首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field studies in the Palaeoproterozoïc Daléma basin, Kédougou-Kéniéba Inlier, reveal that the main tectonic feature comprises alternating large shear zones relatively well-separated by weakly deformed surrounding rock domains. Analysis of the various structures in relation to this major D2 phase of Eburnean deformation indicates partitioning of sinistral transpressive deformation between domains of dominant transcurrent and dominant compressive deformation. Foliation is mostly oblique to subvertical and trending 0–30° N, but locally is subhorizontal in some thrust-motion shear zones. Foliation planes of shear zones contain a superimposed subhorizontal stretching lineation which in places cross-cuts a steeply plunging stretching lineation which is clearly expressed in the metasedimentary rocks of weakly deformed surrounding domains. In the weakly deformed domains, the subhorizontal lineation is absent, whereas the oblique to subvertical lineation is more fully developed. Finite strain analyses of samples from surrounding both weakly deformed and shearing domains, using finite strain ratio and the Fry method, indicate flattened ellipsoid fabrics. However, the orientation of the long axis (X) of the finite strain ellipsoid is horizontal in the shear zones and oblique within the weakly deformed domains. Exceptionally, samples from some thrust zones indicate a finite strain ellipsoid in triaxial constriction fabrics with a subhorizontal long axis (X). In addition, the analysis of the strain orientation starting from semi-ductile and brittle structures indicates that a WNE–ESE (130° N to 110° N) orientation of strain shortening axis occurred during the Eburnean D2 deformation.  相似文献   

2.
Finite-strain was studied in the mylonitic granitic and metasedimentary rocks in the northern thrust in Wadi Mubarak belt to show a relationship to nappe contacts between the old granitic and metavolcano-sedimentary rocks and to shed light on the heterogeneous deformation for the northern thrust in Wadi Mubarak belt. We used the Rf/ϕ and Fry methods on feldspar porphyroclasts, quartz and mafic grains from 7 old granitic and 7 metasedimentary samples in the northern thrust in Wadi Mubarak belt. The finite-strain data shows that old granitic rocks were moderate to highly deformed and axial ratios in the XZ section range from 3.05 to 7.10 for granitic and metasedimentary rocks. The long axes (X) of the finite-strain ellipsoids trend W/WNW and E/ENE in the northern thrust in Wadi Mubarak belt. Furthermore, the short axes (Z) are subvertical associated with a subhorizontal foliation. The value of strain magnitudes mainly constants towards the tectonic contacts between the mylonitic granite and metavolcano-sedimentary rocks. The data indicate oblate strain symmetry (flattening strain) in the mylonitic granite rocks. It is suggested that the accumulation of finite strain was formed before or/and during nappe contacts. The penetrative subhorizontal foliation is subparallel to the tectonic contacts with the overlying nappes and foliation was formed during nappe thrusting.  相似文献   

3.
In the Singhbhum Shear Zone of eastern India successive generations of folds grew in response to a progressive ductile shearing. During this deformation a mylonitic foliation was initiated and was repeatedly transposed. The majority of fold hinges were formed in an arcuate manner at low angles to the Y-axis in an E-W trending subhorizontal position and major segments of the fold hinges were then rotated towards the down-dip northerly plunging X-axis. The striping and intersection lineations were rotated in the same manner. The down-dip mylonitic lineation is a composite structure represented by rotated early lineations and newly superimposed stretching lineations. The consistent asymmetry of the folds, the angular relations between C and S surfaces and the evidence of two-dimensional boudinage indicate that the deformation was non-coaxial, but with a flattening type of strain with λ1λ2. The degree of non-coaxiality varied both in space and time. From the progressive development of mesoscopic structures it is concluded that the 2–3 km wide belt of ductile shear gave rise to successive anastomosing shear zones of mesoscopic scale. When a new set of shear lenses was superimposed on already sheared rocks, the preexisting foliation generally lay at a low angle to the lenses. No new folds developed where the acute angle was sympathetic to the sense of shear displacements. Where the acute angle was counter to the sense of shear, the pre-existing foliation, lying in the instantaneous shortening field, was deformed into a set of asymmetric folds.  相似文献   

4.
The vorticity analysis technique was applied to measure the different lithological units,such as schist,metagranite and metavolcano-sedimentary rocks,which are present in the Halaban region.This work aims to interpret the relationship between the different lithologies and the tectonic setting,in order to elucidate the nature of kinematic analysis in the Halaban region.The kinematic analyses were applied to feldspar porphyroclasts,quartz and hornblende for twentysix samples.The kinematic vorticity number (W_m) for deformed rocks in the study area ranged from~0.6 to 0.9.The direction of the long axes for finite strain data (X axes) revealed a WNW trend with shallow dipping.The direction of the short axes for finite strain data (Z axes) were represented by vertical with associated horizontal foliation.The results of the kinematic vorticity and strain analyses are characterized by simple shear with different degrees of deformation in the Halaban region.Furthermore,our finite strain data shows no significant volume change during deformation.The subhorizontal foliation was synchronized with thrusting and deformation.Furthermore,throughout the overlying nappes,the same attitudes of tectonic contacts are observable,the nappes in the orogens being formed from simple shear deformation.  相似文献   

5.
The Alpine belt in Corsica (France) is characterized by the occurrence of stacked tectonic slices derived from the Corsica/Europe continental margin, which outcrop between two weakly or non‐metamorphic tectonic domains: the ‘autochthonous’ domain of the Hercynian basement to the west and the Balagne Nappe (ophiolitic unit belonging to the ‘Nappes supérieures’) to the east. These slices, including basement rocks (Permian granitoids and their Palaeozoic host rocks), Late Carboniferous–Permian volcano‐sedimentary deposits, coarse‐grained polymict breccias (Volparone Breccia) and Middle Eocene siliciclastic turbidite deposits, were affected by a polyphase deformation history of Alpine age, associated with a well‐developed metamorphic recrystallization. This study provides new quantitative data about the peak of metamorphism and the retrograde P–T path in the Alpine Corsica: the tectonic slices of Volparone Breccia from the Balagne region (previously regarded as unmetamorphosed) were affected by peak metamorphism characterized by the phengite + chlorite + quartz ± albite assemblage. Using the chlorite‐phengite local equilibria method, peak metamorphic P–T conditions coherent with the low‐grade blueschist facies are estimated as 0.60 ± 0.15 GPa and 325 ± 20 °C. Moreover, the retrograde P–T path, characterized by a decrease of pressure and temperature, is evidence of the first stage of the exhumation path from the peak metamorphic conditions to greenschist facies conditions (0.35 ± 0.06 GPa and 315 ± 20 °C). The occurrence of metamorphic peak at high‐pressure/low‐temperature (HP/LT) conditions is evidence of the fact that these tectonic slices, derived from the Corsica/Europe continental margin, were deformed and metamorphosed in the Alpine subduction zone during their underplating at ~20 km of depth into the accretionary wedge and were subsequently juxtaposed against the metamorphic and non‐metamorphic oceanic units during a complex exhumation history.  相似文献   

6.
Neoproterozoic rocks, Oligocene to Neogene sediments and Tertiary Red Sea rift-related volcanics (Harrat) are three dominant major groups exposed in the Jeddah tectonic terrane in Western Arabia. The basement complex comprises amphibolites, schists, and older and younger granites unconformably overlain by a post-amalgamation volcanosedimentary sequence (Fatima Group) exhibiting post-accretionary thrusting and thrust-related structures. The older granites and/or the amphibolites and schists display mylonitization and shearing in some outcrops, and the observed kinematic indicators indicate dextral monoclinic symmetry along the impressive Wadi Fatima Shear Zone. Finite strain analysis of the mylonitized lithologies is used to interpret the deformation history of the Wadi Fatima Shear Zone. The measured finite strain data demonstrate that the amphibolites, schists, and older granites are mildly to moderately deformed, where XZ (axial ratios in XZ direction) vary from 2.76 to 4.22 and from 2.04 to 3.90 for the Rf/φ and Fry method respectively. The shortening axes (Z) have subvertical attitude and are associated with subhorizontal foliation. The data show oblate strain ellipsoids in the different rocks in the studied area and indication bulk flattening strain. We assume that the different rock types have similar deformation behavior. In the deformed granite, the strain data are identical in magnitude with those obtained in the Fatima Group volcanosedimentary sequence. Finite strain accumulated without any significant volume change contemporaneously with syn-accretionary transpressive structures. It is concluded that a simple-shear deformation with constant-volume plane strain exists, where displacement is strictly parallel to the shear plane. Furthermore, the contacts between various lithological units in the Wadi Fatima Shear Zone were formed under brittle to semi-ductile deformation conditions.  相似文献   

7.
In metamorphic core complexes it is commonly unclear whether lower plate mylonites formed as the down-dip continuation of a detachment fault, or whether they represent a subhorizontal shear zone that was captured by a more steeply dipping detachment fault. Detailed microstructural, fabric, and strain data from mylonites in the Buckskin-Rawhide metamorphic core complex, west-central Arizona, constrain the structural development of the lower plate shear zone. Widespread exposures of ∼22–21 Ma granitoids of the Swansea Plutonic Suite enable us to separate Miocene strain coeval with core complex extension from older deformation. Mylonites across the lower plate consistently record top-to-the-NE-directed shear. Miocene quartz and feldspar deformation/recrystallization mechanisms indicate ∼450–500 °C mylonitization temperatures that were relatively uniform across a distance of ∼35 km in the extension direction. Quartz dynamically recrystallized grain sizes do not systematically vary in the extension direction. Strain recorded in the Swansea Plutonic Suite is also relatively uniform in the extension direction, which is incompatible with models in which lower plate mylonites form as the ductile root of a major detachment fault. Altogether these data suggest the mylonitic shear zone initiated with a ≤4° dip and was unroofed by a more steeply dipping detachment fault system. Lower plate mylonites in the Buckskin-Rawhide metamorphic core complex thus represent a captured subhorizontal shear zone rather than the down-dip continuation of a detachment fault.  相似文献   

8.
Evaluating magnetic lineations (AMS) in deformed rocks   总被引:3,自引:0,他引:3  
Magnetic lineation in rocks is given by a cluster of the principal axes of maximum susceptibility (Kmax) of the Anisotropy of Magnetic Susceptibility (AMS) tensor. In deformed rocks, magnetic lineations are generally considered to be the result of either bedding and cleavage intersection or they parallel the tectonic extension direction in high strain zones. Our AMS determinations, based on a variety of samples that were taken from mudstones, slates and schists from the Pyrenees and Appalachians, show that strain is not the only factor controlling the development of magnetic lineation. We find that the development and extent to which the magnetic lineation parallels the tectonic extension direction depends on both the original AMS tensor, which in turn depends on the lithology, and the deformation intensity. Rocks having a weak pre-deformational fabric will develop magnetic lineations that more readily will track the tectonic extension.  相似文献   

9.
A series of regional deformation phases is described for the metamorphic basement and the Permian cover in an area in the central Orobic Alps, northern Italy. In the basement deformation under low-grade amphibolite metamorphic conditions is followed by a second phase during retrograde greenschist conditions. These two phases predate the deposition of the Permian cover and are of probable Variscan age. An extensional basin formed on the eroded basement during the Late Carboniferous, filled with fan conglomerates and sandstones, and rhyolitic volcanic rocks. Well-preserved brittle extensional faults bound these basins. Further extension deformed basement and cover before the onset of Alpine compressional tectonics. Cover and basement were deformed together during two phases of compressional deformation of post-Triassic age, the first giving rise to tectonic inversion of the older extensional faults, the second to new thrust faults, both associated with south-directed nappe emplacement and regional folding. Foliations develop in the cover only during the first phase of deformation as part of the activity on “shortening faults”. Main activity on the Orobic thrust actually postdates the first phase of thrusting and foliation development in the cover.  相似文献   

10.
The Alxa region, located in the southernmost part of Central Asian Orogenic Belt, is a key region for understanding the tectonic processes associated with the closure of the Paleo-Asian Ocean. Issues of late Paleozoic tectonic settings and tectonic unit divisions of the Alxa region still remain controversial. In this study, we report a new ophiolitic mélange named the Tepai ophiolitic mélange in the northern Alxa region, northwest of Alxa Youqi. The tectonic blocks in the Tepai ophiolitic mélange are mainly composed of serpentinized peridotites, serpentinites, mylonitized gabbros, gabbros, basalts, and quartzites, with a matrix comprising highly deformed clastic rocks. A gabbro exhibits a zircon LA-ICP-MS Ue Pb age of278.4 ± 3.3 Ma. Gabbros exhibit high Mg O and compatible element contents, but extremely low TiO_2,totally rare earth element and high field strength element contents. These rocks exhibit light rare earth element depleted patterns, and display enriched in large-ion lithophile elements and depleted in high field strength elements. Boninite-like geochemical data show that they were formed in a subductionrelated environment, and derived from an extremely depleted mantle source infiltrated by subduction-derived fluids and/or melts. The Tepai ophiolitic mélange exhibits similar zircon U-Pb-O isotopic compositions and whole-rock geochemical characteristics to those of the Quagan Qulu ophiolite.Therefore, we propose that the Tepai ophiolitic mélange may have been the western continuation of the Quagan Qulu ophiolite. Our new finding proves the final closure of the Paleo-Asian Ocean might have taken place later than the early Permian.  相似文献   

11.
Transected F1 fold structures in eastern Ireland are associated with subhorizontal stretching in the S1, cleavage whereas axial planar cleavage contains a vertical elongation direction. This suggests that the non-axial planar cleavage was influenced by a distributed strike-slip ductile shear. A major NE-SW trending F1 syncline is described in which the minor F1 folds show systematic variations in cleavage transection parameters. On the steep limb of the major syncline the cleavage transects the minor F1 folds in a consistently clockwise sense, whereas on the normal limb anticlockwise transected folds are seen. Axial planar cleavage occurs at the core of the major syncline. Fold profile analysis indicates that the buckling of the layers began before the initiation of the cleavage. Open, parallel folds at the major synclinal hinge zone are progressively ‘flattened’ on the steep limb towards a major D1 sinistral transcurrent fault. The angular transection, A, attains a maximum of 15° clockwise which diminishes to <5° at higher strains adjacent to the major fault. Incremental fibre growth in pressure shadows show a two-stage tectonic strain superposition of vertical pure shear followed by sinistral transcurrent simple shear during the development of the clockwise transecting cleavage. Anticlockwise transected folds were influenced by local dextral strike-slip on the southern margins of a rigid terrane. As a regional feature, the clockwise transection is explained by a sinistral transpressive deformation of end-Silurian age.  相似文献   

12.
为研究东昆仑南缘中下二叠统马尔争组沉积物源及沉积构造背景,对东昆仑南缘哥日卓托地区中下二叠统马尔争组进行了详细的沉积地层划分、沉积环境及碎屑锆石U-Pb年代学进行了研究。结果表明,马尔争组为一套形成于大陆斜坡半深海-深海环境的浊积岩系。碎屑锆石U-Pb年龄谱可明显划分为早古生代和新元古代两个主年龄谱及古、中元古代两个次级年龄谱。主年龄谱分别为396~573Ma和727~947Ma,峰值年龄分别为421 Ma和862Ma。次级年龄谱分别为1117~1993Ma和2319~3063Ma,峰值年龄不明显。本文认为东昆仑南缘哥日卓托地区马尔争组物质来源较为复杂,显示早古生代、新元古代、中元古代和古元古代多个时代物源共同供给的特征。东昆仑造山带早古生代岩浆岩和新元古代岩浆岩为其提供了约60~65%的沉积物源,而古老的变质基底为其提供了仅约30~35%的沉积碎屑。综合区域资料认为马尔争组形成于相对稳定的被动大陆边缘沉积构造背景,该期阿尼玛卿古特提斯洋还未开始向北俯冲。  相似文献   

13.
In a Barrovian metamorphic sequence, garnetiferous mica schists document a heterogeneously developed superposition of sub‐orthogonal fabrics and multiple garnet growth episodes. In the variably deformed domains, four types of garnet porphyroblasts have been defined based on inclusion trail patterns. Modelled garnet zoning in the MnNCKFMASHTO system indicates a prograde evolution from 4–4.5 kbar and 490–510 °C to 5–6 kbar and 520–550 °C in the earliest subhorizontal fabric progressing towards 6.5–7.5 kbar and 560–590 °C in the subsequent subvertical foliation. This fabric is heterogeneously deformed into a shallow‐dipping retrograde foliation associated with garnet resorption. In situ electron backscatter diffraction measurements of ilmenite inclusions in individual garnet grains yield precise data on included planar and linear elements. Consistent orientations of internal foliations, lineations and foliation intersection axis sets indicate a superposition of three sub‐orthogonal foliation systems. Weak variations of internal records with increasing intensity of deformation suggest that a moderate buckling stage occurred, but apparent lack of porphyroblast rotation is interpreted as a result of dominant passive flow. Coupling the orientation of internal fabric sets with P–T estimates is used to complement the tectono‐metamorphic evolution of the thickened crust. We demonstrate that garnet porphyroblasts preserve features which reflect large‐scale tectonic processes in orogens.  相似文献   

14.
Microstructural and magnetic investigations (anisotropy of magnetic susceptibility, AMS) on sections across basement–cover interfaces (BCI) revealed a complex evolution in the crystalline basement rocks beneath and in the basal units of the Caledonian fold-and-thrust belt: (1) Pre-Caledonian mylonitic fabrics in basement granite relate to steep shear zones. (2) Palaeoweathering formed smectite and illite at the expense of feldspar and mica. Secondary Fe-bearing clay minerals and the intensity of the chemical weathering control the bulk susceptibility. Changing susceptibility and AMS relate to a (time) sequence from primary magnetite to secondary paramagnetic clay to pyrite and ferrimagnetic pyrrhotite. (3) Burial compaction with BCI-parallel fabrics. (4) Caledonian cleavage, overprinted by décollement zones with S–C–C′ fabrics. Décollement cataclasis overprinted pre-existing magnetic fabrics and produced horizontal magnetic lineations and subhorizontal foliations defined by the S–C–C′ fabrics. Clay mineral enrichment, together with subsequent, BCI-parallel compaction fabrics, decreased the shear strength in the basement rocks beneath the BCI. Detachments initiated at such low-strength zones and produced allochthonous units with their footwall within crystalline basement rocks, an observation of general importance for orogenic fold-and-thrust belts.  相似文献   

15.
The West Junggar lies in the southwest part of the Central Asian Orogenic Belt (CAOB) and consists of Palaeozoic ophiolitic mélanges, island arcs, and accretionary complexes. The Barleik ophiolitic mélange comprises several serpentinite-matrix strips along a NE-striking fault at Barleik Mountain in the southern West Junggar. Several small late Cambrian (509–503 Ma) diorite-trondhjemite plutons cross-cut the ophiolitic mélange. These igneous bodies are deformed and display island arc calc-alkaline affinities. Both the mélange and island arc plutons are uncomfortably covered by Devonian shallow-marine and terrestrial volcano-sedimentary rocks and Carboniferous volcano-sedimentary rocks. Detrital zircons (n = 104) from the Devonian sandstone yield a single age population of 452–517 million years, with a peak age of 474 million years. The Devonian–Carboniferous strata are invaded by an early Carboniferous (327 Ma) granodiorite, late Carboniferous (315–311 Ma) granodiorites, and an early Permian (277 Ma) K-feldspar granite. The early Carboniferous pluton is coeval with subduction-related volcano-sedimentary strata in the central West Junggar, whereas the late Carboniferous–early Permian intrusives are contemporary with widespread post-collisional magmatism in the West Junggar and adjacent regions. They are typically undeformed or only slightly deformed.

Our data reveal that island arc calc-alkaline magmatism occurred at least from middle Cambrian to Late Ordovician time as constrained by igneous and detrital zircon ages. After accretion to another tectonic unit to the south, the ophiolitic mélange and island arc were exposed, eroded, and uncomfortably overlain by the Devonian shallow-marine and terrestrial volcano-sedimentary strata. The early Carboniferous arc-related magmatism might reflect subduction of the Junggar Ocean in the central Junggar. Before the late Carboniferous, the oceanic basins apparently closed in this area. These different tectonic units were stitched together by widespread post-collisional plutons in the West Junggar during the late Carboniferous–Permian. Our data from the southern West Junggar and those from the central and northern West Junggar and surroundings consistently indicate that the southwest part of the CAOB was finally amalgamated before the Permian.  相似文献   

16.
The Precambrian crystalline basement of Sinai represents a low-pressure metamorphic terrain intruded by large volumes of granitic rock. Based on detailed fieldwork, a general assessment of the metamorphic and tectonic history of the Wadi Kid area, southeastern Sinai, is presented. Three lithostratigraphic units can be traced over the whole area; the Umm Zariq Formation (arkoses, greywackes, pelites), the Tarr Formation (dolomitic-calcareous rocks) and, unconformably overlying the previous two units, the Heib Formation (flows, pyroclastics, conglomerates). D1 deformation of this 3.5 km thick sequence resulted in upright folds, with changing strike of the axial planes from NE to NW across the area. Low-grade conditions prevailed during this phase. D2 produced recumbent folds and a subhorizontal cleavage, leading to transposition of D1 structures in the higher grade parts of the area. Metamorphism reached its peak conditions around D2. Pressures are estimated at 2.5–3.5 kb, whereas temperatures vary from 450–660°C. In the central Wadi Kid area, garnet, staurolite, cordierite and andalusite occur in metapelitic rocks. Highest grade rocks are syn-D2 andalusite—K-feldspar gneiss diapirs. Metamorphic zones are shallow dippin and form a domed pattern. Most of the metavolcanics and the syntectonic and late tectonic plutonic rocks belong to the calc-alkaline suite.The Kid Group sediments and volcanics were deposited in a shallow basin and subaerially, respectively, probably on older sialic basement. This basement is at present not exposed because post-orogenic uplift directly after the Pan-African event was relatively small (3–6 km). Metamorphism and the D2 formation phase can both be related to a rising (mafic?) diapir. The Sinai Peninsula may have been a continental margin or a cratonized, mature island arc, in Late Proterozoic times.  相似文献   

17.
The estimation of finite strain in rocks is fundamental to a meaningful understanding of deformational processes and products on all scales from microscopic fabric development to regional structural analyses. The Rf/φ and Fry methods on feldspar porphyroclasts and mafic grains from 5 granite, 1 metavolcanic, 3 metasedimentary and 1 granodiorite samples were used in Wadi El Falek region. Finite-strain data shows that a high to moderate range of deformation of the granitic to metavolcano-sedimentary samples and axial ratios in the XZ section range from 1.60 to 4.10 for the Rf/φ method and from 2.80 to 4.90 for the Fry method. Furthermore, the short axes are subvertical associated with a subhorizontal foliation. We conclude that finite strain in the deformed granite rocks is of the same order of magnitude as that from metavolcano-sedimentary rocks. Furthermore, contacts formed during intrusion of plutons with some faults in the Wadi El Falek area under brittle to semi-ductile deformation conditions. In this case, finite strain accumulated during superimposed deformation on the already assembled nappe structure. It indicates that the nappe contacts formed during the accumulation of finite strain.  相似文献   

18.
G. Musumeci 《Geodinamica Acta》2013,26(1-2):119-133
Abstract

The Monte Grighini Complex (Central-Western Sardinia) is a NW-SE trending metamorphic complex of Hereynian age made up of a medium grade Lower tectonic unit with mylonitie granitoids and a low grade Upper tectonic unit exposed in the westernmost and southernmost portions of this complex. The Lower Unit shows a prograde metamor phism from garnet to sillimanite zone and the transition from MP/MT to LP/HT metamorphism. The metamorphic climax was reached at the end of the main deformative phase 1)2 (600° C. 6 kbar). After the main tectonic and metamorphic phase. the Lower Unit was affected by a wide NW-SE trending ductile dextral wrench shear zone. Intrusive rocks emplaced within the shear zone yielded radiometric ages of 305-300 Ma. Shear deformation leads to low temperature C-S mylonites and retrograde phyllonitic rocks with subhorizontal NW-SE trending stretching lineations. Kinematic analysis of the shear zone points to a dextral sense of shear with an amount of ductile displacement of about 7 km. Later low angle N-S and E-W trending normal faults are associated with cataclastic zones separating the Lower Unit from the Upper one. These faults originated during a later evolutionary stage of the shear zone. This shows a progressive change of deformation regime from duetile wrenching to brittle normal faulting. The Monte Grighini Complex is a good example of ductile wrench tectonics. followed by uplift and extension in the Paleozoic basement of Sardinia.  相似文献   

19.
Progressive ductile shearing in the Phulad Shear Zone of Rajasthan, India has produced a complex history of folding, with development of planar, non-planar and refolded sheath folds. There are three generations of reclined folds, F1, F2 and F3, with a striping lineation (L1) parallel to the hinge lines of F1. The planar sheath folds of F1 have long subparallel hinge lines at the flanks joining up in hairpin curves at relatively small apices. L1 swerves harmoniously with the curving of F1 hinge line. There is a strong down-dip mineral lineation parallel to the striping lineation in most places, but intersecting it at apices of first generation sheath folds. Both the striping and the mineral lineation are deformed in U-patterns over the hinges of reclined F2 and F3. Folding of axial surfaces and hinge lines of earlier reclined folds by later folds was accompanied by very large stretching and led to the development of non-planar sheaths. The reclined folds of all the three generations were deformed by a group of subhorizontal folds. Each generation of fold initially grew with the hinge line at a very low angle with the Y-axis of bulk non-coaxial strain and was subsequently rotated towards the down-dip direction of maximum stretching. The patterns of deformed lineations indicate that the stretching along the X-direction was extremely large, much in excess of 6000 percent.  相似文献   

20.
Measurements of thermal conductivity on 106 disc specimens of rocks from 275 m of the Permian to Triassic section of the Southern Coalfield of the southern Sydney Basin have been carried out in an effort to explain a high rank gradient in the Permian coals. The samples came from six diamond drill holes north and west of Wollongong, although one hole only provided specimens of a syenitic sill (n = 17, mean thermal conductivity = 2.36 W/m°K, s.d. 0.03). When combined with previously published data on chip specimens, with which there is good agreement, from a further four drill holes the mean thermal conductivity for the late Permian and early Triassic sandstones and shales is 3.20 W/m°K.Heat generation by Permian volcanic rocks below the coal measures (from about 1 to 3 μW/m3), and by basement granitic rocks, appears to be consistent with previously reported heat flow for the southern Sydney Basin (about 80 mW/m2). This heat flow is a relatively high value for the east coast of Australia. Younger (Mesozoic and Tertiary) intrusive and extrusive igneous rocks produce local coal-rank anomalies, but do not appear to have any regional effect.The rank of coals above the Permian volcanic rocks appears to be little affected by the presence of the igneous rocks and the coal-rank decreases towards the major area of vulcanicity. Organic matter in sedimentary rocks interbedded with the volcanic rocks is of relatively high rank but it appears that these thermal effects do not extend more than about 100 m above the base of the coal measures. The area of high rank north and northwest of Wollongong seems likely to be a regional effect associated with a combination of high heat generation in basement and the Permian rocks, and high heat flow from the basement. Greater cover on the coal measures, together with an increase in the proportion of rocks of relatively low thermal conductivity in the cover, may also influence the rank in the Permian coal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号