源机制中走向滑动类型占最多,存在较多过渡类型,倾向滑动的正断层、逆冲断层数目较少,震源机制空间取向复杂、破裂类型多样,显示区域应力场对小震的控制较弱。利用这些震源机制反演得到南、北2个区的应力场差别较大,状态不均匀,北区呈现挤压应力状态,而南区呈现弱拉张状态,均与区域应力场不一致。穿过库尾的猰子坝断裂是活动断裂,却没有控制诱发地震,有可能表明水库蓄水抑制了逆断层的活动。库尾区分布碳酸盐岩、灰岩,存在溶洞。分析认为库水涌入溶洞,渗透到裂隙、节理,导致孔隙压力增加,摩擦强度、岩石破裂强度降低以及库水载荷加大造成弹性变形等共同作用是诱发地震的成因。  相似文献   

3.
李丹  李黎  叶建庆 《中国地震》2022,38(3):526-536
利用区域构造、小湾库区水载荷变化及云南省区域地震台网2000—2021年的地震监测资料,对小湾水库影响区内水库蓄水前后地震活动空间、频度、强度等进行综合分析,并对区域断层性质、库水位载荷变化、震源机制解、地震应力降参数进行深入分析。结果显示:小湾水库影响区及附近第四纪断裂构造交汇,环境复杂且存在应力水平较高区域;水库蓄水对库区基底岩层及库岸岩体影响显著,地震活动明显增强;水库影响区地震空间分布明显受区域构造控制;在水载荷变化的影响下,触发了构造区的应力释放,发生了走滑断层性质破裂的2015年昌宁5.1级地震。  相似文献   

4.
位于云南澜沧江中段的漫湾和大朝山两电站水库位置相邻、大小相仿,坝高和库容均达到可能诱发地震的规模,都处于构造复杂的逆断层环境,但蓄水后库区地震活动水平明显不同,其中漫湾水库有明显的诱发地震活动,而大朝山水库蓄水5年来库区未出现地震活动明显增强现象.通过对漫湾和大朝山两电站水库蓄水后库区地震活动、库区地层和断层特点、地震活动与库区地层和断层特点的关系进行分析,认为沿断层的库水渗透、岩溶塌陷、水库规模、高应力环境、规模较大断裂的通过和断层力学环境等,并不是这两个电站水库诱发地震活动的主要因素;而马街、腰街、哨街一带发育有NE和NW向断层,且多为正断层性质,断面多倾向水库一侧,这些断层的破裂可能是诱发水库地震集中发生的重要原因.  相似文献   

5.
论褶皱构造在水库诱发地震中的作用   总被引:1,自引:0,他引:1  
龚宇 《四川地震》2000,(3):39-42
水库诱发地震(简称水库地震)问题是一个因扰水电工程设计部门的重要问题。但关于水库地震的成因机制许多学者尚存在着不同的看法。笔者根据自己的实际工作体会认为,水库地震产生的主因应当是库水的地下渗漏。照此思路,笔者通过对两个诱震实例的分析,简单地阐述了褶皱构造的存在对库水地下渗漏可能带来的影响,并认为褶皱构造是通过其伴生的裂隙、断层为库水下渗提供了途径,在褶皱由高渗透性岩石构成情况下更是如此。  相似文献   

6.
糯扎渡水电站位于澜沧江中下游,该地区构造环境复杂,活动断层发育,地震频发。本文利用区域构造、糯扎渡库区水荷载变化、云南省区域地震台网2000-2021年地震监测资料,对糯扎渡水库区域断层性质、库水位荷载变化、地震震源参数和水库蓄水前后的地震活动空间等进行综合分析。研究结果表明,糯扎渡水库影响区及附近区域活断层密集,构造环境复杂且存在应力水平较高区域,蓄水前库区地震活动强度较高。伴随蓄水量的增加,微小地震活动频度和强度逐渐增强,显示出蓄水对库区内断层上的应力分布具有明显的扰动作用。蓄水后水库坝区附近和澜沧江库区中段窝拖寨断层区的地震活动频度和强度有所增强,普洱大河库段地震活动强度则低于区域背景地震,但微小地震活动的频度有所上升,且与库水位的周期性变化有一定的相关性。地震活动的空间位置与库区内复杂的构造断层密切相关。在区域构造应力和库区水加、卸载的共同作用下,构成了糯扎渡水库影响区微小地震时间、空间、强度的活动图像。未来区内地震活动仍将受到区域构造应力影响和水位变化及水的渗透作用影响,其地震活动强度可能达到5.0级左右。  相似文献   

7.
中国疆土辽阔,水库众多,仅坝高大于80米、库容超过20亿米~3的大型水库就有16座。为了减轻大型水库的地震灾害,作者提出了几点地震对策。一是坝址选择对策。关键问题是在水库选址时,要进行活动断层调查和潜在震源判定,二是水库地震评定对策。对破坏性水库地震(Ms≥5)发生条件,作者提出了三条评定标标:1.大型水库,一般坝高要超过80米,库容要大于20亿米~3;2.活动断层,在库坝区(半经约25公里)存在大的活动断层;3.活动地震带,首先,库区要在地震带上,这里有中强地震的历史记录或潜在震源;其次,水库所在地震带当水库蓄水时,正好处于地震活动期。  相似文献   

8.
新丰江水库地震的震源机制及其成因初步探讨   总被引:3,自引:1,他引:3       下载免费PDF全文
广东省新丰江水库蓄水后地震活动性有很大增高,大部分地震发生在大坝附近的深水峡谷区,形成一条北西方向的密集带,震源深度极浅,随后,在蓄水后约二年半于1962年3月19日发生了6.1级强地震。 根据水准测量与地震波波谱资料的分析确定了主震的断层参数;用P波初动振幅确定了主震前后18个月内150次小地震的断层面解,用平滑P波初动图案求得了2000余次小地震的发震应力方向;计算了水库荷载在库基岩体中产生的位移场和应力场;分析了主震及其几个大余震前的地震纵波与横波的速度比变化情况。 结合地震活动性和地质背景初步讨论了新丰江水库地震的诱发机制,认为:水的渗透作用是诱发这次地震的主要原因。  相似文献   

9.
紫坪铺水库区小地震震源机制研究   总被引:4,自引:1,他引:3       下载免费PDF全文
用紫坪铺水库专用台网的地震记录测定紫坪铺水库区262次小震震源机制参数,结果表明:节面I的优势方向与断裂走向展布一致性很好;库区地震断层有逆断层、正断层、左旋和右旋走滑断层,走滑断层占45%;库区断层66%陡峻,35%几近直立;受水库蓄水的影响,2006年7月1日后以走滑断层活动方式明显增多,水库地震群时段走滑断层活动方式表现突出  相似文献   

10.
溪洛渡库首区蓄水后震源机制分析   总被引:2,自引:1,他引:1       下载免费PDF全文
目前世界第三大水库溪洛渡的库首区遍布碳酸盐岩、灰岩,存在溶洞,蓄水后水位升高140m左右,随之发生6 000多次地震,但绝大多数是1级以下微震,最大震级仅仅ML3;集中在库岸两侧10km、深度5km、从大坝向上游沿库盆40km长度的范围内。微小地震对于水库、大坝的安全没有产生影响。使用较为密集的水库数字地震台网资料反演得到蓄水前后700多次地震的震源机制,并进一步反演了全区和分区的应力场,发现:震源机制空间取向复杂、破裂类型多样,应力状态不均匀、不稳定。与他人使用大量天然地震资料反演的区域应力场不一致,表明水库诱发地震没有受到区域应力场的严格控制。分析认为库水涌入溶洞、渗透到裂隙、节理,原来存在的小断层面或者间断面的孔隙压力增加,摩擦强度、岩石破裂强度降低以及库水载荷加大造成弹性变形等共同作用是地震的成因。并且首先主要释放的是已经积累的区域应力、局部应力,然后才表现出以库水载荷产生的附加应力为主。库首区没有较大的活动断层,2014年库水位将再度升高数十m,伴随裂隙的贯通,应力场的调整,回流的库水淹没库盆上游,还会发生中小地震乃至中等强度地震。溪洛渡水库大坝抗震设防水准较高,不会造成安全问题。建议在诱发地震继续活动期间,尽早实施详细的水文地质、地球物理探测,提供精细的科学资料,为确定诱发地震的成因、寻找控制诱发地震的技术条件,以减轻突发事件的影响,为其他类似水库发挥示范作用。  相似文献   

11.
To date 19 cases of reservoir-induced seismicity have been acknowledged in China and 15 of them are associated with karst. The Wujiangdu case is a typical one induced in the karst area. The dam with a height of 165 m is the highest built in a karst area in China. Seismic activity has been successively induced in five reservoir segments seven months after the impoundment in 1979. A temporary seismic network consisting of 8 stations was set up in one of the segments some 40 km upstream from the dam. The results indicate that epicenters were distributed along the immediate banks, composed of karstified carbonate, and focal depths were only several hundred meters. Most of the focal mechanisms were of thrust and normal faulting. It is suggested that karst may be an important factor in inducing seismicity. It can provide an hydraulic connection to change the saturation and pressure and also weak planes for dislocation to induce seismicity.  相似文献   

12.
浙江湖南镇水库区地震成因的初步探讨   总被引:2,自引:0,他引:2       下载免费PDF全文
湖南镇水库蓄水后五个月,在大坝上游15公里库岸边开始出现地震。这些地震大部分是极微震。震源位置变化不大,深度极浅。地震活动对库水位变化的反映十分明显,滞后时间很短。根据库区地质、地震记录和宏观的一些特点,推测地震可能是库岸不稳定岩体的水下重力滑移引起的  相似文献   

13.
Czorsztyn Lake is an artificial water reservoir backed up by the hydropower plant Niedzica earth dam on Dunajec River in south Poland. Its filling began in 1995 and ended in 1997. The reservoir of 234.5 million m3 capacity is shallow, between 20 to 50 m of water column, on average. Until 2011 the seismic activity in this region was sparse, some 1 event trimonthly. However, in November 2011 more than 60 events occurred. Such bursts of activity, separated by low activity periods, continue to appear. Since August 2013 the area is monitored by a local seismic network. The setup allows to accurately locate the epicenters and to determine source mechanisms for stronger events. The events are clustered and aligned along NE-SW direction and their mechanisms are very similar, indicating N-S strike slip faulting. This and the irregular pattern of activity suggest that this seismicity is triggered by the reservoir impoundment.  相似文献   

14.
Many concrete gravity dams have been in service for over 50 years, and over this period important advances in the methodologies for evaluation of natural phenomena hazards have caused the design‐basis events for these dams to be revised upwards. Older existing dams may fail to meet revised safety criteria and structural rehabilitation to meet such criteria may be costly and difficult. Fragility assessment provides a tool for rational safety evaluation of existing facilities and decision‐making by using a probabilistic framework to model sources of uncertainty that may impact dam performance. This paper presents a methodology for developing fragilities of concrete gravity dams to assess their performance against seismic hazards. The methodology is illustrated using the Bluestone Dam on the New River in West Virginia, which was designed in the late 1930s. The seismic fragility assessment indicated that sliding along the dam–foundation interface is likely if the dam were to be subjected to an earthquake with a magnitude of the maximum credible earthquake (MCE) specified by the U.S. Army Corps of Engineers. Moreover, there will likely be tensile cracking at the neck of the dam at this level of seismic excitation. However, loss of control of the reservoir is unlikely. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
The township of Khardi, located 7 km northwest of the Bhatsa dam, in the western part of the Deccan Volcanic Province, was subjected to earthquakes of magnitudes 4.0 and 4.8 on August 17, 1983 and September 15, 1983, respectively. The Khardi-Bhatsa area is located to the east of the Panvel flexure axis and on a northwest-southeast trending belt, forming an extension of the Ghod lineament of the Deccan Plateau. The earth tremors at Khardi followed impoundment of water, during June–July 1983, behind the recently constructed Bhatsa dam, and the rise in lake-level from about 92 to 110 m above MSL. It is suggested that percolation of water during this period along fractures led to a build-up of pore-fluid pressure which was transmitted down to a stress zone with a potential to slip. Consequent reduction in effective stress (tectonic stress-pore fluid pressure) induced the earthquakes. Available seismic data for the Khardi-Bhatsa area suggest that b-values can also be used as a ‘short term’ precursor for detecting impending, strong reservoir-induced earth tremors in the area.  相似文献   

16.
This purpose of this paper is to study the dynamic characteristics of the Fei-Tsui arch dam using the seismic response data and the ambient vibration data. For the identification of dam properties from seismic response data, the multiple inputs from the abutment of the dam to represent the nonuniform excitations of seismic input motion are considered, and the ARX model is applied using the discrete-time linear filtering approach with least-squares approximation to identify the dynamic characteristics of the dam. The system modal dampings, natural frequencies and frequency response functions are identified. A comparison of the identified modal parameters is made among different seismic events. Post-earthquake safety evaluation of the dam can be made based on the identified model. Finally, the ambient vibration test of the dam is performed to identify the mode shapes along the dam crest.  相似文献   

17.
The Three Gorges Dam is the world's largest capacity hydropower station located in the Hubei province along the Yangtze River in China, which began operations in 2003. The dam also functions to store and regulate the downstream releases of water in order to provide flood control and navigational support in addition to hydropower generation. Flow regulation is particularly important for alleviating the impacts of low- and high-flow events during the summer rainy season (June, July, and August). The impact of dam operations on summer flows is the focus of this work. Naturalized flows are modelled using a canonical correlation analysis and covariates of subbasin-scale precipitation resulting in good model skill with an average correlation of 0.92. The model is then used to estimate natural flows in the period after dam operation. A comparison between modelled and gauged streamflow post 2003 is made and the impact of the dam on downstream flow is assessed. Streamflow variability is found to be strongly related to rainfall variability. An analysis of regional streamflow variability across the Yangtze River Basin showed a mode of spatially negatively correlated variability between the upper and lower basin areas. The Three Gorges Dam likely mitigated the occurrence of high-flow events at Yichang station located near the dam. However, the high flow at the remaining stations in the lower reach is not noticeably alleviated due to the diminishing influence of the dam on distant downstream flows and the impact of the lakes downstream of the dam that act to attenuate flows. Three types of flow regime changes between naturalized and observed flows were defined and used to assess the changes in the occurrence of high- and low-flow events resulting from dam operations.  相似文献   

18.
The lower Jinsha River basin is located at the junction of Sichuan and Yunnan provinces in Southwest China, a region with intense tectonic movements and frequent moderate to strong seismic activities. Cascade hydropower stations have been constructed along the lower Jinsha River since 2012. However, research on the effect of the impoundment of large-scale cascade reservoirs in a river basin on local seismic activities is currently lacking. Accurately identifying earthquake locations is essential for studying reservoir-induced earthquakes. Analyzing the spatiotemporal migration process of seismic activities based on complete and precise earthquake relocation is fundamental for determining the fluid diffusion coefficient, constructing fault models for reservoir areas, identifying earthquake types, exploring earthquake mechanisms, and evaluating seismic hazards. The seismicity pattern in the Xiangjiaba and Xiluodu reservoir areas, where seismic activities had been weak for a long time, has changed with the successive impoundment of the two reservoirs, showing microseismic events and seismic clusters. We investigated the spatiotemporal characteristics of seismic activities in the Xiangjiaba and Xiluodu reservoir areas using the waveform cross-correlation-based double-difference relocation technique and the b-value analysis method. We discovered that seismic events after the impoundment of these two reservoirs exhibited different characteristics in different regions. The seismic activities at the Xiluodu dam quickly responded to the rising water level, with the seismic intensity decaying rapidly afterward. These events were concentrated in the limestone strata along both sides of the Jinsha River, with a shallow focal depth, generally within 5 km, and a high b-value of approximately 1.2. Such features are close to those of karst-type earthquakes. Microseismic activities frequent occur on the eastern bank of the Yongshan reservoir section downstream of the Xiluodu dam, with two parallel NW-trending earthquake strips visible after precise earthquake relocation. The MS5.2 earthquake near Wuji town on August 17, 2014, had prominent foreshocks and aftershocks distributed in a clear NW-trending 20-km-long strip, perpendicular to the riverbank. These seismic events had a low b-value of approximately 0.7. The orientation of the node plane revealed by the strike-slip focal mechanism of the mainshock is consistent with that of the strip formed by the foreshock-mainshock-aftershock sequence, indicating the existence of a NW-striking concealed fault. Seismic activities near the Yanjin-Mabian fault upstream of the Xiangjiaba reservoir area since 2013 were concentrated in a NW-trending strip, with several near EW-trending seismic clusters on its western side, and with the largest event having a magnitude of ML3.7. So far, the impoundment of the Xiangjiaba and Xiluodu reservoirs has not triggered seismic activities on the large Jinyang-Ebian and Yanjin-Mabian faults nearby.  相似文献   

19.
To investigate the seismic liquefaction performance of earth dams under earthquake loading, we present a new methodology for evaluating the seismic response of earth dams based on a performance‐based approach and a stochastic vibration method. This study assesses an earthfill dam located in a high‐intensity seismic region of eastern China. The seismic design levels and corresponding performance indexes are selected according to performance‐based criteria and dam seismic codes. Then, nonlinear constitutive models are used to derive an array of deterministic seismic responses of the earth dam by dynamic time series analysis based on a finite element model. Based on these responses, the stochastic seismic responses and dynamic reliability of the earth dam are obtained using the probability density evolution method. Finally, the seismic performance of the earth dam is assessed by the performance‐based and reliability criteria. Our results demonstrate the accuracy of the seismic response analysis of earth dams using the random vibration method. This new method of dynamic performance analysis of earth dams demonstrates that performance‐based criteria and reliability evaluation can provide more objective indices for decision‐making rather than using deterministic seismic acceleration time series as is the current normal practice. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The seismic response of the intake–outlet towers has been widely analyzed in recent years. The usual models consider the hydrodynamic effects produced by the surrounding water and the interior water, characterizing the dynamic response of the tower–water–foundation–soil system. As a result of these works, simplified added mass models have been developed. However, in all previous models, the surrounding water is assumed to be of uniform depth and to have infinite extension. Consequently, the considered added mass is associated with only the pressures created by the displacements of the tower itself. For a real system, the intake tower is usually located in proximity to the dam and the dam pressures may influence the equivalent added mass. The objective of this paper is to investigate how the response of the tower is affected by the presence of the dam. A coupled three‐dimensional boundary element‐finite element model in the frequency domain is employed to analyze the tower–dam–reservoir interaction problem. In all cases, the system response is assumed to be linear, and the effect of the internal fluid and the soil–structure interaction effects are not considered. The results suggest that unexpected resonance amplifications can occur due to changes in the added mass for the tower as a result of the tower–dam–reservoir interaction. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号