首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The wedge‐shaped Moornambool Metamorphic Complex is bounded by the Coongee Fault to the east and the Moyston Fault to the west. This complex was juxtaposed between stable Delamerian crust to the west and the eastward migrating deformation that occurred in the western Lachlan Fold Belt during the Ordovician and Silurian. The complex comprises Cambrian turbidites and mafic volcanics and is subdivided into a lower greenschist eastern zone and a higher grade amphibolite facies western zone, with sub‐greenschist rocks occurring on either side of the complex. The boundary between the two zones is defined by steeply dipping L‐S tectonites of the Mt Ararat ductile high‐strain zone. Deformation reflects marked structural thickening that produced garnet‐bearing amphibolites followed by exhumation via ductile shearing and brittle faulting. Pressure‐temperature estimates on garnet‐bearing amphibolites in the western zone suggest metamorphic pressures of ~0.7–0.8 GPa and temperatures of ~540–590°C. Metamorphic grade variations suggest that between 15 and 20 km of vertical offset occurs across the east‐dipping Moyston Fault. Bounding fault structures show evidence for early ductile deformation followed by later brittle deformation/reactivation. Ductile deformation within the complex is initially marked by early bedding‐parallel cleavages. Later deformation produced tight to isoclinal D2 folds and steeply dipping ductile high‐strain zones. The S2 foliation is the dominant fabric in the complex and is shallowly west‐dipping to flat‐lying in the western zone and steeply west‐dipping in the eastern zone. Peak metamorphism is pre‐ to syn‐D2. Later ductile deformation reoriented the S2 foliation, produced S3 crenulation cleavages across both zones and localised S4 fabrics. The transition to brittle deformation is defined by the development of east‐ and west‐dipping reverse faults that produce a neutral vergence and not the predominant east‐vergent transport observed throughout the rest of the western Lachlan Fold Belt. Later north‐dipping thrusts overprint these fault structures. The majority of fault transport along ductile and brittle structures occurred prior to the intrusion of the Early Devonian Ararat Granodiorite. Late west‐ and east‐dipping faults represent the final stages of major brittle deformation: these are post plutonism.  相似文献   

2.
闽—粤东南沿海大陆边缘韧性剪切带的基本特征   总被引:2,自引:0,他引:2  
东南沿海大陆边缘剪切带是西太平洋活动大陆边缘构造带的组成部分,它是一条具有多次活动的左旋韧性平移剪切带。在本剪切带中可以观察到3种类型的构造:(1)规模巨大的呈北北东—北东向展布的糜棱岩带以及山拉伸线理组成的线状构造带。它们在平面上有明显的从断目两侧向中心递进变形特征;(2)呈北东走向陡倾角的糜棱叶理(Sa)、应变滑劈理或破劈理(Sb)、小型剪切带(Sc);(3)由西到东断层作用样式和断层岩具有明显的递进变化特点。西部(浅部)断层作用以脆性剪切滑动为主,其断层岩则由假玄武玻璃及镜面糜棱岩组成;中部断层作用以跪—韧性剪切为主,为断层泥—碎裂岩—超碎裂岩;东部(深部,以韧性剪切作用为主,其断层岩为暖棱岩—花岗糜桂片麻岩—眼球状糜棱岩系列。以上特点表明在本剪切带内透入性和非透入性变形之间有着密切的关系,反映出在变形过程中具有由韧性变形逐渐向脆性变形的发展趋势。  相似文献   

3.
The Karakoram Shear Zone is a northwest-southeast trending dextral ductile shear zone, which has affected the granitic and granodioritic bodies of the southern Asian Plate margin in three distinct episodes. The ductile shearing of the granitic bodies at Tangste and Darbuk has resulted in the development of mylonites with mylonitic foliation and stretching lineation. More intense deformation is noted in the Tangste granite grading up to orthomylonite, as compared to the Darbuk granite. Kinematic indicators include S-C foliation, synthetic C′ and C″ antithetic shear bands, Type A s-mantled porphyroclasts, oblique quartz foliation, micro-shears with bookshelf gliding, mineral fishes including Group 2 mica fishes, and Type 1 and 2a pull-apart microstructures, and exhibit strong dextral sense of ductile shearing towards southeast. The textural features of the minerals, especially that of quartz and feldspar, indicate temperature of mylonitisation ranging between 300 and 500°C in the upper greenschist facies, and appear to have been evolved during exhumation as a consequence of oblique strike-slip movements along the Karakoram shear zone.  相似文献   

4.
The Cenozoic intracontinental Teletsk basin in the Central Asian Altai Mountains is composed of a complexly structured northern and a more simple southern sub-basin. These sub-basins formed in two distinct kinematic stages when first the NNW-striking Teletsk- and then the NE-striking West-Sayan shear zones became reactivated in the Cenozoic under dominant NS-oriented horizontal compression. Although the entire Teletsk basin strikes roughly NS, the southern sub-basin is parallel to the NNW-trending, amphibolite facies Teletsk ductile shear zone, while the northern sub-basin is NS-striking and flanked by differently structured, greenschist facies basement. Basement reactivation closely controlled the southern sub-basin formation, but this is less clear for the northern sub-basin. Contrasts between northern and southern basement and the exclusive occurrence of pseudotachylytes along the margins of the southern basin are explored for their contribution to the formation of the Teletsk basin with two distinct sub-basins.In the ductile shear fabric of the basement flanking the southern sub-basin, concordantly interleaved pseudotachylytes and isolated breccia lenses reflect local brittle deformation along the ductile fabric. The genetic link between breccia lenses and pseudotachylyte occurrences was defined by microstructural investigation. It allows to explore their possible development in a dextral strike–slip zone. These rocks occur in a large fault-bounded segment of the basement. The geometry of the structures in the segment is comparable with a dextral strike–slip sidewall-ripout structure along the Teletsk shear zone. Seismic slip related to pseudotachylytes is attributed to the sudden stress release on the NNW-striking Teletsk shear zone, when the latter became unconstrained by reactivation of the NE-trending West-Sayan fault zone at its northern boundary. The boundary of the sidewall-ripout structure was reactivated as a large listric fault in a later stage. The northern sub-basins roughly develop along an NS strike and are assumed to reflect reactivation of the ductile shear zone underneath the variably structured greenschist facies basement outcropping along the flanks of the sub-basin.  相似文献   

5.
《Journal of Structural Geology》2002,24(6-7):1087-1099
This paper investigates the geometry, microstructure, and c-axis fabrics of an outcrop scale, micaceous quartzite fold produced under greenschist facies metamorphic conditions in the Moeda quartzite, Quadrilátero Ferrı́fero granite–greenstone terrain, southeastern Brazil. The fold limbs show development of opposed SC fabrics and asymmetric quartz c-axis fabrics compatible with flexural slip along the fold surface. Towards the fold hinge, there is an increasing presence of oblique shear bands (here named S-bands) which gradually change to crenulations within the hinge zone. The oblique S-bands are interpreted to have formed through connection of several S-planes, increasing accommodation of antithetical shear along these S-planes and offset of the initial C-planes at intermediate stages of folding. This mechanism represents a kinematic inversion in the role played by the two sets of foliations in SC structures. Our observations support flexural slip for early stages of folding. However, with progressive closure of the fold, the flexural slip mechanism involves increasing contributions from oblique shear on the S-bands, thus approximating an intermediate situation between flexural slip and passive folding (shear parallel to the axial plane).  相似文献   

6.
The gold mineralization of the Hutti Mine is hosted by nine parallel, N–S trending, steeply dipping, 2–10 m wide shear zones, that transect Archaean amphibolites. The shear zones were formed after peak metamorphism during retrograde ductile D2 shearing in the lower amphibolite facies. They were reactivated in the lower to mid greenschist facies by brittle–ductile D3 shearing and intense quartz veining. The development of a S2–S3 crenulation cleavage facilitates the discrimination between the two deformation events and contemporaneous alteration and gold mineralization. Ductile D2 shearing is associated with a pervasively developed distal chlorite–sericite alteration assemblage in the outer parts of the shear zones and the proximal biotite–plagioclase alteration in the center of the shear zones. D3 is characterized by development of the inner chlorite-K-feldspar alteration, which forms a centimeter-scale alteration halo surrounding the laminated quartz veins and replaces earlier biotite along S3. The average size of the laminated vein systems is 30–50 m along strike as well as down-dip and 2–6 m in width.Mass balance calculations suggest strong metasomatic changes for the proximal biotite–plagioclase alteration yielding mass and volume increase of ca. 16% and 12%, respectively. The calculated mass and volume changes of the distal chlorite–sericite alteration (ca. 11%, ca. 8%) are lower. The decrease in δ18O values of the whole rock from around 7.5‰ for the host rocks to 6–7‰ for the distal chlorite–sericite and the proximal biotite–plagioclase alteration and around 5‰ for the inner chlorite-K-feldspar alteration suggests hydrothermal alteration during two-stage deformation and fluid flow.The ductile D2 deformation in the lower amphibolite facies has provided grain scale porosities by microfracturing. The pervasive, steady-state fluid flow resulted in a disseminated style of gold–sulfide mineralization and a penetrative alteration of the host rocks. Alternating ductile and brittle D3 deformation during lower to mid greenschist facies conditions followed the fault-valve process. Ductile creep in the shear zones resulted in a low permeability environment leading to fluid pressure build-up. Strongly episodic fluid advection and mass transfer was controlled by repeated seismic fracturing during the formation of laminated quartz(-gold) veins. The limitation of quartz veins to the extent of earlier shear zones indicate the importance of pre-existing anisotropies for fault-valve action and economic gold mineralization.  相似文献   

7.
The NE to ENE trending Mesozoic Xingcheng-Taili ductile shear zone of the northeastern North China Craton was shaped by three phases of deformation. Deformation phase D1 is characterized by a steep, generally E–W striking gneissosity. It was then overprinted by deformation phase D2 with NE-sinistral shear with K-feldspar porphyroclasts forming a subhorizontal low-angle stretching lineation on a steep foliation. During deformation phase D3, lateral motion accommodated by ENE sinistral strike-slip shear zones dominated. Associated fabrics developed at upper greenschist metamorphic facies conditions and show the deformation characteristics of middle- to shallow crustal levels. In some parts, the older structures have been in turn overprinted by late-stage sinistral D3 shearing. Finite strain and kinematic vorticity in all deformed granitic rocks indicate a prolate ellipsoid (L-S tectonites) near plane strain. Simple shear-dominated general shear during D3 deformation is probably of general significance. The quartz c-axis textures indicate prism-gliding with a dominant rhomb <a> slip and basal <a> slip system formed mainly at low-middle temperatures. Mineral deformation behavior, quartz c-axis textures, quartz grain size and the Kruhl thermometer demonstrate that the ductile shear zone developed under greenschist facies metamorphic conditions at deformation temperatures ranging from 400 to 500 °C. Dislocation creep is the main deformation mechanism at a shallow crustal level. Fractal analysis showed that the boundaries of recrystallized quartz grains had statistically self-similarities. Differential stresses deduced from dynamically recrystallized quartz grain size are at around 20–39 MPa, and strain rates in the order of 10−12 to 10−14 s−1. This indicates deformation of granitic rocks in the Xingcheng-Taili ductile shear zone at low strain rates, which is consistent with most other ductile shear zones. Hornblende-plagioclase thermometer and white mica barometer indicate metamorphic conditions of medium pressures at around ca. 3–5 kbar and temperatures of 400–500 °C within greenschist facies conditions. The main D3 deformation of the ENE-trending sinistral strike-slip ductile shearing is related to the roll-back of the subducting Pacific plate beneath the North China Craton.  相似文献   

8.
Mylonites derived largely from granite, pegmatite and sedimentary quartzite occupy a 500 m thick, gently N-dipping zone along the northern flank of the Coyote Mountains, west of Tucson, in southeastern Arizona. The quartzite mylonites are exceptionally well developed and occur as discrete layers and lenses, 2–5 m thick, within yet thicker, boudinaged, sill-like lenses of mylonitic pegmatite. Mylonitization took place in the Tertiary within a normal-slip ductile shear zone. The shear zones formed in response to regional extension of continental crust. Extension is along a north-south line, and N-directed sense of shear is revealed by mica fish, oblique foliations in dynamically recrystallized quartz aggregates, and asymmetric quartz c-axis fabrics. The microstructures and c-axis fabrics, taken together, disclose that ductile and brittle deformation was achieved by intense, penetrative, non-coaxial laminar flow dominated by progressive simple shear.  相似文献   

9.
In mylonitic gneisses of the Saint-Barthelemy Massif in the French Pyrenees, evidence was found that ultramylonite bands developed by ductile deformation of pseudotachylyte.In the gneiss a mylonitic shape fabric was produced by a continuous structural event during retrogression from amphibolite to upper greenschist facies. Decrease in temperature caused gradual hardening in the gneiss which led to the development of pseudotachylyte bands by intermittent seismic slip. These acted as weak zones in which ductile deformation was concentrated. A microstructure typical of ultramylonite was produced in these deformed pseudotachylyte bands.  相似文献   

10.
The Emizözü shear zone is the west–northwest-trending ductile shear zone within the A?açören granitoid in central Turkey. Deformation that affected the granitoid along the Emizözü shear zone resulted in mylonites with mylonitic foliation and stretching lineation. The textural features of the deformed minerals suggest that mylonitization occurred under conditions of upper greenschist facies. The shear indicators, including asymmetric porphyroclasts, oblique foliation, and shear bands, suggest a down-dip (top-to-the-southwest) displacement. The orientation of stretching lineation, as well as kinematic indicators, indicates the extensional character of the Emizözü shear zone. Although it is not precisely dated, the available age constraints suggest that the zone formed at 78–71 Ma. According to field and micro-structural data, the A?açören granitoid was most likely emplaced during a regional deformation in central Turkey, and synchronously or shortly after was overprinted by the extensional Emizözü shear zone. The zone can also be correlated with the earlier stage development of the Tuzgölü basin in central Turkey.  相似文献   

11.
甘肃阳山金矿是我国最大的金矿床,位于西秦岭造山带的陕甘川"金三角"地区。金矿成矿时代为早侏罗世,与燕山期斜长花岗斑岩有密切的成因联系。基于野外地质调查,本文对安昌河—观音坝断裂带构造岩进行了细致的显微构造研究,以期通过微观构造特征认识宏观断裂构造的活动规律。镜下观察表明断裂带内兼具大量的脆性与塑性显微变形,主要发育左行剪切,暗示该断裂为左行韧-脆性剪切带。断裂带内构造岩经历了高绿片岩相、低绿片岩相及低于绿片岩相的变质-变形过程,且断裂带内至少存在过三到四期构造变形,为断裂带曾发育"多期构造变形"提供依据。显微构造应力分析及岩层产状等密度图显示区域主压应力方向为NNW-NNE,是对印支期以来多期主应力方位的综合反映。据亚颗粒法及动态重结晶法计算的成矿前古应力差值为128.6~95.8 MPa,成矿期古应力差值为74.9~69.3 MPa,成矿后古应力差值为65.8 MPa。综合分析认为中—晚三叠世以来安昌河—观音坝断裂带变质相相变为高绿片岩相→低绿片岩相→低于绿片岩相,变形序列为韧性→韧-脆性→脆性,区域主应力大小发生了大→小的转变,主应力方位经历了SN向挤压→NE向挤压→NW及SN向挤压的转换。安昌河—音坝断裂带构造演化特征反映其经历了从深部到浅部逐渐抬升的过程。  相似文献   

12.
The Canisp Shear Zone transects layered Lewisian gneisses near Lochinver, NW Scotland. It is a vertical ductile shear zone with a dextral shear sense, formed during Laxfordian amphibolite facies metamorphism, transposing the layering to new foliation and linear structures. Minerals in the layered gneisses show little or no shape fabric, while a strong shape fabric defines the foliation. For quartz, this shape fabric is accompanied by development of a preferred crystal orientation with fabric patterns reflecting the geometry of the shear deformation. The quartz fabric shows a pole-free area around the lineation with the c-axes concentrated in an asymmetric cross-girdle or a point maximum perpendicular to the shear plane, and a monoclinic symmetry consistent with the shear sense.  相似文献   

13.
The metamorphic complex of the Western Gneiss Region (WGR), Norway, constitutes the root of the Caledonian mountain belt and experienced temperatures of 700–800 °C and pressures in excess of 20 kbar during peak metamorphism. Mafic bodies surrounded by strongly banded felsic gneisses commonly exhibit variable reequilibration to granulite and eclogite facies conditions and locally preserve igneous minerals and textures. The Kråkeneset gabbro, located on the island of Vågsøy in the mixed HP/UHP zone of the western WGR, display evidence for extensive metastability through the entire prograde and retrograde P, T histories. Eclogite constitutes less than a few percent of the total volume of the body and high-pressure assemblages typically form thin coronas around magmatic phases or occur along localized zones of brittle deformation and fluid infiltration. The gabbro displays pseudotachylyte vein networks that define subparallel brittle fault zones, <50 cm wide, transecting the gabbro body. The pseudotachylytes contain μm- to mm-scale amoeboid and dendrite-like textures of garnet and plagioclase with inclusions of the eclogite facies minerals orthopyroxene, omphacite, amphibole, and dolomite, suggesting rapid disequilibrium growth of minerals during high-pressure conditions. Textural and petrological evidence from pseudotachylytes and corona structures show that the growth of these unusual textures occurred shortly after pseudotachylyte crystallization by a process of rapid solid-state alteration of a microcrystalline pseudotachylyte matrix. The pseudotachylyte-lined fault zones are in close spatial association with numerous amphibole±carbonate-filled hydrofractures with conspicuous fracture-parallel alteration zones defined by hydrous eclogite facies assemblages. These eclogite facies hydrofractures testify to the existence of high fluid pressures and to fluid infiltration following brittle failure during high-grade metamorphic conditions. Geothermobarometric estimates (ca. T=650–700 °C, P=20 kbar) and petrological data imply that hydrofracturing, pseudotachylyte crystallization, and the subsequent pseudotachylyte alteration process must have occurred during high-pressure metamorphism. Our observations are suggestive of a deep-crustal earthquake scenario where a high-pressurized fluid phase plays a double role by causing both seismic failure through the embrittlement effect and facilitating eclogitization of the metastable anhydrous gabbro. Metamorphic reaction along hydrofractures and fault planes led to the development of eclogite facies foliation fabrics and illustrate the rheological change from brittle to plastic behavior associated with the gabbro to eclogite transition. The formation of weak deep-crustal shear zones following brittle failure represents an arrested initiation of the physical breakup and metamorphic reequilibration of the Kråkeneset gabbro during its residence deep in the former Caledonian collision zone.  相似文献   

14.
Orogenic Gold Mineralization in the Qolqoleh Deposit, Northwestern Iran   总被引:1,自引:1,他引:1  
The Qolqoleh gold deposit is located in the northwestern part of the Sanandai‐Sirjan Zone, northwest of Iran. Gold mineralization in the Qolqoleh deposit is almost entirely confined to a series of steeply dipping ductile–brittle shear zones generated during Late Cretaceous–Tertiary continental collision between the Afro‐Arabian and the Iranian microcontinent. The host rocks are Mesozoic volcano‐sedimentary sequences consisting of felsic to mafic metavolcanics, which are metamorphosed to greenschist facies, sericite and chlorite schists. The gold orebodies were found within strong ductile deformation to late brittle deformation. Ore‐controlling structure is NE–SW‐trending oblique thrust with vergence toward south ductile–brittle shear zone. The highly strained host rocks show a combination of mylonitic and cataclastic microstructures, including crystal–plastic deformation and grain size reduction by recrystalization of quartz and mica. The gold orebodies are composed of Au‐bearing highly deformed and altered mylonitic host rocks and cross‐cutting Au‐ and sulfide‐bearing quartz veins. Approximately half of the mineralization is in the form of dissemination in the mylonite and the remainder was clearly emplaced as a result of brittle deformation in quartz–sulfide microfractures, microveins and veins. Only low volumes of gold concentration was introduced during ductile deformation, whereas, during the evident brittle deformation phase, competence contrasts allowed fracturing to focus on the quartz–sericite domain boundaries of the mylonitic foliation, thus permitting the introduction of auriferous fluid to create disseminated and cross‐cutting Au‐quartz veins. According to mineral assemblages and alteration intensity, hydrothermal alteration could be divided into three zones: silicification and sulfidation zone (major ore body); sericite and carbonate alteration zone; and sericite–chlorite alteration zone that may be taken to imply wall‐rock interaction with near neutral fluids (pH 5–6). Silicified and sulfide alteration zone is observed in the inner parts of alteration zones. High gold grades belong to silicified highly deformed mylonitic and ultramylonitic domains and silicified sulfide‐bearing microveins. Based on paragenetic relationships, three main stages of mineralization are recognized in the Qolqoleh gold deposit. Stage I encompasses deposition of large volumes of milky quartz and pyrite. Stage II includes gray and buck quartz, pyrite and minor calcite, sphalerite, subordinate chalcopyrite and gold ores. Stage III consists of comb quartz and calcite, magnetite, sphalerite, chalcopyrite, arsenopyrite, pyrrhotite and gold ores. Studies on regional geology, ore geology and ore‐forming stages have proved that the Qolqoleh deposit was formed in the compression–extension stage during the Late Cretaceous–Tertiary continental collision in a ductile–brittle shear zone, and is characterized by orogenic gold deposits.  相似文献   

15.
老挝琅勃拉邦省巴乌县帕奔金矿主体处于NE-NNE向大型韧脆性剪切带中.该韧脆性剪切带基本控制了矿区的构造格架,改造和置换了早期构造形迹,使原有的沉积岩层呈NE-NNE向条带状和透镜状展布,并遭受不同程度的韧脆性—脆性变形而具有构造岩的特征.该韧脆性剪切变形带对帕奔金矿床的形成起着空间定位和主体导矿富集作用,它既控制矿带在区域空间的展布,也控制矿体的产状形态;既是导矿构造,又是容矿构造.  相似文献   

16.
《Comptes Rendus Geoscience》2018,350(8):452-463
Fracture process is investigated using finite-difference simulations with a new constitutive model. It is shown that both geometry and fracture mechanism itself depend on the preexisting heterogeneities that are stress concentrators. In the brittle regime (low pressure, P), Mode-I fractures propagate normal to the least stress σ3 from the imposed weak zones. At high P, shear deformation bands are formed oblique to σ3. At intermediate values of P, the fracture process involves both shear banding and tensile cracking and results in the initiation and propagation of pure dilation bands. The propagating band tip undulates, reacting on the failure mechanism changes, but its global orientation is normal to σ3. The σ3-normal fractures are joints. There are thus two types of joints resulting from Mode-I cracking and dilation banding, respectively. The obtained numerical results are in good agreement with and explain the results from previous similar experimental study.  相似文献   

17.
In a major tectonic zone late extension related SC mylonites locally overprint the predominant coarser quartz microstructures, which are related to earlier thrusting. Some of the SC mylonites display a microstructural evolution which began with the formation of deformation bands in the coarser pre-existing microstructure and continued with the formation of asymmetric quartz microfoliations, either by continued formation of deformation bands or fine new grains oblique to the deformation band boundaries. The orientation of boudinaged and passively reoriented rutile needles show that (i) the formation of deformation bands was preceded and accompanied by the accumulation of strain; (ii) that the deformation bands and oblique microfoliation which formed directly from them lie close to the finite stretching direction; whereas (iii) other microfoliations form oblique to deformation bands and extended rutile needles near the probable instantaneous stretching direction. The latter are therefore interpreted to be strain insensitive, steady-state foliations. The crystallographic preferred orientation of the original deformation bands appears to determine that of the microfoliations, the two types of microfoliations showing distinct but related patterns. The element common to both types is the presence of two maxima near Y in a YZ girdle—a feature inherited from the deformation bands, which were formed in the initial stages of shortening of the aggregate, favourably disposing it for rhomb slip and providing nucleation sites for subsequent recrystallization.The data confirm that, despite the fact that a variety of microstructures and crystallographic microfabrics result from recrystallization processes, kinematic information is usually recoverable from the crystallographic microfabrics owing to the primacy of intracrystalline slip processes.  相似文献   

18.
Transpressional deformation has played an important role in the late Neoproterozoic evolution of the ArabianNubian Shield including the Central Eastern Desert of Egypt. The Ghadir Shear Belt is a 35 km-long, NW-oriented brittleductile shear zone that underwent overall sinistral transpression during the Late Neoproterozoic. Within this shear belt, strain is highly partitioned into shortening, oblique, extensional and strike-slip structures at multiple scales. Moreover, strain partitioning is heterogeneous along-strike giving rise to three distinct structural domains. In the East Ghadir and Ambaut shear belts, the strain is pure-shear dominated whereas the narrow sectors parallel to the shear walls in the West Ghadir Shear Zone are simple-shear dominated. These domains are comparable to splay-dominated and thrust-dominated strike-slip shear zones. The kinematic transition along the Ghadir shear belt is consistent with separate strike-slip and thrustsense shear zones. The earlier fabric(S1), is locally recognized in low strain areas and SW-ward thrusts. S2 is associated with a shallowly plunging stretching lineation(L2), and defines ~NW-SE major upright macroscopic folds in the East Ghadir shear belt. F2 folds are superimposed by ~NNW–SSE tight-minor and major F3 folds that are kinematically compatible with sinistral transpressional deformation along the West Ghadir Shear Zone and may represent strain partitioning during deformation. F2 and F3 folds are superimposed by ENE–WSW gentle F4 folds in the Ambaut shear belt. The sub-parallelism of F3 and F4 fold axes with the shear zones may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation in fold zones. Dextral ENEstriking shear zones were subsequently active at ca. 595 Ma, coeval with sinistral shearing along NW-to NNW-striking shear zones. The occurrence of upright folds and folds with vertical axes suggests that transpression plays a significant role in the tectonic evolution of the Ghadir shear belt. Oblique convergence may have been provoked by the buckling of the Hafafit gneiss-cored domes and relative rotations between its segments. Upright folds, fold with vertical axes and sinistral strike-slip shear zones developed in response to strain partitioning. The West Ghadir Shear Zone contains thrusts and strikeslip shear zones that resulted from lateral escape tectonics associated with lateral imbrication and transpression in response to oblique squeezing of the Arabian-Nubian Shield during agglutination of East and West Gondwana.  相似文献   

19.
西藏冈底斯带扎雪-门巴韧性变形带形成时代及构造背景   总被引:2,自引:0,他引:2  
扎雪-门巴韧性变形带位于冈底斯构造带中部,是一条由北而南的逆冲推覆兼具右行走滑的斜冲韧性剪切带。带内所形成的构造岩主要为构造片麻岩和糜棱岩类,对花岗质糜棱岩中的黑云母进行40Ar/39Ar年龄测试,获得105.2±1.7Ma,认为该韧性剪切带形成于早白垩世。岩石组合和显微构造特征表明该韧性剪切带形成于中绿片岩相到高绿片岩相环境,可能与班公湖-怒江弧后洋盆的闭合碰撞有关。  相似文献   

20.
大别山超高压变质岩的变形历史及折返过程   总被引:22,自引:3,他引:19       下载免费PDF全文
江来利  刘贻灿 《地质科学》1999,34(4):432-441
大别山南部的超高压变质岩在其形成及折返过程中经过5期变形。D1变形为榴辉岩相前变形,形成于扬子板块北缘陆壳基底的俯冲过程中;D2变形形成于折返初期(220-210Ma)即超高压变质岩在浮力驱动下折返至下地壳底部的过程中,变形以块状榴辉岩的糜棱岩化及层状榴辉岩和基质的紧密-同斜褶皱为特征;D3变形发生在折返中期(200-180Ma)即超高压变质岩在南北陆块持续碰撞作用下被挤出并向北逆冲折返至中地壳的过程中,变形以榴辉岩的布丁化和基质的强烈韧性剪切变形为特征;D4变形是折返晚期(130-110Ma)超高压变质岩在地壳浅部伸展体制下向南滑脱所致;在折返至近地表时,超高压变质岩受到NE向断层(D5)的切割。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号