首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The foliation formed in a ductile shear zone can become folded by continuing shear in the zone without the foliation having to enter the shortening sector of the flow field. If the foliation lies parallel to the shear plane, infinitesimal variations in the rate of shear strain cause compensating rotations that may amplify into folds. Small increases in the rate cause backward rotations (counter to the sense of shear): these do not amplify. Small decreases cause forward rotations that do amplify.  相似文献   

2.
Specimens of fine grained micritic limestone were deformed in plane strain geometry in pure shear, a combination of simple and pure shear, and in simple shear. Temperatures were 400° C and 500° C, confining pressure was 100 MPa. In the experiments with a simple shear component strain is concentrated and approximately homogeneous in a 2–3 mm wide shear zone. Shear displacement is documented by marker lines and circles. Shear strain γ varies between 0.84 and 1.56. Strain is recorded by flattening of individual grains, defining a foliation normal to the axis of principal finite shortening ε 1. No twinning is observed on a macroscopic scale. X-ray and neutron diffraction techniques were used to characterize texture before and after deformation. All specimens display strong preferred orientation as documented by 0006, 10¯14 and 11¯220 pole-figures, c axes pole-figures display three maxima in the ε1–ε3 plane. If the axes of the strain ellipsoids are used as a coordinate system textures in pure and simple shear are similar but there is considerable monoclinic distortion in simple shear which is attributed to the noncoaxial strain path.  相似文献   

3.
The foliated and compositionally-banded granitic orthogneisses in the central core of the Maggia Nappe, a Lower Pennine basement nappe of the Central Swiss Alps, are shown to be the sheared equivalent of late-Hercynian age granitic intrusions. These ductile shear zones show mineral assemblages in amphibolite facies, are Alpine in age and form an anastomosing network enclosing remnant lozenge-shaped pods of relatively undeformed rock.The foliation developed within the shear zones concomitantly with a change in shape of quartz grain aggregates from initially equidimensional, through ‘tear-drop’ shapes, to ribbon-like aggregates. These shape changes occurred by intracrystalline glide together with intercrystalline slip on deformation-induced planar surfaces.  相似文献   

4.
A simple empirical model representing the variation of shear strain throughout a simple shear zone allows us to determine the evolution of finite strain as well as the progressive shape changes of passive markers. Theoretical strain patterns (intensity and orientation of finite strain trajectories, deformed shapes of initially planar, equidimensional and non-equidimensional passive markers) compare remarkably well with patterns observed in natural and experimental zones of ductile simple shear (intensity and orientation of schistosity, shape changes of markers, foliation developed by deformation of markers).The deformed shapes of initially equidimensional and non-equidimensional passive markers is controlled by a coefficient P, the product of
1. (1) the ratio between marker size and shear zone thickness
2. (2) the shear gradient across the zone.
For small values of P (approximately P < 2), the original markers change nearly into ellipses, while large values of P lead to “ retort” shaped markers.This theoretical study also allows us to predict, throughout a simple shear zone, various relationships between the principal finite strain trajectory, planar passive markers and foliations developed by deformation of initially equidimensional passive markers.  相似文献   

5.
中国大陆岩石圈壳幔韧性剪切带系统   总被引:12,自引:0,他引:12  
众多地震测深剖面的地质构造解析显示,大陆岩石圈存在既有显著差异又有密切联系的两套断裂系统,即以地壳表层脆性剪切带为主的浅层断裂系统和以切割莫霍界面的壳幔韧性剪切带为主的深部断裂系统。根据地震测深速度结构特征,结合深部构造岩石地球化学的综合研究,将切割莫霍界面或壳幔过渡带的壳幔韧性剪切带划分为三类(俯冲带、缝合带和剪切带)五型(大陆岩石圈边缘海沟俯冲带、大陆岩石圈碰撞缝合带、挤压型壳幔韧性剪切带、伸展型壳幔韧性剪切带和走滑型壳幔韧性剪切带)。建立起中国大陆岩石圈构造变形由地壳表层向深部扩展以及由壳幔过渡带向地壳中上部扩展的岩石圈双向扩展模式。壳幔韧性剪切带既是无机成因天然气等深部流体的通道,又是地震活动区的发震构造之一,因此研究大陆岩石圈壳幔韧性剪切带具有重要学术价值和实际意义。  相似文献   

6.
玲珑金矿田花岗岩中韧性剪切带与成矿的关系   总被引:4,自引:1,他引:4  
王吉珺  余和勇 《矿床地质》1990,9(3):231-242
珑玲燕山期交代型花岗岩,是在构造活动的驱使下,由共存重熔岩浆交代胶东群变质岩生成的壳源花岗岩,成岩作用是在可塑性准固体状态下进行的。伴随底辟侵位广泛形成韧性剪切带,发育有各种塑变、应变结构和糜棱岩化。随着岩体温度和可塑度的降低,相继发生脆性断裂,往往叠加在韧性剪切带之上。这种构造叠加部位为矿液造成良好的通道和富集部位。  相似文献   

7.
韧性剪切带是构造地质学研究的重要内容。传统研究韧性剪切带主要是野外露头解析和室内显微构造研究来综合判断剪切带的属性。近些年来,许多国内外学者对于剪切带中刚体(砾石、颗粒等)的研究,特别是使用模拟软件(如:Ansys、Matlab、Mathcad)试图恢复刚体的运动学轨迹,拓宽了学者们对于韧性剪切带中赋存刚体的研究思路。目前,对于刚体的模拟研究介绍甚少。基于此,本文对韧性剪切带中如何定量研究刚体的理论进行详细的介绍,并利用Mathcad编写程序恢复了刚体在给定条件下的运动学轨迹。  相似文献   

8.
塔里木盆地北缘的东天山-北山造山带中发育多条近E-W走向的大型韧性剪切带,它们构成了造山带中不同地体单元的主要边界,是碰撞造山及造山后的产物。本文在野外调查基础上,通过微观/宏观构造、几何学/运动学/动力学/年代学相结合的研究、厘定了东天山北山造山带中的7条大型韧性剪切带,阐述了剪切带的延伸、规模、剪切变形特征、变形条件以及形成与演化时限。并讨论了这7条不同类型韧性剪切带的形成过程以及东天山和北山古生代造山过程中所起的重要作用。  相似文献   

9.
The internal fabric of a deformed rock represents the state of finite strain. In some special cases the fabrics also record the strain history of the deformed body. These special cases can profitably be utilized to compare the predictions of dynamic models and strain paths in natural deformations. In this contribution, the concept of deformation path in the study of ductile shear zones has been demonstrated.  相似文献   

10.
Temperature and fluid content are critical parameters that control rock rheology and strain localization in the continental crust. Here, we determine by thermodynamic modelling the of localized ductile shearing during cooling of three different granitoid plutons: the Rieserferner and the Adamello plutons in the Italian Alps, and the Lake Edison pluton in the Sierra Nevada—USA. Shear zones exploited precursor joints, associated veins and alteration zones. and PT phase diagram sections were computed with Perple_X in the system MnO−Na2O−CaO −K2O−FeO−MgO−Al2O3−SiO2−H2O−Fe2O3. The phase diagram sections show that the nucleation of the brittle precursors (joints, veins) occurred at T» 450°C at fluid-saturated conditions. Localized ductile shearing likely occurred at temperature ranging between 420 and 460°C evolving from initially fluid-saturated to fluid-undersaturated conditions in a closed system. In this temperature range, granitoid rocks are potentially subject to a series of retrograde metamorphic reactions replacing the load-bearing feldspars with weaker phyllosilicates. Metamorphic reactions occurred in spatial association with the precursory structures, leading to localized shearing. Decreasing temperature and fluid-undersaturated conditions likely hampered progressive strain accommodation in shear zones by slowing down metamorphic reactions, thermally activated dislocation creep processes, fluid-mediated deformation mechanisms and weakening mechanisms. Polyphase granitoid ultramylonite and mylonitic quartz veins have been affected differently by the fluid-undersaturated conditions of the system, as consequence of different dominant deformation mechanisms and syn-kinematic paragenesis during localized shearing. Localized ductile shearing in cooling plutons effectively occurs in a limited temperature range (420–460°C) in which the strain accommodation capacity of the shear zone is controlled by the negative feedback between the cooling rate, the kinetics of metamorphic reactions and deformation mechanisms, and the consumption of the limited amount of available fluids.  相似文献   

11.
刘稳航  李玮  董云鹏  屈梦梦  杨源祯 《地质通报》2015,34(10):1897-1909
韧性剪切带中赋存的椭球状应变标志体(砾石、碎斑等)是研究剪切带运动学、动力学的重要应变标志体。传统研究中椭球状标志体通过对野外露头的观测或与实验岩石学结合,判断剪切带运动方向、探讨运动学和流变学特征。随着数值模拟技术在韧性剪切带中的引入和推广,国内外许多学者试图恢复椭球状标志体的运动轨迹和变形特征,并取得了显著的成果。然而,国内文献对于模拟韧性剪切带椭球状标志体的定量及模拟研究甚少,研究方法也鲜为介绍。基于此,针对韧性剪切带中椭球状标志体变形的最新研究进展,详细介绍建立在Jeffery理论和Eshelby理论之上的数值模拟思路和方法,并利用Mathcad软件模拟了给定条件下的椭球状标志体的运动轨迹、变形特征。  相似文献   

12.
中天山东部南北两缘韧性剪切带变形特征   总被引:2,自引:0,他引:2       下载免费PDF全文
(1)中天山北缘韧性剪切带除右旋韧剪变形之外,还发育相对较弱的左旋韧剪变形,局部残留加里东晚期的逆冲推覆韧剪变形;右旋韧剪变形的变形温度环境为中-低温,左旋韧剪变形的变形温度环境为高温、中温、中低温及低温。(2)中天山南缘韧性剪切带以右旋韧剪变形为主,兼具左旋韧剪变形;右旋韧剪变形的变形温度环境为中温、中低温、低温,左旋韧剪变形的变形温度环境为高温、中温、中低温及低温。(3)东天山存在一系列右旋韧性剪切带,中天山南北两缘韧性剪切带的构造变形与辛格尔断裂、兴地断裂等右旋韧性剪切带的变形以及塔里木北缘东部晚震旦—早古生代地层的同劈理褶皱变形、南天山泥盆纪地层的变形可能具成因联系。  相似文献   

13.
Lithospheric deformation on Earth is localized under both brittle and ductile deformation conditions. As high-temperature ductile rheologies are fundamentally strain-rate hardening, the formation of localized ductile shear zones must involve a structural or rheological change or a change in deformation conditions such as an increase in temperature. In this contribution, I develop a localization potential that quantifies the weakening associated with these changes. The localization potential corresponds to the increase in strain rate resulting from that change under constant stress conditions. I provide analytical expressions for the localization potential associated with a temperature increase, grain size reduction, an increase in water fugacity, melt content, or the abundance of a weak mineral phase. I show that these processes cannot localize deformation from a mantle convection scale (103 km) to a ductile shear zone scale (1 km). To achieve this, is it necessary to invoke a structural transition whereby the weak phase in a rock forms interconnected layers. This process is efficient only if one phase is much weaker than the others or if the weakest phase has a highly non-linear rheology. Micas, melt, and fine-grained aggregates – unless dry rheologies are used – have the necessary characteristics. As none of these phases is expected to be present in the dry lithosphere of Venus, this concept can explain why Venus, unlike the Earth, does not display a global network of plate boundaries. The diffuse plate boundary in the Central Indian Ocean may be as yet non-localized because serpentinization has not reached the ductile levels of the lithosphere.  相似文献   

14.
A suite of metapelitic, basic and quartzofeldspathic rocks intruded by enderbitic gneiss from the southernmost tip of the Eastern Ghats Belt, India, and metamorphosed at c. 750–800  °C, 6  kbar, were subjected to repeated ductile shear deformation, hydration, cooling and accompanying alkali metasomatism along narrow shear zones. Gedrite-bearing assemblages developed in the shear zones traversing metapelitic rocks. Interpretation of the reaction textures in an appropriate P–T  grid in the system FMASH, an isothermal–isobaric μ H2O– μ Na2O grid in the system NFMASH, and geothermobarometric data suggest a complex evolutionary history for the gedrite-bearing parageneses. Initially, gedrite-bearing assemblages were produced due to increase in μ Na2O at nearly constant but high μ H2O accompanying cooling. Gedrite was partially destabilized to orthopyroxene+albite due to progressively increasing μ Na2O. During further cooling and at increased μ H2O a second generation of gedrite appeared in the rocks.  相似文献   

15.
西藏阿里雅鲁藏布江缝合带韧性剪切带的磁组构特征   总被引:1,自引:0,他引:1  
应用磁组构测量方法,厘定、划分了札达地区印度河—雅鲁藏布江缝合带内的韧性剪切带,两条强韧性带分别位于缝合带北缘和南缘,均具有南盘(下盘)俯冲、平面右旋扭动运动特征和压扁型应变特征。韧性剪切发生于65Ma以前,它们应是印—欧两大板块俯冲-碰撞剪切应变产物,是板块缝合带的重要组成部分。  相似文献   

16.
西藏阿里札达韧性剪切带特征及其X光岩组分析   总被引:1,自引:0,他引:1  
文中简述了西藏阿里札达盆地的地质背景、区域地层和札达韧性剪切带的基本特征。采用X射线衍射法对札达韧性剪切带中的石英、方解石和白云母等三种矿物,进行了X光岩组分析,确定了韧性变形岩石的组构特征、韧性剪切带的属性和变形岩石的应变类型,以及韧性剪切带形成时的温压条件。研究表明,韧性变形岩石均具不对称组构,反映韧性带属于南盘(下盘)俯冲型韧性剪切带,韧性变形是在高温、高压、低应变速率条件下发生的,处于>10km的地壳深度,岩石应变类型以压扁应变为主。  相似文献   

17.
韧性剪切带组构的演化和剪切作用类型受到许多研究者的关注。运用极莫尔圆法、有限应变法、刚性颗粒法、石英光轴组构结合有限应变测量法、拖尾形态法、剪切带内变形脉体(岩墙)法、碎斑法等方法可以估算剪切带变形过程中的运动学涡度,进而判别剪切带中单剪切组分与纯剪切组分的相对含量。自然界的剪切带一般介于单剪与纯剪之间,运动学涡度Wk介于0~1之间,表明韧性剪切带在变形过程中发生了垂直于剪切带边界(Z轴)方向的韧性减薄。剪切带变形过程中的韧性减薄量可依据有限应变测量与运动学涡度估算求得,也可依据剪切带内的石香肠(布丁)构造求解,还可依据构建极莫尔圆求解。以华北克拉通北缘的楼子店变质核杂岩及其韧性剪切带,以及希腊西奈山的Chelmos剪切带为例,介绍估算韧性剪切带韧性减薄的方法,这种韧性减薄是对大规模岩石圈减薄的有益补充和完善。研究结果表明,定量估算与变质核杂岩相关的韧性剪切带的剪切作用类型是分析变质核杂岩形成机制的有效途径和方法。  相似文献   

18.
韧性剪切带的剪切作用类型和韧性减薄量   总被引:1,自引:0,他引:1  
韧性剪切带组构的演化和剪切作用类型受到许多研究者的关注。运用极莫尔圆法、有限应变法、刚性颗粒法、石英光轴组构结合有限应变测量法、拖尾形态法、剪切带内变形脉体(岩墙)法、碎斑法等方法可以估算剪切带变形过程中的运动学涡度,进而判别剪切带中单剪切组分与纯剪切组分的相对含量。自然界的剪切带一般介于单剪与纯剪之间,运动学涡度Wk介于0~1之间,表明韧性剪切带在变形过程中发生了垂直于剪切带边界(Z轴)方向的韧性减薄。剪切带变形过程中的韧性减薄量可依据有限应变测量与运动学涡度估算求得,也可依据剪切带内的石香肠(布丁)构造求解,还可依据构建极莫尔圆求解。以华北克拉通北缘的楼子店变质核杂岩及其韧性剪切带,以及希腊西奈山的Chelmos剪切带为例,介绍估算韧性剪切带韧性减薄的方法,这种韧性减薄是对大规模岩石圈减薄的有益补充和完善。研究结果表明,定量估算与变质核杂岩相关的韧性剪切带的剪切作用类型是分析变质核杂岩形成机制的有效途径和方法。  相似文献   

19.
20.
Metasomatism and fluid flow in ductile fault zones   总被引:8,自引:0,他引:8  
Observed major element metasomatism in 5 amphibolite facies ductile fault zones can be explained as the inevitable consequence of aqueous fluid flow along normal temperature gradients under conditions of local chemical equilibrium. The metasomatism does not require the infiltration of chemically exotic fluids. Calculations suggest that metasomatized ductile fault zones are typically infiltrated by 105 moles H2O/cm2, fluid flow is in the direction of decreasing temperature, and fluids contain about 1.0 molal total chloride. Where available, stable isotopic alteration data confirm both flow direction and fluid fluxes calculated from major element metasomatism. The fluid fluxes inferred from metasomatism do not require large-scale fluid recirculation or mantle sources if significant lateral fluid flow occurs in the deep crust. Time-integrated fluid fluxes are combined with estimates of flow duration to constrain average flow rates and average permeabilities. Rocks in ductile fault zones are probably much more permeable during metasomatism (average permeabilities of 10-17 to 10-15 m2) than rocks normally are during regional metamorphism (10-21 to 10-18 m2). Estimated average fluid flow rates (3.5×10-3 to 0.35 m/yr) are insufficient, however, to significantly elevate ambient temperatures within ductile faults. Fluid flow in the direction of decreasing temperature may increase the ductility of silicate rocks by adding K to the rocks and thereby driving mica-forming reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号