首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apatites occurring in lateritic residues derived from high-grade metamorphic rocks from Sri Lanka are hydroxy-apatite as indicated by EPMA and XRD. Weathered phosphates and weathered crystalline products are composed of carbonate fluorapatite, crandallite, wardite, fluellite, kaolinite, goethite and gibbsite. EDAX, DTA and SIMS show the presence of amorphous materials, such as oxides of Fe, Al, Si, Al+Si, and S, on the surface of weathered phosphate. Using SEM, TEM, EDAX and electron diffraction techniques, the presence of these amorphous and crystalline materials with several transitions has been clearly identified in weathered phosphate. Recrystallization of phosphate occurred during weathering by dissolution, nucleation and precipitation. The lattice images of hydroxyapatite are gradually increased from 8.3-A basal spacings by weathering, and form mosaic bound fragments. Chondrite-, shale- and phosphorite concretion-normalized REE patterns of these apatites, known to have sedimentary origins, suggest enrichment and remobilisation during post-depositional reworking.  相似文献   

2.
Bacterially-mediated authigenesis of clays in phosphate stromatolites   总被引:1,自引:0,他引:1  
Authigenic clays in close textural relation to carbonate fluorapatite within finely laminated phosphate stromatolites of Upper Jurassic age have been studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and analytical electron microscopy (AEM). Stromatolite laminae consist of hexagonal prisms of francolite (sizes ranging between 0·1 and 1 μm) that are surrounded by poorly crystalline smectite and amorphous Fe–Si–Al oxyhydroxides. Microanalyses show that smectite is Fe rich, with highly variable composition, particularly regarding Fe and Si contents. Smectite has significant beidellitic, montmorillonitic and non-tronitic substitutions. Although the lack of fringe contrast in some areas adjacent to the smectite packets with 1·0–1·3 nm spacing is due to differences in orientation of layers, textural and analytical data clearly indicate the presence of Fe–Si–Al amorphous phases intimately intergrown with smectite. The occurrence of poorly crystalline smectite and associated amorphous phases within microbially precipitated stromatolite laminae, both as envelopes around, and as pore-fillings between extremely small calcium phosphate crystals, demonstrates authigenic smectite growth from a precursor Fe–Si–Al amorphous material. This material is formed in close association with a phosphate-rich precursor. The textural and structural relations, the preservation of chemical precursors of glauconite such as nontronitic montmorillonite, and the presence of Fe–Si–Al amorphous mineral phases, imply crystallization of the observed crystalline phases from synsedimentary (bacterially precipitated) amorphous precursors during early diagenesis in postoxic environments. Carbonate fluorapatite was the first phase to crystallize from the primary gel; smectite and associated amorphous Fe–Si–Al oxyhydroxides were the residual material of the crystallization process. The slow rate of transformation (at low temperatures) from Fe–Si–Al-rich gels to smectite, explains the textural relations between the poorly crystalline phases and the phosphate crystals, as well as the preservation of amorphous substances in relation to clays. Authigenic smectite represents the first step in glauconitization.  相似文献   

3.
Fe-nodules occur within saprolites formed from weathering of granodioritic gneisses in the rain-shadow region of the Mysore Plateau adjacent to the Sahyadri Mountains in Southern India. These nodules and their host saprolites were studied for their geochemistry, including chemical speciation, to understand nodule formation and chemical redistribution processes during rock weathering. From their mode of occurrence, and mineralogical and geochemical data, we infer that the nodules originated by a two-stage process in which the initial extensive weathering of gneisses likely facilitated subsequent ferrolysis weathering and nodule formation. Nodules originated by precipitation of goethite, hematite and gibbsite along with several amorphous phases within the matrix of weathered gneisses. This is possible only under hydromorphic conditions, suggesting that parts of the plateau must have gone through a humid phase prior to the present aridity. In the saprolites, Al, Fe, and Ti become enriched because of the removal of Si, Ca, Na, and K. However within the nodule, Fe, Ti, Cr, and Ni are deposited after their chemical transport from the saprolite. Titanium, known for its immobile nature, was also mobilized and concentrated under the conditions of nodule formation. The most important elements in the nodule constitution are Fe, Al, Ti, and Mn, each having both crystalline and amorphous phases. Fe-Ti and Mn oxyhydroxides grain coatings in the saprolites and discrete amorphous Mn and Ti phases in the nodules seem to have scavenged trace elements from the weathering profile. REE were mobilized during weathering and nodule genesis in which Ce and Ti show a strong geochemical coherence. The enrichment of only HREE in saprolite, and both HREE and LREE with significant Ce in the nodule, indicate the control of evolving secondary minerals in the REE redistribution during rock weathering. Strong enrichment of Ce in the weathering profile and in nodules has important implications to the REE chemistry of river waters.  相似文献   

4.
Abstract: Sri Lanka has the richest archaeological sites in Asia. Jethawanarama Complex, one of the valuable sites in the country, is suffering from deterioration due to weathering. Monuments were built mainly from stones (granitic gneiss and marble) and clay bricks. The present study aimed to categorize weathering forms and interpret the recently-developing weathering processes. The growing of lichens on surfaces and the development of saline conditions are the major threats on the survival of monuments other than the typical weathering processes of tropical climates Morinite (NaCa2Al2[PO4)]2[F,OH]5·2H2O) is identified as a weathering product of monuments and is generated from lichens.  相似文献   

5.
Weathered and fresh samples of metamorphic rocks from Sri Lanka were collected from various localities and analysed for major elements by XRF method (RIGAKU, KG-X System, Japan). The content of water was determined by the ignition method.

The XRF results, obtained from these samples form the basis of a new index of chemical weathering, particularly for Sri Lanka, which is named the Silica-Titania Index, and is calculated as follows: Silica-Titania Index = {(SiO2/TiO2)/[(SiO2/TiO2) × (Al2O3/TiO 2) × (SiO2/Al2O3)]} × 100(molecular proportions).

The index can be used to determine the degree of weathering in chemically weathered silicate rocks of other countries in tropical regions. A triangular diagram plots the position of this index. The point load strengths of fresh rocksand weathered rocks with different degrees of weathering were correlated with the values of this new chemical index. The relative variation in strengths of fresh rocks and weathered rocks clearly indicates its suitability and usefulness for engineering geologists.  相似文献   


6.
Laterite occurs extensively over the crystalline and sedimentary rocks in the midland and lowland areas of south Kerala, India. Two lateritization cycles are identified in this area. Large, good-quality kaolin deposits, composed mostly of kaolinite, are characteristic of the sedimentary sequence in south Kerala. These deposits were formed on deposition of the weathering materials of the khondalites towards the first cycle of lateritization. After deposition and uplift of the sedimentary rocks, another lateritization cycle affected these, as well as the khondalites during pre-Quaternary times with the formation of a planation surface at 25–125 m above sea level having thick laterite profiles. The laterite profiles over the kaolin deposits show higher concentration of Fe-oxides (mostly in the form of hematite) and titania, compared to their concentration in the kaolins. Higher contents of Cr and Ni are also characteristic of the laterite over kaolin deposits. Recrystallization of the kaolinite, appearance of Al, Fe and Si amorphous phases in the kaolin clays and partial removal of Fe and Ti from them are attributed to the second lateritization cycle.  相似文献   

7.
Brian Jones 《Sedimentology》2020,67(4):1844-1878
Phosphatic limestones on the west end of Little Cayman, at an elevation of 3 to 4 m above sea level and ca 320 to 550 m inland of the coast, lie on top of a phytokarst surface that defines the upper boundary of the Pedro Castle Formation (Pliocene). These phosphatic limestones are formed of phosphatic lithoclasts, detrital phosphate grains, coated grains (glaebules), composite coated grains, biofragments and phosphate rafts that are held in a matrix that is formed of micrite, calcite cement, and non-crystalline masses formed of P, Al, Si and Fe. The phosphate in these limestones is primarily hydroxylapatite, whereas the overlying soils, found in some areas, are formed of hydroxylapatite, crandallite and minor amounts of boehemite, kaolinite and quartz. Textures in the lithoclasts and detrital phosphate grains indicate that they were derived from older insular phosphates that that were largely removed by mining in 1890 to 1895. The coated grains (glaebules) typically have nuclei formed of a detrital phosphate grains that are encased by non-crystalline cortical laminae that are composed primarily of Al with their variable red colour reflecting the variable Fe content. The phosphatic limestones developed in a low-lying coastal area where the guano produced by a large seabird colony that was close to or mixed with terra rossa and marine carbonates that were washed onshore during storms/hurricanes. The Al, Fe, Si and rare earth elements found in the phosphatic limestones came from the terra rossa. Critically, this study documents the complex depositional regimes and diagenetic processes that can exist at the interface of marine carbonates, coastal phosphates and terrestrial soils as sea-level fluctuations control phases of sediment accumulation that were periodically interrupted by periods of non-deposition.  相似文献   

8.
Our ability to identify thin non-stoichiometric and amorphous layers beneath mineral surfaces has been tested by undertaking X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) work on alkali feldspars from pH 1 dissolution experiments. The outcomes of this work were used to help interpret XPS and TEM results from alkali feldspars weathered for <10,000 years in soils overlying the Shap Granite (north-west England). The chemistry of effluent solutions indicates that silica-rich layers a few nanometers in thickness formed during the pH 1 experiments. These layers can be successfully identified by XPS and have lower Al/Si, Na/Si, K/Si and Ca/Si values than the outermost ∼9 nm of unweathered controls. Development of Al-Si non-stoichiometry is coupled with loss of crystal structure to produce amorphous layers that are identifiable by TEM where >∼2.5 nm thick, whereas the crystallinity of albite is retained despite leaching of Na to depths of tens to hundreds on nanometers. Integration of XPS data over the outermost 6-9 nm of naturally weathered Shap feldspars shows that they have stoichiometric Al/Si and K/Si ratios, which is consistent with findings of previous TEM work on the same material that they lack amorphous layers. There is some XPS evidence for loss of K from the outermost couple of nanometers of Shap orthoclase, and the possibility of leaching of Na from albite to greater depths cannot be excluded using the XPS or TEM results. This study demonstrates that the leached layer model, as formulated from laboratory experiments, is inapplicable to the weathering of alkali feldspars within acidic soils, which is an essentially stoichiometric reaction.  相似文献   

9.
The bio-weathering of basalt, granite and gneiss was experimentally investigated in this study. These rock-forming minerals weathered more rapidly via the ubiquitous psychrotrophic heterotrophic bacteria. With indigenous bacteria of Bacillus spp. from sediments of Lake Baikal, we traced the degradation process of silicate minerals to understand the weathering processes occurring at the change temperature in the subsurface environment with organic input. The bacteria mediated dissolution of minerals was monitored with solution and solid chemistry, X-ray analyses as well as microscopic techniques. We determined the impact of the bacteria on the mineral surface and leaching of K, Ca, Mg, Si, Fe, and Al from silicate minerals. In the samples the release of major structural elements of silicates was used as an overall indicator of silicate mineral degradation at 4°C and 18°C from five medium exchanges over 255?days of rock bioleaching. The increase of temperature importantly affected the efficiency of Fe extraction from granite and basalt as well as Si extraction from granite and gneiss. In comparison with elemental extraction order at 4°C, Ca was substituted first by Fe or Si. It is evident that temperature influences rock microbial weathering and results in a change of elements extraction.  相似文献   

10.
在吉林东部花岗岩区地下水化学成分和化学类型研究的基础上,以Na作为参比元素,确定了花岗岩风化过程中22种主量元素和微量元素的相对活动顺序。花岗岩区地下水的地球化学类型属低矿化度(变化范围为69.51×10-6~386.49×10-6,平均值为199.48×10-6)的HCO3-Ca和HCO3-Na-Ca型。花岗岩风化过程中元素的活动性顺序(RM)从大到小依次为:B、Ca、Mo、Zn、Sr、Na、Mg、Cr、Cu、Ni、K、Co、Li、V、As、Ba、Si、Y、Fe、Ti、Al、Mn。风化产物中的粘土矿物主要为高岭土、蒙脱石,反映出本区花岗岩的风化淋滤程度较弱的特点。  相似文献   

11.
REE fractionation and Ce anomalies in weathered Karoo dolerite   总被引:1,自引:0,他引:1  
Analyses of samples from a weathering profile on Karoo dolerite allow elements to be divided into three groups depending on their behaviour. Si, K, Na, Mg, Ca, Sr, Ba and V are mobilized and removed from weathered products. Fe, Al. Ti, Zr, Hf, Zn, Cu, Sc, Co and Ni are immobile. REE, Y, and to a lesser extent Cr, are mobile and redistributed within the profile without a net loss of these elements from the profile. Large positive Ce anomalies are developed in oxidized weathered products by preferential leaching of the other REE's. Negative Ce anomalies and REE enrichment is a feature of less altered dolerite.  相似文献   

12.
Black Hill is a boulder‐strewn residual of norite standing 45 m above the Murray Plains about 80 km northeast of Adelaide. Between the boulders, the crystalline rock has weathered to a dark‐brown terra rossa‐rendzina soil with calcite, illite, kaolin, and hematite as the principal secondary minerals. At one site on the smooth lower slopes of the outcrop, the material above the norite consists of partially weathered granular fragments with considerable dolomite and some calcite in nodular form. Below the surface, the rock has been weathered along joints to produce the clay mineral nontronite, and between each corestone and this plastic clay there is a zone of laminated but essentially unaltered rock 10–25 cm thick. Pieces of amorphous silica occur sporadically in some joints and on the surface.

The dark‐brown soil appears to be related to the present environment but the nontronite in the joint weathering, the dolomite, and the amorphous silica are all consistent with the norite having been inundated, possibly during the Miocene marine transgression.

Calculations based on the retention of elements such as aluminium, potassium, titanium, and iron have been used to predict quantitatively the amount of certain minerals such as quartz, calcite, and dolomite introduced to the weathering profiles.  相似文献   

13.
In the Middle Atlas of Morocco, alkali basaltic flows record successive weathering phases during the Quaternary. In fresh basalt interior and intermediate external zones, the first weathering stage is characterised by glass dissolution and the formation of a Si-Al poorly-crystallised product. Advanced weathering phases are characterised by 10 Å halloysite, kaolinite and goethite, located within the primary minerals or as secondary products in fissures. Olivine and iddingsite are transformed into Si-rich goethite, plagioclase into halloysite and pyroxene into a mixture of halloysite + geothite. Dissolution of Ti-magnetite and ilmenite yielded Ti-rich products. In these conditions, the weathering of basalts and development of a soil matrix are accompanied by the elimination of certain chemical elements, such as Si, Ca, Na and K, and the concentration of Fe and Al. In the soil, clay minerals such as illite and vermiculite, do not have any genetic relationship with weathered basalt and were probably introduced externally.  相似文献   

14.
In order to evaluate the extent of a natural enrichment of Fe and Mn over the whole of the Hunchun Basin, the stability of Fe-Mn mineral phases, their status, the weathering rate of source materials, and soil characteristics were determined. A variety of samples were collected from sediments, soil profiles, and surface soils. In the solutions after a sequentially selective dissolution using sodium pyrophosphate (p), acid oxalate (o), and dithionite-citrate-bicarbonate (d), Si, Al and Fe were dominant in the d and p fractions, and Mn in the o and p fractions. The results showed that the existing phases and status of Fe and Mn were distinctly different, and that the abundance of amorphous Mn phases made thermodynamic calculation difficult. An application of these ferruginous weathering products was therefore made to understand basin development. The first terrace of the Hunchun River is more active than the second terrace, which can be inferred from it having a higher value in Fed/Fet. Amorphous Fe phases such as Fe(OH)3 and Fe3(OH)8 were controlling factors of Fe in the thermodynamic calculations. The transformation of the amorphous Fe phases to more stable phases was hindered by high contents of smectite and gibbsite, amorphous opaline produced from rice roots, and organic phosphate pesticides or fertilizers in soils. Source-rock deduction using water samples suggested granitic weathering. Precipitation around the Hunchun Basin is gradually becoming more acidic. Therefore, in the future it is inevitable that ecological and environmental problems related to the Fe phases mentioned above will occur in the drinking water supply for this area, especially in that of the first terrace.  相似文献   

15.
Germanium-silicon fractionation in the weathering environment   总被引:1,自引:0,他引:1  
We present a detailed study of germanium behavior in the soil weathering environment as an important step toward using the Ge/Si system as a tracer of silicate weathering processes in both modern and ancient environments. Intensely weathered soils developed on Hawaiian basalts have bulk soil Ge/Si ratios 2 to 10 times higher than fresh basalt (e.g., 10 to 25 μmol/mol vs. 2.5 μmol/mol). Soil Ge concentrations increase with Si, and decrease with Fe, suggesting that Ge sequestration is related to accumulation of secondary soil silicates, rather than retention in soil Fe oxy-hydroxides. Sequential extractions of these soils suggest that Ge/Si fractionation takes place by Ge sequestration during the initial precipitation of secondary soil aluminosilicates (principally allophane). Further Si loss and changes in mineralogy as these soils age result in little additional Ge/Si fractionation. Ge/Si ratios in granitic soils and saprolites are strongly influenced by relative weathering rates of primary minerals. Kaolinite has a Ge/Si ratio (5.9 μmol/mol) higher than the plagioclase from which it forms (3.1 μmol/mol), whereas accumulation of primary quartz (Ge/Si 0.5 μmol/mol) prevents granitic soils from attaining high Ge/Si ratios. Laboratory synthesis of allophane confirms that Ge is preferentially partitioned into the solid phase upon precipitation of secondary aluminosilicates from solution.  相似文献   

16.
基于福建省龙海市4类典型成土母质的垂向土壤剖面样品分析数据,研究了常量组分和微量元素含量及剖面分布特征。结果表明:研究区在温暖湿润气候条件下,化学风化作用强烈,Ca、Mg、Na、Si、K淋失贫化,含量明显低于全国均值,Al、Fe则相对富集,风化淋溶系数( ba)和硅铝铁率( Saf)值远低于全国土壤,土壤风化程度达到脱硅富铝铁阶段,花岗岩类成土母岩区风化作用尤为强烈;剖面土壤环境质量总体较好,微量元素含量与成土母质密切有关,九龙江口冲海积成因(剖面1)土壤重金属含量明显高于其他3个剖面;多数微量元素垂向分布受常量组分的控制,As、Cd、Cu、Hg、Pb、Zn与土壤中Fe等组分具有显著正相关性。因表层土壤中细粒黏质组分随地表径流淋失或下渗迁移,导致表层土壤低Fe、Al和重金属元素;在生物地球化学循环和人为污染的影响下,Hg、Cd、Pb、Zn等在表层土壤呈富集特征;多数重金属元素的相对富集系数小于1.0,且表层土壤无明显富集特征,认为除Hg、Pb等少数重金属元素外,其他元素受人为污染影响较小。  相似文献   

17.
Comprehensive understanding of chemical and mineralogical changes induced by weathering is valuable information when considering the supply of nutrients and toxic elements from rocks. Here minerals that release and fix major elements during progressive weathering of a bed of Devonian New Albany Shale in eastern Kentucky are documented. Samples were collected from unweathered core (parent shale) and across an outcrop excavated into a hillside 40 year prior to sampling. Quantitative X-ray diffraction mineralogical data record progressive shale alteration across the outcrop. Mineral compositional changes reflect subtle alteration processes such as incongruent dissolution and cation exchange. Altered primary minerals include K-feldspars, plagioclase, calcite, pyrite, and chlorite. Secondary minerals include jarosite, gypsum, goethite, amorphous Fe(III) oxides and Fe(II)-Al sulfate salt (efflorescence). The mineralogy in weathered shale defines four weathered intervals on the outcrop—Zones A–C and soil. Alteration of the weakly weathered shale (Zone A) is attributed to the 40-a exposure of the shale. In this zone, pyrite oxidization produces acid that dissolves calcite and attacks chlorite, forming gypsum, jarosite, and minor efflorescent salt. The pre-excavation, active weathering front (Zone B) is where complete pyrite oxidation and alteration of feldspar and organic matter result in increased permeability. Acidic weathering solutions seep through the permeable shale and evaporate on the surface forming abundant efflorescent salt, jarosite and minor goethite. Intensely weathered shale (Zone C) is depleted in feldspars, chlorite, gypsum, jarosite and efflorescent salts, but has retained much of its primary quartz, illite and illite–smectite. Goethite and amorphous FE(III) oxides increase due to hydrolysis of jarosite. Enhanced permeability in this zone is due to a 14% loss of the original mass in parent shale. Denudation rates suggest that characteristics of Zone C were acquired over 1 Ma. Compositional differences between soil and Zone C are largely attributed to illuvial processes, formation of additional Fe(III) oxides and incorporation of modern organic matter.  相似文献   

18.
《Applied Geochemistry》2002,17(7):885-902
An ancient saprolite has developed on the Palaeoproterozoic granulite, granite gneiss and amphibolite bedrock of the Vuotso–Tankavaara area of central Finnish Lapland. The present day climatic regime in Finnish Lapland lies within the northern boreal zone and so the saprolite there can be regarded as fossil. Cores of saprolite were collected from 4 sections (42 samples) and analyzed chemically and mineralogically. In the study area, progressive weathering of the rocks has been marked by gradual enrichment in Al, Fe and Ti; and depletion of Na, K and Ca. The higher concentration of Fe(III) and water and reduced Na and Ca in weathered bedrock in the 4 sections are indicative of oxidation, hydration and leaching processes involved during weathering. The primary minerals in the saprolite are plagioclase feldspar, K-feldspar, quartz, garnet (almandine) and hornblende; the common secondary minerals are kaolinite, halloysite, and vermiculite in addition to minor amounts of sericite. Intense weathering is indicated by: (1) the presence of kaolinite and halloysite in 4 sections of different bedrock types, and (2) the comparatively lower SiO2/Al2O3 (wt.%) ratio (2.30) of weathered granulites (3 sections) as compared to fresh granulite (4.33) and that of weathered amphibolite (2.68) as compared to fresh amphibolite (3.56). In general, kaolinite and halloysite have formed through the weathering of feldspars, garnet, and biotite. Vermiculite is the most probable alteration product of biotite. The formation of kaolinite and halloysite in Finnish Lapland indicates wetter and warmer climatic conditions during the time of their formation than at present. The possible time for formation of the saprolite is early Cretaceous–early Tertiary into Middle Miocene.  相似文献   

19.
A study of the abundance of Be in the gem sediments of Sri Lanka shows that Be is found in the range of 1–13 ppm. Be shows an irregular distribution among sediments. It occurs in the silicate form and due to the proximity to the beryllium bearing rocks, namely granites and pegmatites of the Highland and Southwest Groups of Sri Lanka, very little decomposition of the Be-bearing minerals had taken place. This is further aided by the high resistance to weathering of the beryllium minerals, particularly beryl and chrysoberyl.The beryllian granites and pegmatites of the Precambrian of Sri Lanka are presumed to have been formed due to the magmatic activity associated and related to charnockitic rocks abundant in the main gem bearing areas of Sri Lanka.Fluorine is found in the range of 400–2,000 ppm and the F/Be ratios for all the areas studied show a range of 54–441. The analysis of the averages of these ratios do not show any particular anomaly in any of the areas studied. The narrow ranges of the F/Be ratios indicate the similar conditions under which weathering and geochemical transportation had taken place in the gem fields of Sri Lanka.  相似文献   

20.
This investigation was carried out to assess the protective properties of the alteration film that develops during aqueous alteration of the French SON 68 (R7T7-type) nuclear glass, notably by examining the behavior of some network-forming cations in the presence of complexing anions. Glass alteration was studied here in the presence of orthophosphate ions. Comparisons were established between two series of tests performed with a solution containing orthophosphate ions and control tests performed under the same conditions but without phosphates. The first series of experiments was performed under initial rate conditions (i.e. in dilute media) to assess the effect of pH and phosphate concentration on the initial glass dissolution rate. Under these conditions, which ensure maximum chemical affinity of the glass dissolution reaction, phosphate adsorption occurs at the reaction interface only with acid pH values, at which the glass dissolution reaction is strongly inhibited. The elements that form complexes with the phosphates (Al, Fe, etc.) partially control glass dissolution in acidic media. Additional experiments carried out under saturated conditions — notably with respect to Si — in a solution enriched with phosphates showed that rare earth and Ca phosphates precipitated in the outer region of the alteration film, maintaining a glass dissolution rate significantly higher than in the control experiment. These observations have several implications. (1) Comparing the results obtained in the presence of phosphates and in the reference medium, the authors demonstrate deductively that glass dissolution is limited by the inner portion of the alteration film, i.e. the amorphous gel. (2) A kinetic law of SON 68 glass dissolution cannot be based on silica alone; the results of these experiments contradict Grambow’s model. (3) With regard to control of the glass dissolution kinetics by the protective properties of the gel, this type of experiment shows that the relation between the chemical composition and the microstructure of the gel is an important aspect in modeling the glass alteration kinetics, but that it is still poorly understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号