首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quartz crystallographic fabric transitions in well-exposed mylonites immediately beneath the Moine Thrust at the Stack of Glencoul (NW Scotland) have been investigated by optical microscopy, X-ray texture goniometry and Orientation Distribution Function analysis. A progressive change is observed from asymmetrical kinked single girdle c-axis fabrics at 0.5 cm beneath the Moine Thrust, through asymmetrical Type I cross-girdle fabrics to symmetrical Type I cross-girdle fabrics at 30 cm beneath the thrust. This c-axis fabric transition is accompanied by a transition from asymmetrical single a-axis maximum fabrics (0.5 cm beneath the thrust) through asymmetrical two maxima fabrics to essentially symmetrical two maxima a-axis fabrics. ODF analysis of these S >L and L - S tectonites indicates that c-axis positions on the ‘leading edge’ of the fabric skeleton are related by a common (a) direction oriented within the XZ plane at a moderate angle to the lineation (X). In contrast, c-axis positions on the peripheral ‘trailing edge’ are related by a positive (r) rhomb pole oriented close to Z; (a) directions lying within this common rhomb plane progressively change through 180° in orientation traced around the c-axis fabric skeleton. Such contrasting ‘single crystal’ rhomb (a) preferred orientations on the ‘leading’ and ‘trailing’ edges of the fabric skeleton are interpreted as indicating localized (grain scale) plane strain and flattening deformation, respectively. They result in tectonites with essentially symmetrical c- and a-axis fabrics which display strongly asymmetrical positive (r) and negative (z) rhomb pole figures. The observed transition in quartz c- and a-axis fabrics is interpreted as indicating an increasing importance of non-coaxial plane-strain deformation as the Moine Thrust is approached. Even immediately (<1 cm) beneath the thrust, however, flow has still significantly departed from bulk simple shear and involved an important (heterogeneous) component of contemporaneous flattening deformation.  相似文献   

2.
Quartz microfabrics and associated microstructures have been studied on a crustal shear zone—the Main Central Thrust (MCT) of the Himalaya. Sampling has been done along six traverses across the MCT zone in the Kumaun and Garhwal sectors of the Indian Himalaya. The MCT is a moderately north-dipping shear zone formed as a result of the southward emplacement of a part of the deeply rooted crust (that now constitutes the Central Crystalline Zone of the Higher Himalaya) over the less metamorphosed sedimentary belt of the Lesser Himalaya. On the basis of quartz c- and a-axis fabric patterns, supported by the relevant microstructures within the MCT zone, two major kinematic domains have been distinguished. A noncoaxial deformation domain is indicated by the intensely deformed rocks in the vicinity of the MCT plane. This domain includes ductilely deformed and fine-grained mylonitic rocks which contain a strong stretching lineation and are composed of low-grade mineral assemblages (muscovite, chlorite and quartz). These rocks are characterized by highly asymmetric structures/microstructures and quartz c- and a-axis fabrics that indicate a top-to-the-south sense that is compatible with south-directed thrusting for the MCT zone. An apparently coaxial deformation domain, on the other hand, is indicated by the rocks occurring in a rather narrow belt fringing, and structurally above, the noncoaxial deformation domain. The rocks are highly feldspathic and coarse-grained gneisses and do not possess any common lineation trend and the effects of simple shear deformation are weak. The quartz c-axis fabrics are symmetrical with respect to foliation and lineation. Moreover, these rocks contain conjugate and mutually interfering shear bands, feldspar/quartz porphyroclasts with long axes parallel to the macrosopic foliation and the related structures/microstructures, suggesting deformation under an approximate coaxial strain path.On moving towards the MCT, the quartz c- and a-axis fabrics become progressively stronger. The c-axis fabric gradually changes from random to orthorhombic and then to monoclinic. In addition, the coaxial strain path gradually changes to the noncoaxial strain path. All this progressive evolution of quartz fabrics suggests more activation of the basal, rhomb and a slip systems at all structural levels across the MCT.  相似文献   

3.
This quantitative microstructural study deals with textures of quartz domains within a mylonitized metapelite collected near a thrust surface corresponding to the tectonic contact between two metamorphic units, which crop out in the Aspromonte Massif, southern Calabria (Italy). The sample investigated lacks a mesoscopic stretching lineation. Therefore, quartz c-axis fabrics were investigated in two mutually orthogonal thin sections (a) parallel to the quartz rod lineation and perpendicular to the foliation (YZ plane) and (b) perpendicular to the quartz rods and perpendicular to the foliation (XZ plane); the data were generated using classical (manual measurements of quartz c-axis using U-stage) and modern methods (Computer Integrated Polarization microscopy). Both these sections show oblique foliations at ca. 40° from the main shear plane, implying that the actual X direction (stretching lineation that is absent on the mesoscopic scale) must lie between these two sections. Quartz c-axis data from the YZ section when rotated by 90° are similar with those from the XZ section. Hence, the data from the two sections are merged. These data when rotated by an angle of 50° from the direction of quartz rod lineation, gives an asymmetrical pattern indicating top-to-the-North sense of shear. This was confirmed by investigating quartz c-axis patterns in a section striking NS and perpendicular to the foliation. Based on the study it is thus concluded that this method can be used to do kinematic analysis in rocks that are devoid of stretching lineations. Apart from the above, the advantages and disadvantages of the classical and modern methods of quartz c-axis analysis are discussed.  相似文献   

4.
Geometrical relations between quartz C-axis fabrics, textures, microstructures and macroscopic structural elements (foliation, lineation, folds…) in mylonitic shear zones suggest that the C-axis fabric mostly reflects the late-stage deformation history. Three examples of mylonitic thrust zones are presented: the Eastern Alps, where the direction of shearing inferred from the quartz fabric results from a late deformation oblique to the overall thrusting; the Caledonides nappes and the Himalayan Main Central Thrust zone, where, through a similar reasoning, the fabrics would also reflect late strain increments though the direction of shearing deduced from quartz fabric remains parallel to the overall thrusting direction. Hence, the sense of shear and the shear strain component deduced from the orientation of C-axis girdles relative to the finite strain ellipsoid axes are not simply related nor representative of the entire deformation history.  相似文献   

5.
An integrated microstructural and petrofabric study of the plastically deformed and partially recrystallized Roche Maurice quartzites of Plougastel, western Brittany, has revealed a clear correlation between the pattern of c-axis fabrics displayed by detrital quartz grains and the symmetry of the calculated strain ellipsoid. In specimens with flattening (k = 0) strains, c axes lie on a small circle girdle (opening angle 28–42°) centred about the principal finite shortening direction (Z). For specimens that exhibit approximate plane strain (k = 1), cross-girdle c-axis fabrics consisting of a small circle girdle centred about Z and connected through the intermediate principal extension direction (Y) were detected.Within individual specimens c-axis fabrics of syntectonically recrystallized new quartz grains within the matrix are similar to those of detrital quartz grains. c axes of new grains located within the relatively undeformed sections of the host detrital grains are commonly orientated at angles between 10 and 40° to the host c axis and are, in addition, statistically orientated at a higher angle to Z than their host c axes. These relationships are interpreted as indicating that both host grain control and the local strain (and/or stress) field may have influenced the process of recrystallization; the relative influence of these factors is, however, unknown.Microstructural and petrofabric studies indicate that the Roche Maurice quartzites have been subjected to essentially coaxial strain histories. The role of syntectonic recrystallization in facilitating continued plastic deformation in quartzites subjected to such strain histories is considered.  相似文献   

6.
In the Caledonides of northwest Scotland, two independent geothermometers (Fe‐Mg exchange and quartz c‐axis fabric opening angle) are used to characterize the thermal structure of the lower part of the Scandian (435–420 Ma) orogenic wedge within the Moine, Ben Hope and Naver‐Sgurr Beag thrust sheets. Traced from west (foreland) to east (hinterland), Fe‐Mg exchange thermometry yields peak or near‐peak temperatures ranging from 484 ± 50 °C to 524 ± 50 °C in the immediate hangingwall of the Moine thrust to 601 ± 50 °C in the immediate hangingwall of the Ben Hope thrust, to 630 ± 50 °C in the Naver thrust sheet. Preserved metamorphic facies and textural relationships are consistent with thermometric estimates. Deformation temperatures calculated from quartz c‐axis fabric opening angles across two similar orogen‐perpendicular transects also yield systematic increases (Glen Golly – Ben Klibreck, 520–630 °C; Ullapool‐Contin, 465–632 °C) traced towards the Naver and Sgurr Beag thrusts. In addition, deformation temperatures show a pronounced increase along the leading edge of the Moine thrust sheet moving south towards the Assynt window, which is interpreted to reflect deeper exhumation of the thrust plane above the Assynt footwall imbricate stack. Because temperatures calculated from metamorphic assemblages are within error of the quartz fabric‐derived deformation temperatures that are of demonstrably Scandian age, the metamorphic sequence between the Moine and Naver‐Sgurr Beag thrusts is interpreted to have developed during the Scandian orogeny. Integration of our results with previous 2D thermal‐mechanical studies allows development of new conceptual thermal‐kinematic models of Scandian orogenesis that may be broadly applicable to other collisional systems. Furthermore, it highlights the critical nature of coupling between orogen kinematic and thermal evolution.  相似文献   

7.
Quartz c-axis fabrics have been investigated within a suite of quartz veins and monomineralic layers around a major post-nappe fold hinge (the Wandfluhhorn Fold) in the Bosco area (Swiss-Italian border) within the lower Penninic nappes.Two kinematic domains which are separated by the axial plane trace of the Wandfluhhorn Fold are recognized; on the lower limb the measured quartz c-axis fabric asymmetry indicates a sense of shear in which the overlying layers move to the southwest (i.e. top-to-SW) whereas on the upper limb the shear sense is reversed with the top moving to northeast. The shear direction (N60°E–N80°E), however, is constant in both areas and oblique to an older stretching lineation as well as to the D3 fold hinge. Such a distribution of asymmetric quartz c-axis fabrics and the constant orientation of their interpreted shear direction, which is apparent only from the fabric data and not from field evidence, indicates fabric development pre- or early syn-Wandfluhhorn folding, with subsequent folding and modification of the existing textures and possibly rotation of the initial fold axis.An overall westward-directed shear has been suggested for the whole of the Lepontine Alps. However, this study demonstrates that this simple general pattern has been modified locally by later folding. It also demonstrates that the dominant lineation may be a finite stretching lineation due to more than one phase of deformation and is not necessarily related to any particular transport direction.  相似文献   

8.
In the Ormiston Nappe Complex, west of Alice Springs, central Australia, a deformed zone up to 0.7 km thick is developed in the sedimentary Heavitree Quartzite. The deformed zone is adjacent to a major thrust fault and is defined by mylonitic foliation, which is parallel to the thrust plane and by isoclinal folds. Recognition of original detrital quartz grains allows strain ellipsoids to be measured across the zone. The strain generally plots in the flattening field and many specimens show pure flattening strain. The mylonitic foliation is an axial-plane structure to the folds and is parallel to the XY-plane of the strain ellipsoid. A quartz elongation lineation may be present within the foliation and is parallel to the principal extension direction (the X-axis) of the strain ellipsoid.Strain is accommodated principally by intracrystalline plastic deformation of the quartz grains. In detail the strain is not homogeneous and may vary even between adjacent grains of the same specimen. Quartz optic axis fabrics reflect this strain inhomogeneity. If the strain ellipsoid is an oblate spheroid, c-axes lie in small-circle girdles about the principal shortening axis (the Z-axis). With general triaxial strain, the c-axes lie in a great-circle girdle or girdles which intersect the foliation parallel to the intermediate strain axis (the Y-axis) and lie symmetrically about the Z-axis. A random population of grains from a specimen often shows a composite c-axis pattern between these two types.With approach to the thrust there is an increase in the amount of strain within the specimens. The increasing strain correlates with an increase in the degree of c-axis preferred orientation of the deformed detrital grains and in the amount of new strain-free grains present in the deformed quartzite. Adjacent to the thrust the quartzite is completely composed of polygonal new grains. The new grains probably formed under syntectonic conditions caused by movement along the thrust. The bulk of the new grains developed by increasing misorientation between the subareas of an initially polygonized old grain. There is no evidence of any marked host control on new-grain orientation, but new grain c-axis plots are generally similar to the corresponding old-grain plots from the same specimen.  相似文献   

9.
The development of the syn-metamorphic Sgurr Beag slide zone, a major ductile shear zone of initially low dip, caused at least 50 km north-western thrust displacement of part of the internal metamorphic complex of the Northern Highland Caledonides of Scotland. Initiation of the zone, and movements upon it, were earlier than formation of the marginal Moine Thrust zone. Movement on the zone followed but overlapped the peak Caledonian metamorphism and the mid to high amphibolite facies mineral assemblages, fabrics and structures produced during the development of the slide zone and those surviving from earlier events, were reworked under greenschist facies conditions during mylonitization associated with initiation of the Moine Thrust zone. Displacements on the slide zone and thrust movements were separated by emplacement of a regional suite of pegmatites and a considerable change of metamorphic grade. Thus, they may not constitute members of a progressive sequence of Caledonian thrusts formed over a short time interval. Rather, preliminary isotopic data may imply an interval of c. 25 Ma between movement on the slide zone and final, ductile translation along the Moine Thrust zone.  相似文献   

10.
A broad zone of dominantly ductile high-strain deformation lies beneath the Aguilón nappe in the Sierra Alhamilla, southern Spain. It forms part of a crustal-scale movement zone, traceable through much of the Betic Cordillera, which separates the Higher Betic Nappes from the underlying Nevado-Filabride Complex. The zone is characterized in outcrop by a distinctive platy foliation and a strong NNE-trending stretching lineation. Microstructural characteristics include quartz ribbons, mica fish, augen of feldspar and other minerals in a matrix of dynamically recrystallized quartz, and extensional crenulation cleavages. Narrow bands of ultramylonite and cataclasite occur within and on the margins of the movement zone. Deformation occurred under lower greenschist-facies conditions and was accompanied by retrogression of earlier higher-grade mineral assemblages.Structures in the movement zone developed in a temporal sequence, beginning with isoclinal folding and transposition of older foliations. This was followed by the formation of extensional crenulation cleavages, and the progressive localization of strain into the ultramylonite bands. Mylonitic foliation in these bands is deformed by syn-mylonite folds restricted to the bands. All these structures were then deformed by S- to SE-vergent small-scale folds restricted to the movement zone as a whole. Cataclasis, associated with alteration, is localized along the ultramylonite bands and indicates a transition to late-stage brittle deformation. The lower boundary of the movement zone is gradational: strain decreases, recrystallized grainsize and the degree of recrystallization of quartz increases, and pressure solution becomes the dominant deformation mechanism in mica-schist.Asymmetric quartz fabrics in the movement zone indicate a NNE sense of shear; but variations in the degree of asymmetry suggest that flow was partitioned, with the ultramylonite bands taking up much of the shear strain, and the intervening rocks deforming more slowly and with a lower degree of non-coaxiality. Diffuse fabrics in the fine-grained ultramylonite bands may indicate a switch to a grainsize-sensitive deformation mechanism, and an overall downward increase in the opening angle of crossed-girdle fabrics may reflect increased water activity at depth.  相似文献   

11.
The relationship between quartz c-axis microfabric and strain is examined in six specimens of recrystallized quartzite conglomerate in which strain was measured using pebble shapes. Four rocks subjected to plane strain display a direct relationship between the strength of preferred orientation and the strain intensity. The c-axis distributions in these rocks, as well as a rock subjected to moderate extensional strain, are crossed-girdles with maxima near the intermediate principal strain axis and connecting girdles at acute angles to the direction of maximum shortening. A rock subjected to moderate flattening strain has several maxima clustered near the direction of maximum shortening and a weak connecting girdle through the intermediate principal strain axis.These results are generally similar to those of other studies comparing strain and tectonite fabrics and also with experimental and computer simulation studies of fabrics. The degree of preferred orientation is related to total strain, and therefore microfabrics in quartzites may be cautiously interpreted as qualitative indicators of strain intensity. Uncertainties are greater, however, for correlations of fabric patterns with shapes of the strain ellipsoid. An observed increase in recrystallized grain sizes with increasing strain suggests that flow stress was lower in the more strained rocks.  相似文献   

12.
We ask the question whether petrofabric data from anisotropy of magnetic susceptibility (AMS) analysis of deformed quartzites gives information about shape preferred orientation (SPO) or crystallographic preferred orientation (CPO) of quartz. Since quartz is diamagnetic and has a negative magnetic susceptibility, 11 samples of nearly pure quartzites with a negative magnetic susceptibility were chosen for this study. After performing AMS analysis, electron backscatter diffraction (EBSD) analysis was done in thin sections prepared parallel to the K1K3 plane of the AMS ellipsoid. Results show that in all the samples quartz SPO is sub-parallel to the orientation of the magnetic foliation. However, in most samples no clear correspondance is observed between quartz CPO and K1 (magnetic lineation) direction. This is contrary to the parallelism observed between K1 direction and orientation of quartz c-axis in the case of undeformed single quartz crystal. Pole figures of quartz indicate that quartz c-axis tends to be parallel to K1 direction only in the case where intracrystalline deformation of quartz is accommodated by prism <c> slip. It is therefore established that AMS investigation of quartz from deformed rocks gives information of SPO. Thus, it is concluded that petrofabric information of quartzite obtained from AMS is a manifestation of its shape anisotropy and not crystallographic preferred orientation.  相似文献   

13.
Field studies in the Palaeoproterozoïc Daléma basin, Kédougou-Kéniéba Inlier, reveal that the main tectonic feature comprises alternating large shear zones relatively well-separated by weakly deformed surrounding rock domains. Analysis of the various structures in relation to this major D2 phase of Eburnean deformation indicates partitioning of sinistral transpressive deformation between domains of dominant transcurrent and dominant compressive deformation. Foliation is mostly oblique to subvertical and trending 0–30° N, but locally is subhorizontal in some thrust-motion shear zones. Foliation planes of shear zones contain a superimposed subhorizontal stretching lineation which in places cross-cuts a steeply plunging stretching lineation which is clearly expressed in the metasedimentary rocks of weakly deformed surrounding domains. In the weakly deformed domains, the subhorizontal lineation is absent, whereas the oblique to subvertical lineation is more fully developed. Finite strain analyses of samples from surrounding both weakly deformed and shearing domains, using finite strain ratio and the Fry method, indicate flattened ellipsoid fabrics. However, the orientation of the long axis (X) of the finite strain ellipsoid is horizontal in the shear zones and oblique within the weakly deformed domains. Exceptionally, samples from some thrust zones indicate a finite strain ellipsoid in triaxial constriction fabrics with a subhorizontal long axis (X). In addition, the analysis of the strain orientation starting from semi-ductile and brittle structures indicates that a WNE–ESE (130° N to 110° N) orientation of strain shortening axis occurred during the Eburnean D2 deformation.  相似文献   

14.
Although calcite tectonites are widespread in nature their use to quantify flow vorticity is limited. We use new (micro-)structural, petrofabric and vorticity data to analyse the kinematics of flow in outcrop-scale calcite mylonite zones. These zones are genetically related to a crustal-scale NE-directed ductile thrust (Basal Thrust) that emplaced the Blueschist over the Basal unit during the exhumation of the Attico-Cycladic Massif. Calcite microstructures reveal that the last stage of deformation occurred at temperatures 200–300 °C achieved by mild heating, which is possibly related with the reburial of the Basal Thrust's footwall. Vorticity analyses were based on the degree of asymmetry of calcite c-axis fabrics as well as on the assumption that the orientation of the long axes of calcite neoblasts within an oblique foliation delineates the direction of instantaneous stretching axis. Both methodological approaches provide consistent estimates with a simple shear component between 55% and 82% (Wn = 0.76–0.96). The use of the stress axis (σ1) orientation recorded by twin-c-axis-pairs to quantify vorticity generally gives significantly lower simple shear component. Comparison of our vorticity estimates with previous estimates inferred from quartz fabrics and rigid porphyroclasts reveals that exhumation-related deformation in the nappe pile was steady state.  相似文献   

15.
Blueschist-facies rocks of the central Seward Peninsula cropout over 8000 km2. Protoliths were Lower Paleozoic-Precambrian(?) shallow-water miogeoclinal sediments that were metamorphosed during the Middle Jurassic. Thermobarometric estimates yield ‘peak’ metamorphic conditions of 10–12 kbar at 460 ± 30°C. Crystallization of blueschist-facies minerals was synkinematic with development of a transposition foliation. This foliation is parallel to lithologic contacts and is axial planar to recumbent mesoscopic isoclinal folds. These folds are refolded by larger scale recumbent tight to isoclinal folds. Both fold sets have hinges parallel to a well-developed N—S stretching lineation. Sheath folds are also present. The long axes of the sheath folds also parallel the stretching lineation. This deformation was non-coaxial as indicated by microstructures and quartz c-axis fabrics. Folds nucleated, then rotated into parallelism with the stretching direction. Kinematic indicators show unequivocal top-to-the-north shear sense, compatible with blueschist formation during mid-Jurassic collision between the Brooks Range continental margin and a N-facing island arc (Yukon-Koyukuk). Convergence of these two plates is believed to have been nearly N—S (in present co-ordinates).  相似文献   

16.
A new method for determining the sense of shear in plagioclase-bearing tectonites from the (010) orientation of plagioclase feldspar is presented. The method is based on the asymmetry of the (010) plane with respect to the structural frame (foliation and lineation) and the dominant activity of the (010) slip plane in the high-temperature plasticity of plagioclase feldspar. Using examples from the Zabargad gneisses (Red Sea) the method is applied to plagioclases of An25–An45 and compared with other methods of shear-sense determination (quartz c-axis fabrics and microstructural criteria).  相似文献   

17.
In Alpine Corsica, the major tectonic event during the late Cretaceous was the thrusting to the west of an ophiolitic nappe and its sedimentary cover upon the Variscan basement and its Mesozoic cover. A detailed field survey shows that the basal contact of the nappe corresponds to a pluri-kilometric scale shear zone. Thus gneissified basement slices have been tectonically emplaced in the ophiolitic nappe. The thrusting was responsible for small scale structures: foliation, lineation and folds, initiated in a HP/LT metamorphic context. The deformation analysis shows that the finite strain ellipsoid lies in the constriction field close to that for plane strain. Moreover occurrences of rotational criteria in the XZ planes (sigmoidal micas, asymmetric pressure shadows, quartz C-axes fabrics) are in agreement with shear from east to west. All structural data from microscopic to kilometric scales, of which the most widespread is a transverse stretching lineation, can be interpreted by a simple shear model involving ductile synmetamorphic deformation. At the plate tectonic scale the ophiolitic obduction is due to intraoceanic subduction blocked by underthrusting of continental crust beneath oceanic lithosphere.  相似文献   

18.
19.
Microstructures and quartz c-axis fabric diagrams from mylonites and psammitic Moine schists, collected in traverses across the lower levels of the Moine Nappe in the Eriboll area, are presented. On approaching the Moine Thrust from the Kyle of Tongue, the following microstructural sequence is encountered: interlayered coarse grained biotite psammitic and schistose tectonites being in part mylonitic with two platy slide zones, one containing biotite and the other only muscovite and chlorite and both showing quartz microstructures indicative of post-tectonic relaxation; these pass into more mylonitic rocks nearer the thrust zone which in turn passes into the main chlorite-grade mylonite belt and finally, adjacent to the Moine Thrust, into reworked lower chlorite grade mylonites. Although there is some local variation, the overall quartz c-axis fabric is an incomplete asymmetric type I girdle. The main variation is the development of type II girdles in the reworked, ultrafine grained mylonites. The extent of the mylonitization is more extensive than previously reported. Studies of folds within the mylonite belt have revealed eye structures and small-scale folds; many are sheath folds. They cannot be unequivocally correlated with large-scale recumbent folds within the Moine Nappe. The results presented indicate that mylonitization is not limited to a single phase, and raises the possibility that there may be earlier Caledonian or possibly Precambrian structural elements present in the Eriboll region Moines prior to much of the mylonitization.  相似文献   

20.
It is argued that mylonite zones result from translatory movements between rock masses and that the deformation mechanism is one of simple shear. Evidence is adduced to show that the mylonite zones in the Moine Thrust Belt of northwestern Scotland were developed in association with the inverted limbs of early Caledonian folds which trend parallel to the thrust front. On this basis a method is developed for the determination of shear strain from parameters which can be measured in mylonites which contain deformed Skolithos worm burrows. Very large strains are indicated (γ - 10). Some general implications are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号