首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Geologic mapping and U–Pb detrital zircon geochronologic studies of (meta)sedimentary rocks in the Damxung area (90 km north of Lhasa) of the southern Lhasa terrane in Tibet provide new insights into the history of deformation and clastic sedimentation prior to late Cenozoic extension. Cretaceous nonmarine clastic rocks 10 km southeast of Damxung are exposed as structural windows in the footwall of a thrust fault (the Damxung thrust) that carries Paleozoic strata in the hanging wall. To the north of Damxung in the southern part of the northern Nyainqentanglha Range (NNQTL), metaclastic rocks of previously inferred Paleozoic age are shown to range in depositional age from Late Cretaceous to Eocene. The metaclastic rocks regionally dip southward and are interpreted to have been structurally buried in the footwall of the Damxung thrust prior to being tectonized during late Cenozoic transtension. Along the northern flank of the NNQTL, Lower Eocene syncontractional redbeds were deposited in a triangle zone structural setting. All detrital zircon samples of Cretaceous–Eocene strata in the Damxung area include Early Cretaceous grains that were likely sourced from the Gangdese arc to the south. We suggest that the that newly recognized Late Cretaceous to Early Eocene (meta)clastic deposits and thrust faults represent the frontal and youngest part of a northward directed and propagating Gangdese retroarc thrust belt and foreland basin system that led to significant crustal thickening and elevation gain in southern Tibet prior to India-Asian collision.  相似文献   

3.
Geologic mapping and U–Pb detrital zircon geochronologic studies of (meta)sedimentary rocks in the Damxung area (∼90 km north of Lhasa) of the southern Lhasa terrane in Tibet provide new insights into the history of deformation and clastic sedimentation prior to late Cenozoic extension. Cretaceous nonmarine clastic rocks ∼10 km southeast of Damxung are exposed as structural windows in the footwall of a thrust fault (the Damxung thrust) that carries Paleozoic strata in the hanging wall. To the north of Damxung in the southern part of the northern Nyainqentanglha Range (NNQTL), metaclastic rocks of previously inferred Paleozoic age are shown to range in depositional age from Late Cretaceous to Eocene. The metaclastic rocks regionally dip southward and are interpreted to have been structurally buried in the footwall of the Damxung thrust prior to being tectonized during late Cenozoic transtension. Along the northern flank of the NNQTL, Lower Eocene syncontractional redbeds were deposited in a triangle zone structural setting. All detrital zircon samples of Cretaceous–Eocene strata in the Damxung area include Early Cretaceous grains that were likely sourced from the Gangdese arc to the south. We suggest that the that newly recognized Late Cretaceous to Early Eocene (meta)clastic deposits and thrust faults represent the frontal and youngest part of a northward directed and propagating Gangdese retroarc thrust belt and foreland basin system that led to significant crustal thickening and elevation gain in southern Tibet prior to India-Asian collision.  相似文献   

4.
In the Appalachian thrust belt in Alabama, thrust sheets of Paleozoic strata generally strike northeastward and are imbricated northwestward; four transverse zones cross the regional strike of the thrust belt. The large-scale Pell City thrust sheet ends southwestward at an oblique lateral ramp within the Harpersville transverse zone, where the leading edge of the thrust sheet (the Pell City fault) curves abruptly 55° counterclockwise. The northwest-striking segment of the Pell City fault conforms to the geometry of an oblique lateral ramp in the footwall. Furthermore, the Pell City fault cuts up section in the hanging wall southwestward toward the transverse zone, indicating a hanging-wall lateral ramp emplaced over the footwall oblique lateral ramp.In the hanging wall adjacent to the northwest-trending segment of the Pell City fault, a pervasive train of upright, isoclinal folds (with 50% apparent shortening) trends N15°W, oblique to the regional translation direction. The fold train is limited to the southwestern part of the Pell City thrust sheet; farther northeast, the regional northeasterly strike prevails. The isoclinal folds in the hanging wall indicate contractional crowding perpendicular to the footwall oblique lateral ramp.  相似文献   

5.
Mesoscopic structures in anchimetamorphic (T = 200–300°C) strata of the Pulaski thrust sheet, Southern Appalachian thrust belt, developed in progressive, heterogeneous simple shear near the ductile-to-brittle transition. Shear (γ≤3) was localized in weak, anisotropic pelitic rocks (Rome Formation) along the base of this 5–11 km thick thrust sheet. Folds, which vary from upright and open to isoclinal and NW-facing, developed during ductile shearing and display a correlation between tightness and axial-surface dip. Movement along brecciated thrust zones, which evolved progressively from zones of greatest ductile strain, resulted in low-angle truncation of fold axis trends, coaxial refolding of earlier structures, and imbrication of the thrust sheet.Transient variations in fluid pressure (Pf) controlled the mechanical behavior of the thrust sheet. Systematic veins imply Pf >σ3 + T (T = tensile strength) during ductile deformation, whereas later non-systematic vein arrays in high strain zones record periods of nearly hydrostatic stress. Elevated Pf, which led to fracturing, dilation, and fault initiation, appears confined to pelitic zones within the Rome Formation. This, coupled with decreasing temperature, resulted in the transition from ductile folding to brittle thrusting. Changing physical conditions probably reflect erosional unroofing during uplift and late Paleozoic thrust sheet emplacement.  相似文献   

6.
The Marathon portion of the Ouachita thrust belt consists of a highly deformed allochthonous wedge of Cambrian-Pennsylvanian slope strata (Marathon facies) that was transported to the northwest and emplaced over Pennsylvanian foredeep sediments. The foredeep strata in turn overlie early-middle Paleozoic shelfal sediments which are deformed by late Paleozoic basement-involved reverse faults. The Dugout Creek thrust is the basal thrust of the allochthon. Shortening in this sheet and overlying sheets is 80%. Steep imbricate faults link the Dugout Creek thrust to upper level detachments forming complex duplex zones. Progressive thrusting and shortening within the allochthon folded the upper level detachments and associated thrust sheets. The Caballos Novaculite is the most competent unit within the Marathon facies and controlled development of prominent detachment folds.Deeper imbricate sheets composed of the Late Pennsylvanian foredeep strata, and possibly early-middle Paleozoic shelfal sediments developed concurrently with emplacement of the Marathon allochthon and folded the overlying allochthon. Following termination of thrusting in the earliest Permian, subsidence and deposition shifted northward to the Delaware, Midland and Val Verde foreland basins.  相似文献   

7.
Carbonate fault breccia dykes in the Cerro La Chilca area, Eastern Precordillera, west-central Argentina, provide clues on the probable mechanism of both fault movement and dyke injection.Breccia dykes intrude Upper Carboniferous sedimentary rocks and Triassic La Flecha Trachyte Formation. The timing of breccia dyke emplacement is constrained by cross cutting relationships with the uppermost Triassic unit and conformable contacts with the Early Miocene sedimentary rocks. This study supports a tectonic-hydrothermal origin for these breccia dykes; fragmentation and subsequent hydraulic injection of fluidized breccia are the more important processes in the breccia dyke development.Brecciation can be triggered by seismic activity which acts as a catalyst. The escape of fluidized material can be attributed to hydrostatic pressure and the direction of movement of the material establishes the direction of least pressure.Previous studies have shown that cross-strike structures have had an important role in the evolution of this Andean segment since at least Triassic times. These structures represent pre-existing crustal fabrics that could have controlled the emplacement of the dykes. The dykes, which are composed mostly of carbonate fault breccia, were injected upward along WNW fractures.  相似文献   

8.
Surface and subsurface data are integrated to characterize the structural architecture of the Marathon fold and thrust belt in west Texas. Multiple detachment levels are present within the thrust belt and result in distinct structural domains. In addition to the basal décollement, whose stratigraphic position varies along strike, we recognize a regionally extensive detachment zone in the late Mississippian to early Pennsylvanian lower Tesnus Formation. The Lower Tesnus Detachment forms a structural domain boundary that can be observed along strike in the surface data and at depth in the subsurface. The stratigraphic intervals above and below this detachment exhibit characteristic patterns of deformation. The Lower Tesnus Detachment is folded by imbrication and the formation of duplexes in the early Mississippian to Ordovician section, suggesting that the detachment may have initially formed as a perched décollement in the foreland that was subsequently exploited as a roof thrust in a duplex system as deformation progressed in a break-forward sequence and older strata were incorporated into the toe of the allochthonous wedge. The structural model presented here for the Marathon region may be applicable across much of the Ouachita orogenic system.  相似文献   

9.
The external massifs along the Appalachian orogen include Precambrian basement rocks with attached cover. To the northwest (cratonward), in the Appalachian foreland fold and thrust belt, Palaeozoic sedimentary rocks, but no basement rocks, are exposed; that belt was the subject of the classic debate about thin-skinned (deformed cover rocks detached from undeformed basement) and thick-skinned (basement deformed with attached cover) structural styles. Presently available data indicate detached cover rocks and thin-skinned style in the fold and thrust belt: large-scale thrusting occurred late in the orogenic history. In the external basement massifs, late Precambrian graben-fill sedimentary and volcanic rocks indicate early basement faults; and within the craton, steep basement faults bound graben blocks of Cambrian age. Distribution of known basement faults suggests that basement rocks beneath the fold and thrust belt may also be faulted. Local episodic synsedimentary structural movement through much of the Palaeozoic is documented by stratigraphy in the fold and thrust belt. Axes of early synsedimentary structures are approximately coincident with axes of late folds and thrust fault ramps, but stratigraphic data show that magnitude of the early structures was much less than that of the late structures. These relations suggest the interpretation that early low-magnitude structures formed in cover rocks over basement faults and that the early structures, or the basement faults, significantly influenced the geometry of later detachment structures during large-scale horizontal translation.  相似文献   

10.
准南逆冲褶皱带超压与逆冲断层持续活动   总被引:1,自引:0,他引:1       下载免费PDF全文
天山北缘准南地区的褶皱带为自新生代以来一直持续活动的逆冲构造带,由于逆冲断层的持续活动,形成了现今断层和相关褶皱。钻井资料显示,准南逆冲褶皱带内的超压层主要发育在古近纪安集海河组泥岩和紫泥泉子组泥岩之中,而该泥岩同时又成为逆冲断层发育的主滑脱面。通过多年来对准南地区地面地质调查、二维地震和三维地震资料的解释以及钻井证实,我们统计出准南逆冲褶皱带现存的逆冲断层倾角分别集中在两个区间: 30±5°和50±5°区间。应力分析表明,在持续挤压应力作用下,超压层(泥岩、页岩和煤系地层)中和超压层之下地层中发育的早期逆冲断层与晚期最大主压应力之间的夹角处在30±5°之间时,作用在断层面上的最大主应力与最小主应力比达到最小值,因此该断层最容易再次活动,形成最大的流体压力,因而断层周围的流体就会沿着最大主应力方向发生流动,断层本身就会成为流体运移的主要通道; 而早期逆冲断层与晚期最大主压应力之间的夹角处在50±5°之间时,作用在断层面上的最大主应力与最小主应力比较大,断层重新活动所需要的流体压力较高,导致断层作为流体运移的通道因被挤压而闭合。应力分析和钻井实测应力均指出,准南逆冲褶皱带发育的超压为挤压构造应力形成的超压。这些研究表明,准南逆冲褶皱带的逆冲断层持续活动,导致早期发育的断层在晚期应力作用下,断层倾角聚集在两个优势区间,油气沿最大主压应力方向运移,聚集油气则沿断层滑动面发育形成构造超压,导致该区域油气长期处于运移与聚集的动平衡状态。  相似文献   

11.
川东与大巴山褶皱冲断带交汇区构造几何学和运动学特征   总被引:1,自引:0,他引:1  
文凯  李传新 《地质学报》2020,94(2):426-438
川东与大巴山褶皱冲断带交汇区位于四川盆地东北缘,由温泉井—马槽坝背斜带、云安场背斜带和方斗山背斜带组成,其形成过程受川东构造带和大巴山构造带的双重控制,开展川东与大巴山褶皱冲断带交汇区构造几何学和运动学特征研究,对认识华南板块和华北板块之间的拼贴碰撞及演化具有重要意义。本文基于野外调查、钻测井资料和二维地震资料,以断层相关褶皱理论为指导,通过对四条二维地震剖面的精细解析,揭示了交汇区构造几何学特征,并应用2Dmove软件恢复了研究区构造运动学过程。研究认为:①交汇区在南北方向上显示为大型的复向斜结构,垂向上被区内下三叠统嘉陵江组膏盐层、志留系泥页岩层和下寒武统泥页岩层三套滑脱层分为上、中、下三大构造层,上构造层主要发生滑脱褶皱变形,中、下构造层发育断层较多,主要发育双冲构造、冲起构造以及断层转折褶皱;②研究区中构造层构造变形最为强烈,构造缩短率达10%,上、下构造层构造缩短率较小,均为6%左右,且各构造层缩短率由西到东呈现出逐渐增大的趋势;③中生代以来,研究区的构造演化过程分为三个阶段:晚三叠世到晚侏罗世稳定沉积阶段、早白垩世到古近纪早期对冲变形阶段、古近纪晚期至今定型阶段。  相似文献   

12.
笔者从冲断活动的产物———各种成因扇体(冲积扇、水下扇、扇三角洲)出发,由160口单井剖面、15条联井剖面、8个层位平面渐次展开了准噶尔西北缘前陆冲断带三叠—侏罗纪逆冲断裂活动的沉积响应研究。三叠纪扇体在乌尔禾—夏子街地区发育叠置程度最好,T1b到T3b,其由盆内向盆缘老山方向退缩迁移明显,并具T1b到T2k1由盆缘向盆内、T2k2到T3b由盆内向盆缘迁移的2个进退波动变化。侏罗纪扇体在八道湾组最为发育,总体叠置关系较差,J1b到J2t,均呈由盆内向盆缘老山退缩沉积的退覆式迁移特征。三叠纪到侏罗纪,总体为由强到弱的退覆式冲断活动及扇体迁移模式,即随主要同生控扇断裂分布由盆缘向老山方向退缩迁移,冲断活动强度由盆缘向盆地方向逐渐减弱直至停息;相应地,各期扇体平面上分布规模渐小,总体呈由盆内向盆缘老山退缩迁移的沉积响应,两者耦合性良好。各类扇体的沉积分布受不同时期同生断裂活动的严格控制,其时空叠置及迁移规律的差异是红山嘴—车排子、克拉玛依—百口泉及乌尔禾—夏子街各构造带冲断作用地域性及作用强度差异性的沉积响应。进而引入“活动性指数”的概念与方法,对前陆冲断带同生断裂的冲断活动强度进行了定量化统计分析,并根据冲断推覆事件的地层、沉积标识划分出T1b-T3b、J1b-J2x、J2t三套构造层序,识别出三叠—侏罗纪的3个逆冲推覆幕、6次逆冲推覆事件。  相似文献   

13.
The Yanshan thrust belt (YTB) is located at the northern edge of the North China plate. Because of the intense thicking and subsequent delamination of the lithosphere in north China, geologists have been focused on the Late Mesozoic deformation in the Yanshan belt. The Yanshan belt has been regarded as part of a stable craton from the Proterozoic to the early Mesozoic. In this paper, the authors present that the Yanshan area was deformed during the early Mesozoic. This deformation could be related to ocean basin closure along the northern margin of North China, or related to the collision between the north China and Yangtze Plates along the Qinling-Dabie ultrahigh pressure belt. Three stages of early Mesozoic deformation are identified in the eastern Yanshan at Lingyuan County. The first stage is characterized by westward thrusting (D1), the second stage comprises a top-to-east thrust system (D2), and the third stage comprises extensional gravity-induced collapse and landsliding (D3). The timing of these evens is constrained by both the crosscutting relationships of faults and the isotopic dating of volcanic rocks and gravels. The D1 and D2 events took place in the Late Triassic and Early Jurassic, whereas D3 event occurred at the end of the Middle Jurassic. The Dengzhangzi formation was deposited during the D1–D2 period and recorded a rapid uplift, erosion, and deposition sequence. These early Mesozoic contractional deformations in the YTB were probably related to the closure of ancient Asian ocean and ancient Qinling ocean. The later crustal extension was caused by gravitational collapse of the eastern China plateau during early Mesozoic.  相似文献   

14.
胶东东部区域上处于秦岭-大别-苏鲁造山带的东端,是中生代的走滑逆冲构造带.进行超微构造研究有利于解决岩石的变形机制问题.应用偏光显微镜和透射电子显微镜方法,进行了胶东东部走滑逆冲构造带显微构造及超微构造研究.研究认为主要走滑逆冲剪切带的石英位错亚构造以线位错为主,并常见位错环、位错弓弯、位错壁、位错列、位错网及亚晶粒等构造型式颗粒等.石英超微位错构造总体反映的是中温或低温塑性变形环境;石岛剪切带、荣成剪切带、牟平剪切带的平均古差异应力值呈现逐渐降低的趋势,跟温度呈反相关的关系.  相似文献   

15.
扎格罗斯褶皱冲断带构造变形特征   总被引:2,自引:0,他引:2       下载免费PDF全文
扎格罗斯褶皱冲断带是扎格罗斯碰撞造山带的前陆褶皱冲断带, 也是波斯湾周缘前陆盆地的楔顶带, 自北东到南西垂直于构造线方向可分为高扎格罗斯冲断带和扎格罗斯简单褶皱带, 自北西到南东沿构造线方向可分为洛雷斯坦区(Lorestan)、迪兹富勒湾区(Dezful Embayment)和法尔斯区(Fars)。扎格罗斯褶皱冲断带的形成始于晚白垩世阿拉伯板块的洋壳向北俯冲到欧亚板块之下, 褶皱冲断构造从北东部缝合带向南西方向伸展, 并在上新世基本定型。本文选取了横切扎格罗斯褶皱冲断带的3条地质剖面和两条局部地震剖面进行构造变形分析。剖面分析显示研究区垂向上由一条大滑脱面将扎格罗斯褶皱冲断带剖面分为上、下两个构造层, 褶皱冲断变形从北东到南西向由强变弱。研究区发育走滑、挤压和拉张3种构造变形, 挤压构造变形占主导地位。挤压构造变形又包括滑脱褶皱、断展褶皱、断弯褶皱和双重构造等。  相似文献   

16.
Foreland-propagating external thrust belts may be considered as essentially plane strain phenomena so that displacements can be correlated throughout their linked, three-dimensional fault geometry. This approach has been applied to part of the northwest external French-Swiss Alps, around the Mont Blanc basement massif. Imbricates of basement and cover sequences on the SW margin of this massif restore to a width in excess of 77 km with an implicit shortening of at least 67 km. These displacements can be correlated with those in the neighbouring Helvetic nappes by transferring movements, via lateral branch lines, onto the Mont Blanc thrust. By reappraising thrust geometries, the Helvetic/Ultrahelvetic nappe complex has been restored to a width of 114 km to the ESE of the Aiguilles Rouges basement massif. Displacements on the internal (SE) margin of the Mont Blanc massif, estimated by balanced sections and a restoration of the Ultrahelvetic klippen in the sub-alps, exceed 59 km. Thrust continuity, incorporating the restorations of nappes and imbricate geometries around the Mont Blanc massif, is illustrated on a crude, restored branch-line map which also serves as a preliminary palaeogeographic reconstruction. External thrust systems, to the east of the external Belledonne/Aiguilles Rouges massif, restore to a width of at least 140 km in the footwall to the Frontal Pennine thrust.  相似文献   

17.
《International Geology Review》2012,54(10):1276-1294
The North Dabashan thrust belt, which is located in South Qinling, is bounded by the Ankang fault on the north and the Chengkou–Fangxian fault on the south. The North Dabashan thrust belt experienced multiple stages of structural deformation that were controlled by three palaeostress fields. The first structural event (Middle Triassic) involved NNW–SSE shortening and resulted in the formation of numerous dextral strike-slip structures along the entire Chengkou–Fangxian fault zone and within the North Dabashan thrust belt, which suggests that the South China Block moved to the NW and was obliquely subducted under the North China Block. The second structural event (Late Triassic–Early Jurassic) involved NE–SW shortening that formed NW–SE-trending structures in the North Dabashan thrust belt. The third structural event (Late Jurassic–Early Cretaceous) involved ENE–WSW or nearly E–W shortening and resulted in additional thrusting of the North Dabashan thrust belt to the WSW and formation of the WSW-convex Chengkou–Fangxian fault zone, which has an oroclinal shape. Owing to the pinning of the Hannan massif and Shennongjia massif culminations, numerous sinistral strike-slip structures developed along the eastern Chengkou–Fangxian fault zone and were superimposed over the early dextral strike-slip structures.  相似文献   

18.
Surface geology and heophysical data, supplemented by regional structural interpretations, indicate that the Valle del Cauca basin and adjacent areas in west-central Colombia form a west-vergent, basement-involved fold and thrust belt. This belt is part of a Cenozoic orogen developed along the west side of the Romeral fault system. Structural analysis and geometrical constraints show that the Mesozoic ophiolitic basement and its Cenozoic sedimentary cover are involved in a “thick-skinned” west-vergent foreland style deformation. The rocks are transported and shortened by deeply rooted thrust faults and stacked in imbricate fashion. The faults have a NE---SW regional trend, are listric in shape, developed as splay faults which are interpreted as joining a common detachment at over 10 km depth. The faults carry Paleogene sedimentary strata and Cretaceous basement rocks westward over Miocene strata of the Valle del Cauca Basin. Fold axes trend parallel or sub parallel to the thrust faults. The folds are westwardly asymmetrical with parallel to kink geometry, and are interpreted to be fault-propagation folds stacked in an imbricate thrust system. Stratigraphic evidence suggests that the Valle del Cauca basin was deformed between Oligocene and upper Miocene time. The kinematic history outlined above is consistent with an oblique convergence between the Panama and South American plates during the Cenozoic.A negative residual Bouguer anomaly of 20–70 mgls in the central part of the Valle del Cauca basin indicates that a substantial volume of low density sedimentary rocks is concealed beneath the thrust sheets exposed at the land surface. The hydrocarbon potential of the Valle del Cauca should be reevaluated in light of the structural interpretations presented in this paper.  相似文献   

19.
杨庚  陈竹新  王晓波 《地质论评》2021,67(4):67040901-67040917
川东隔挡式褶皱由一系列北东走向的线性褶皱带组成,为典型的高陡背斜构造带。该区油气勘探目的层主要集中在中浅层石炭系,而且钻井主要位于构造核部,钻井深度相对较浅,由于地震资料对构造陡翼地层的反射资料显示品质较差,从而对该构造认识出现了多种解释结果。笔者应用断层相关褶皱理论,依据钻井资料标定,对川东褶皱带典型构造明月峡背斜构造的二维地震剖面测网及两条宽线二维地震剖面重新进行详细构造分析及解释。解释结果表明,如果假定地层厚度不变,明月峡构造样式可以认为是两个楔形构造垂向上叠合而成,发育两期构造。据此本文提出了明月峡背斜双楔形构造发育几何学模式图,分析了两期楔形构造垂向上叠加模式。根据已有的研究成果,地表变形是深部逆冲作用的结果,推测早期中浅层构造变形时间为中白垩世,晚期深层构造为晚新生代时期,而且晚期构造改造了早期构造。构造解释结果给出,剖面几何形态为浅层发育向东的反冲断层扩展褶皱,中深层分别以三叠系膏岩和志留系泥页岩为顶、底滑脱面的楔形构造,深层构造分别以志留系泥页岩和震旦系泥页岩为顶、底滑脱面的楔形构造。构造几何分析指出,深层楔形构造形成时间晚于中深层楔形构造,并改造了早期中深层楔形构造,从而出现了构造高点的向西偏移的现象。在平面分布上,明月峡背斜浅层高陡构造背斜东翼宽度从北向南逐渐变窄,深层楔形体楔形角度逐渐变大,构造缩短量相应增加。  相似文献   

20.
This study investigates the tectonic evolution of the Omalos transverse zone, which served as a crustal-scale oblique ramp in the External Hellenides thrust belt on Crete island. The Omalos oblique ramp developed above an inherited Mesozoic fault zone that strikes NE–SW, oblique to the regional SSW-directed tectonic transport. During the Early Miocene–Pleistocene evolution of the thrust belt, the oblique ramp was repeatedly reactivated localizing deformation above the inherited structure. Geological and structural mapping combined with kinematic analysis of ductile and brittle structures suggest that the Omalos oblique ramp generated a local kinematic field, which deviated significantly from the regional kinematic pattern in the thrust belt. The most conspicuous feature in the tectonic evolution of the oblique ramp is a change from a ductile wrench-dominated to a brittle, primarily reverse faulting regime across the brittle–ductile transition, followed by brittle wrench deformation after the final exhumation of high-pressure (HP) rocks. Deflections of transport and compression orientations from the regional pattern are attributed to buttressing against basement-cover offsets produced by the pre-existing fault zone, to oblique ramping, and to transfer faulting, respectively. Our findings are potentially applicable to other examples of crustal-scale oblique thrust ramps in various tectonic settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号