首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Salt weathering is a significant process affecting the deterioration and conservation of stone-built heritage in many locations and environments. While much research has focused on the impact of salt weathering under arid or coastal conditions with characteristic climatic conditions and salt types, many sites found to be experiencing salt-induced deterioration, such as sandstone rock-hewn cave temples in Gansu Province, China and sandstone buildings in the northern UK, experience high humidities, moderate temperature ranges, and different salt types. To evaluate the impact of salt weathering on sandstone-built heritage under such mild humid environmental conditions, a lab simulation experiment was designed. The experiment was carried out on three types of sandstone (used in the northern UK and Gansu Province, China) and utilized a realistic diurnal humidity and temperature cycle (85% RH/16°C + 60% RH/22°C), and three widespread damaging salts, that is, Na2SO4, MgSO4, and the mixture of Na2SO4–MgSO4. The nature and extent of deterioration was monitored by photography, weight loss, and the changes in petrophysical properties measured using hardness, ultrasonic pulse velocity (P-wave velocity), water absorption coefficient by capillarity, open porosity, and apparent density. All three sandstones were found to be susceptible to MgSO4 and the mixture of Na2SO4–MgSO4, but weakly affected by Na2SO4 under mild humid environmental conditions.  相似文献   

2.
Data describing sediment generation focusing on the temporal evolution of size gradation are required for the prediction of long‐term landform evolution. This paper presents such data for the salt weathering of a quartz‐chlorite schist obtained from the Ranger Uranium Mine in northern Australia. Rock fragment samples are subjected to three different climate regimes: (1) a dry season climate; (2) a wet season climate (both based on observations at the Ranger site); and (3) an oven‐drying sequence designed to test the sensitivity of the weathering process by exposing the rocks to more extreme temperatures. Two MgSO4 salt solutions are applied, one being typical of wet season runoff and the other a more concentrated solution. Salt solution is applied daily in the wet season experiments and once only at the beginning of the dry season experiments. Results of the experiments reveal four stages of weathering. The kinetics of each stage are described and related to the formation of sediment of different sizes. Wet season climate conditions are shown to produce greater moisture variability and lead to faster weathering rates. However, salt concentrations in the wet season are typically lower and so when climate is combined with observed salt concentrations, the dry and wet season experiments weather at approximately equal rates. Finally, small variations in rock properties were shown to have a large impact on weathering rates, leading to the conclusion that rock weathering experiments need to be carefully designed if results are to be used to help predict weathering behaviour at the landscape scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
A laboratory experiment has been conducted to examine the effects of ‘frost and salt’ weathering (i.e. physical breakdown by the freezing of salt solutions) on a limestone. Results show that the presence of certain salts in solution can inhibit frost damage. These findings are in direct conflict with those presented by Goudie (1974) and, more recently, Williams and Robinson (1981). Comparison of the experimental methods used in each of these three studies suggests that opposing results can be explained in terms of the different experimental procedures which were employed. If salt supply is frequent and plentiful then it seems likely that rock breakdown will be enhanced-this is the case represented by the experiment of Williams and Robinson. Conversely if the salt supply is limited and the amounts of salt remain more or less constant then rock breakdown will be inhibited-the case of the present experimental study. Caution is therefore advocated when attempting to extrapolate laboratory-derived results to infer on the behaviour of rocks under natural conditions. Several environmental situations in which ‘frost and salt’ weathering may be a possibility are dsiscussed, but it is concluded that further field data, especially concerning temperature regimes and salt availability at and below rock surfaces in cold regions, would be necessary before more definite statements could be made about the efficacy of this process.  相似文献   

4.
The results of a series of experiments are reported in this paper which were designed to differentiate between the forces of crystal growth and hydration in salt weathering, using a single salt-hydrate system (sodium sulphate), five contrasting rock types, and several diurnal temperature-relative humidity cycles which permitted or inhibited these processes and simulated ground surface climates in hot, arid environments. It was shown that hydration of sodium sulphate is an effective mechanism of rock disintegration but that it is significantly less destructive than crystal growth pressure. Crystallization of thenardite (Na2SO4) is, in turn, more effective in rock weathering than the crystal growth of mirabilite (Na2SO4.10H2O). In general, rates of disintegration were most rapid where the diurnal temperature range was extreme and relative humidity lowest.  相似文献   

5.
A total of 21 different types of British and European Mesozoic limestones have been subjected to simulated salt weathering using sodium sulphate (Na2SO4) with the following aims: assessment of the relative durabilities of different types of limestone; assessment of the importance of modulus of elasticity and other factors in affecting durability; and assessment of the use of impulse excitation techniques to monitor changes in rock modulus of elasticity. The rocks showed a wide spectrum of durabilities; while rocks with high values of modulus of elasticity, lower water absorption capacities, high densities and low salt uptakes tended to be durable, there were anomalies, the explanation for which probably lies in their pore structures. Non-destructive testing techniques showed that, although the more durable rocks failed to lose weight or to show visual signs of disintegration, their modulus of elasticity values did tend to decline, indicating a loss in strength. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
Because of the different geochemical behaviour of rubidium and strontium in earth surface processes, variations of the Rb/Sr ratios in lake sediments were used as a geochemical proxy of chemical weathering and past climate in a single watershed. Low magnetic susceptibility, low CaCO3, low Sr concentration and, hence, high Rb/Sr ratio in the lake sediments indicate weak chemical weathering under a cold but wet climate during the Little Ice Age (LIA) in the closed Daihai Lake watershed. The concordant change in both Sr and CaCO3 concentrations with δ18O values in the Dunde ice core suggests that weak chemical weathering during the wet LIA was controlled by air temperature. After the LIA, however, precipitation played a dominant role in chemical weathering. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

This study was carried out from 2003 to 2007 to understand the hydrogeochemical processes and the solute sources of the meltwaters of the Chhota Shigri Glacier, Himalaya. The meltwater is almost neutral to slightly alkaline in nature: bicarbonate and sulphate are the dominant anions, while calcium and magnesium are the dominant cations. Bicarbonate is found to be derived from carbonate weathering and partly from silicate weathering. Rock weathering followed by precipitation are the main controlling factors that influence the meltwater chemistry of this region. The relatively high values of pCO2 reflect a higher rate of solubility in comparison to release of excess CO2 gas to the atmosphere. The presence of active hydrogeochemical processes and sediment–water interaction results in excess solute transport through the meltwater to the Chandra River that feeds the Chenab, one of the great Himalayan river systems, and ultimately flows into the ocean. This study is the first of its kind to understand in detail the hydrogeochemical process and resultant solute load transport in this Himalayan glacier.

Citation Sharma, P., Ramanathan, A.L., and Pottakkal, J., 2013. Study of solute sources and evolution of hydrogeochemical processes of the Chhota Shigri Glacier meltwaters, Himachal Himalaya, India. Hydrological Sciences Journal, 58 (5), 1128–1143.

Editor Z.W. Kundzewicz  相似文献   

8.
To better understand the mechanisms relating to hydrological regulations of chemical weathering processes and dissolved inorganic carbon (DIC) behaviours, high-frequency sampling campaigns and associated analyses were conducted in the Yu River, South China. Hydrological variability modifies the biogeochemical processes of dissolved solutes, so major ions display different behaviours in response to discharge change. Most ions become diluted with increasing discharge because of the shortened reactive time between rock and water under high-flow conditions. Carbonate weathering is the main source of major ions, which shows strong chemostatic behaviour in response to changes in discharge. Ions from silicate weathering exhibit a significant dilution effect relative to the carbonate-sourced ions. Under high temperatures, the increased soil CO2 influx from the mineralisation of organic material shifts the negative carbon isotope ratios of DIC (δ13CDIC) during the high-flow season. The δ13CDIC values show a higher sensitivity than DIC contents in response to various hydrological conditions. Results from a modified isotope-mixing model (IsoSource) demonstrate that biological carbon is a dominant source of DIC and plays an important role in temporal carbon dynamics. Furthermore, this study provides insights into chemical weathering processes and carbon dynamics, highlighting the significant influence of hydrological variability to aid understanding of the global carbon cycle.  相似文献   

9.
Despite recent rapid advances in the field of structure-from-motion (SfM) photogrammetry, the use of high-resolution data to investigate small-scale processes is a relatively underdeveloped field. In particular, rock weathering is rarely investigated using this suite of techniques. This research uses a combination of traditional non-destructive rock weathering measurement techniques (rock surface hardness) and SfM to map deterioration and loss of cohesion of the surface using three-dimensional data. The results are used to interpret weathering behaviour across two different lithologies present on the site, namely shale and limestone. This new approach is tested on seven sites in Longyearbyen, Svalbard, where active weathering of a rock surface was measured after 13 years of exposure to extreme temperature regimes and snow cover. The surface loss was quantified with SfM and combined with rock surface hardness measurement distributions extrapolated in geographic information system (GIS). The combined results are used here to quantify the difference in response of both lithologies to these extreme temperatures. This research demonstrates the potential for further integration of SfM in rock weathering research and other small-scale geomorphological investigations, in particular in difficult field conditions where portability of field equipment is paramount. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

10.
Tafoni are a type of cavernous weathering widespread around the world. Despite the extensive distribution of the tafoni, their genesis is not clear and is still a matter of debate, also because they occur in such different climatic conditions and on so many different types of substrate. Geomorphological characterization of more than 60 tafoni in three different Antarctic sites (two coastal and one inland) between 74 and 76° S with sampling of weathering products and salt occurrences are described together with thermal data (on different surfaces) and wind speed recorded in different periods of the year in a selected tafone close to the Italian Antarctic station. The aim of this present study is to provide further information to help understand the processes involved in the growth of tafoni in a cryotic environment, and the relationship of these processes to climate, with particular attention to the thermal regime and the role of wind. The new data presented in this paper suggest that there is no single key factor that drives the tafoni development, although thermal stress seems the most efficient process, particularly if we consider the short‐term fluctuations. The data also confirm that other thermal processes, such as freezing–thawing cycles and thermal shock, are not really effective for the development of tafoni in this area. The wind speed measured within the tafoni is half that recorded outside, thus favouring snow accumulation within the tafoni and therefore promoting salt crystallization. On the other hand, the wind effect on the thermal regime within the tafoni seems negligible. While both salt weathering and thermal stress appear active in this cryotic environment, these are azonal processes and are therefore active in other climatic areas where tafoni are widespread (such as the Mediterranean region). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Jun Xiao  Fei Zhang  Zhangdong Jin 《水文研究》2016,30(25):4855-4869
Hydrochemistry methods were used to decipher the weathering and geochemical processes controlling solute acquisition of river waters in the dry season in the middle Loess Plateau (MLP), one of the most severely eroded areas and turbid riverine systems in the world. River waters were neutral to slightly alkaline with pH varying from 7.6 to 9.6. The total dissolved solids decreased from northwest to southeast with a mean value of 804 mg/l, much higher than the global average and other large rivers in China. Ternary diagram showed that river waters were dominated by Na+, HCO3?, and Cl? with the main water‐type of HCO3?–Cl?–Na+. Saturation index values, Mg2+, Ca2+, and HCO3? analyses indicated the preferential Ca2+ removal by calcite precipitation. Gibbs plots and stoichiometry plots indicated that the dissolved solutes were mainly derived from rock weathering with minor anthropogenic and atmospheric inputs. Samples in the northwestern basin are also influenced by evaporation. A forward model of mass budget calculation showed that, owing to high soluble characteristics, evaporite dissolution was a major feature of river waters and contributed 41% to the total dissolved cations on average, while carbonate and silicate weathering contributed 28%,and 25% on average, respectively. Besides evaporite dissolution, cation exchange is also responsible for the high concentrations of Na+ in river water. Spatial variations showed that evaporite dissolution and silicate weathering were higher in the northern basin, whereas carbonate weathering was higher in the southern basin. Different from most rivers in the world, the physical erosion rates (varying from 117.7 to 4116.6 t/km2y) are much higher than the chemical weathering rates (varying from 3.54 to 6.76 t/km2y) in the MLP because of the loose structure of loess and poor vegetation in the basin. In the future, studies on comparison of water geochemistry in different seasons and on influence of different types of land use and soil salinization on water geochemistry, denudation rates, and water quality should be strengthened in the MLP. These results shed some lights on processes responsible for modern loess weathering and also indicate the importance of time‐series sampling strategy for river water chemistry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A high-resolution mineral magnetic investigation has been carried out on the Jingbian loess/paleosol sequence at the northern extremity of the Chinese Loess Plateau. Results show that the magnetic assemblage is dominated by large pseudo-single domain and multidomain-like magnetite with associated maghemite and hematite. Variations in the ratios of SIRM100mT/SIRM, SIRM100mT/SIRM30mT and SIRM100mT/SIRM60mT (SIRM is the saturation isothermal remanent magnetization; SIRMnmT represents the residual SIRM after an n mT alternating field demagnetization) have been used to document regional paleoclimate change in the Asian interior by correlating the mineral magnetic record with the composite δ18O record in deep-sea sediments. The long-term up-section decreasing trend in those ratios in both loess and paleosol units has been attributed to a long-term decrease in the relative contributions of eolian hematite during glacial extrema and of pedogenic hematite during interglacial extrema, respectively, which reveals a long-term decreasing trend in chemical weathering intensity in both glacial-stage source region (the Gobi and deserts in northwestern China) and interglacial-stage depositional area (the Loess Plateau region). We further relate this long-timescale variation to long-term increasing aridification and cooling, during both glacial extrema in the dust source region and interglacial extrema in the depositional area, over the Quaternary period. Changes in those ratios are most likely due to Quaternary aridification and cooling driven by ongoing global cooling, expansion of the Arctic ice-sheet, and progressive uplift of the Himalayan–Tibetan complex during this period.  相似文献   

13.
粤东五华河流域的化学风化与CO2吸收   总被引:1,自引:1,他引:0  
基于对粤东五华河干流和支流水体的物理、化学组成测试数据,应用质量平衡法和相关分析法探讨湿热山地丘陵地区岩石化学风化过程对大气CO2的吸收.结果表明:五华河水体的总溶解性固体含量(77.11 mg/L)接近于世界河流的平均值(65 mg/L);离子组成以Ca2+、Na+和HCO3-为主,可溶性Si次之.五华河流域化学径流组成主要源自硅酸盐矿物化学风化过程的贡献,碳酸盐矿物的贡献较少;大气和土壤CO2是流域内岩石化学风化的主要侵蚀介质.与同一气候带其他河流相比较,五华河流域岩石化学风化过程对大气CO2的吸收通量(2.14×105mol/(km2·a))较低,这主要是由于流域内缺乏碳酸盐岩所导致.  相似文献   

14.
Dissolved major ions, Sr concentrations and 87Sr/86Sr ratios of 10 coastal lakes from the Larsemann Hills, East Antarctica have been studied to constrain their solute sources, transport and glacial weathering patterns in their catchments. In absence of perennial river/streams, lakes serve as only reliable archive to study land surface processes in these low-temperature regions. The lake water chemistry is mostly Na-Cl type and it does not show any significant depth variations. Sr isotope compositions of these lakes vary from 0.7110 to 0.7211 with an average value of 0.7145, which is higher than modern seawater value. In addition to oceanic sources, major ions and Sr isotopic data show appreciable amount of solute supply from chemical weathering of silicate rocks in lake catchments and dissolution of Ca-Mg rich salts produced during the freezing of seawaters. The role of sulphide oxidation and carbonate weathering are found to be minimal on lake hydro-chemistry in this part of Antarctica. Inverse model calculations using this chemical dataset provide first-order estimates of dissolved cations and Sr; they are mostly derived from oceanic (seawater + snow) sources (cations approximately 76%) and (Sr approximately 92%) with minimal supplies from weathering of silicates (cations approximately 15%); (Sr approximately 2%) and Ca-rich minerals (cations approximately 9%); (Sr approximately 7%). The silicate weathering rate and its corresponding atmospheric CO2 consumption rate estimates for Scandrett lake catchment (3.6 ± 0.3 tons/km2/year and 0.5 × 105 moles/km2/year), are lower than that of reported values for the average global river basins (5.4 tons/km2/year and 0.9 × 105 tons/km2/year) respectively. The present study provides a comprehensive report of chemical weathering intensity and its role in atmospheric CO2 consumption in low-temperature pristine environment of Antarctica. These estimates underscore the importance of Antarctica weathering on atmospheric CO2 budget, particularly during the past warmer periods when the large area was exposed and available for intense chemical weathering.  相似文献   

15.
A saline‐spray artificial ageing test was used to simulate the effects produced in granites and sedimentary rocks (calcarenites, micrites and breccia) under conditions in coastal environments. Three main points were addressed in this study: the durability of the different kinds of rock to salt decay, the resulting weathering forms and the rock properties involved in the weathering processes. For this, mineralogical and textural characterization of each of the different rocks was carried out before and after the test. The soluble salt content at different depths from the exposed surfaces was also determined. Two different weathering mechanisms were observed in the granite and calcareous rocks. Physical processes were involved in the weathering of granite samples, whereas dissolution of calcite was also involved in the deterioration of the calcareous rocks. We also showed that microstructural characteristics (e.g. pore size distribution), play a key role in salt damage, because of their influence on saline solution transport and on the pressures developed within rocks during crystallization. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
The morphometry of 85 gnammas (weathering pits) from Big Stone County in western Minnesota allows the assessment of the relative ages of the gnamma population. The ratio between maximum and minimum depths is independent of the initial size of the cavity and only depends on the weathering evolution. Therefore, the distribution of depth ratios can be used to assess the gnamma population age and the history of weathering. The asymmetrical distribution of depth ratios measured in Big Stone County forms three distinct populations. When these sets are analyzed independently, the correlation (r2) between maximum and minimum depths is greater than 0·95. Each single population has a normal distribution of depth ratios and the average depth ratios (δ‐value) for each population are δ1 = 1·60 ± 0·05, δ2 = 2·09 ± 0·04 and δ3 = 2·42 ± 0·08. The initiation of gnamma formation followed the exhumation of the granite in the region. This granite was till and saprolite covered upon retreat of the ice from the Last Glacial Maximum. Nearby outcrops are striated, but the study site remained buried until it was exhumed by paleofloods issuing from a proglacial lake. These Holocene‐aged gnammas in western Minnesota were compared with gnammas of other ages from around the world. Our new results are in accordance with the hypothesis that δ‐values represent the evolution of gnammas with time under temperate‐ to cold‐climate dynamics. Phases of the formation of new gnammas may result from changes in weathering processes related to climate changes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we use carbon isotopes in the dissolved load of rivers from the Lesser Antilles volcanic arc (Guadeloupe, Martinique and Dominica islands) to constrain the source of the carbon dioxide (CO2) involved in the neutralization reactions during water–rock interactions. The δ13C data span a large range of variations, from –19‰ to –5 · 2‰ for DIC (dissolved inorganic carbon) concentrations ranging from 11 μM to 2000 μM. Coupled with major element concentrations, carbon isotopic ratios are interpreted as reflecting a mixture of magmatic CO2 (enriched in heavy carbon (δ13C ≈ –3 · 5‰) and biogenic CO2 produced in soils (enriched in light carbon (δ13C < –17‰)). Carbon isotopes show that, at the regional scale, 23 to 40% of CO2 consumed by weathering reactions is of magmatic origin and is transferred to the river system through aquifers under various thermal regimes. These numbers remain first‐order estimates as the major uncertainty in using carbon isotopes as a source tracer is that carbon isotopes can be fractionated by a number of processes, including soil and river degassing. Chemical weathering is clearly, at least, partly controlled by the input of magmatic CO2, either under hydrothermal (hot) or surficial (cold) weathering regimes. This study shows that the contribution of magmatic CO2 to chemical weathering is an additional parameter that could explain the high weathering rates of volcanic rocks. The study also shows that a significant part of the carbon degassed from the Earth's interior is not released as CO2 to the atmosphere, but as DIC to the ocean because it interacts with the groundwater system. This study calls for a better understanding of the contributions of deep carbon to the hydrosphere and its influence on the development of the Critical Zone. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
As an alternative approach to classical turbulence modelling using a first or second order closure, the data assimilation method of optimal control is applied to estimate a time and space-dependent turbulent viscosity in a three-dimensional oceanic circulation model. The optimal control method, described for a 3-D primitive equation model, involves the minimization of a cost function that quantifies the discrepancies between the simulations and the observations. An iterative algorithm is obtained via the adjoint model resolution. In a first experiment, a k ± L model is used to simulate the one-dimensional development of inertial oscillations resulting from a wind stress at the sea surface and with the presence of a halocline. These results are used as synthetic observations to be assimilated. The turbulent viscosity is then recovered without the k + L closure, even with sparse and noisy observations. The problems of controllability and of the dimensions of the control are then discussed. A second experiment consists of a two-dimensional schematic simulation. A 2-D turbulent viscosity field is estimated from data on the initial and final states of a coastal upwelling event.  相似文献   

19.
Laboratory and field data indicate that the aqueous geochemistry of a small watershed in siliceous materials is largely determined by reactions between soil and water. For dissolved SiO2, Ca+2, K+, Na+, a reversible steady state is achieved in the soil within hours. The solute concentrations are in equilibrium with kaolinite, the end-product in the local weathering sequence. The processes occur in a drainage basin in which solution activities are the predominant form of erosion.  相似文献   

20.
A CO2-weathering model has been used to explore the possible evolution of the Earth’s climate as the Sun steadily brightened throughout geologic time. The results of the model calculations can be described in terms of three, qualitatively different, “Megaclimates”. Mega-climate 1 resulted from a period of rapid outgassing in the early Archean, with high, but declining, temperatures caused by the small weathering rates on a largely water-covered planet. Mega-climate 2 began about 3 Gyear ago as major continental land masses developed, increasing the weathering rate in the early Proterozoic and thereby depleting the atmospheric CO2 concentration. This process produced the first Precambrian glaciations about 2.3 Gyear ago. During Mega-climate 2, evolutionary biological processes increased the surface weatherability in incremental steps and plate tectonics modulated the CO2 outgassing rate with an estimated period of 150 Myear (approximately one-half the period for the formation and breakup of super continents). Throughout Mega-climate 2 the surface temperature was controlled by variations in the atmospheric CO2 level allowing transitions between glacial and non-glacial conditions. The results of the model for Mega-climate 2 are in agreement with the occurrence (and absence) of glaciations in the geologic record. Extending the model to the future suggests that CO2 control of the Earth’s temperature will no longer be able to compensate for a solar flux that continues to increase. The present level of atmospheric CO2 is so small that further reduction in CO2 cannot prevent the Earth from experiencing Mega-climate 3 with steadily increasing surface temperatures caused by the continued brightening of the Sun. During Mega-climate 3, the main danger to the biosphere would come not from an increasing temperature but from a decreasing (rather than an increasing) CO2 level which could, in time, fall below 0.5 PAL, causing serious damage to the biosphere. Fortunately, the rates of change due to solar brightening are slow enough that Mega-climate 3 appears to pose no threat to the biosphere for the next 0.5-2 Gyear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号