首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The impact of afforestation on stream bank erosion and channel form   总被引:1,自引:0,他引:1  
Modification of the land use of a small catchment through coniferous afforestation is shown to have influenced stream bank erosion and channel form. Field mapping and erosion pin measurements over a 19-month period provides evidence of more active bank erosion along forested channel reaches than along non-forested. Extrapolation of downstream increases in bankfull width, bankfull depth, and channel capacity with increasing basin area for the non-forested catchment has demonstrated that afforestation of the lower part of the catchment has had a marked effect on channel form. Channel widths within the forest are up to three times greater than that predicted from the regression. These changes in bankfull width have led to stream bed aggradation and the development of wide shallow channels within the forest, and channel capacities within the forest are over two times that predicted from the basin area. The relationship between channel sinuosity and valley gradient for non-forested reaches of the river also indicated decreased sinuosity resulting from afforestation. These changes in channel form result from active bank erosion within the forest with coarse material being deposited within the channel as point-bars and mid-channel bars. Active bank erosion is largely attributed to the suppression by the forest of a thick grass turf and its associated dense network of fine roots, and secondly to the river attempting to bypass log jams and debris dams in the stream channel.  相似文献   

2.
Storage of large woody debris in the wide, mountain, Czarny Dunajec River, southern Poland, was investigated following two floods of June and July 2001 with a seven‐year frequency. Within a reach, to which wood was delivered only by bank erosion and transport from upstream, wood quantities were estimated for eighty‐nine, 100 m long, channel segments grouped into nine sections of similar morphology. Results from regression analysis indicated the quantity of stored wood to be directly related to the length of eroded, wooded banks and river width, and inversely related to unit stream power at the flood peak. The largest quantities of wood (up to 33 t ha?1) were stored in wide, multi‐thread river sections. Here, the relatively low transporting ability of the river facilitated deposition of transported wood while a considerable length of eroded channel and island banks resulted in a large number of trees delivered from the local riparian forest. In these sections, a few morphological and ecological situations led to the accumulation of especially large quantities of wood within a small river area. Very low amounts of wood were stored in narrow, single‐thread sections of regulated or bedrock channel. High stream power facilitated transport of wood through these sections while the high strength of the banks and low channel sinuosity prevented bank retreat and delivery of trees to the channel. Considerable differences in the character of deposited wood existed between wide, multi‐thread channel sections located at different distances below a narrow, 7 km long, channellized reach of the river. Wood deposited close to the downstream end of the channellized reach was highly disintegrated and structured into jams, whereas further downstream well preserved shrubs and trees prevailed. This apparently reflects differences in the distance of wood transport and shows that in a mountain river wider than the height of trees growing on its banks, wood can be transported long distances along relatively narrow, single‐thread reaches but is preferentially deposited in wide, multi‐thread reaches. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
A 177 river km georeferenced aerial survey of in‐channel large wood (LW) on the lower Roanoke River, NC was conducted to determine LW dynamics and distributions on an eastern USA low‐gradient large river. Results indicate a system with approximately 75% of the LW available for transport either as detached individual LW or as LW in log jams. There were approximately 55 individual LW per river km and another 59 pieces in log jams per river km. Individual LW is a product of bank erosion (73% is produced through erosion) and is isolated on the mid and upper banks at low flow. This LW does not appear to be important for either aquatic habitat or as a human risk. Log jams rest near or at water level making them a factor in bank complexity in an otherwise homogenous fine‐grained channel. A segmentation test was performed using LW frequency by river km to detect breaks in longitudinal distribution and to define homogeneous reaches of LW frequency. Homogeneous reaches were then analyzed to determine their relationship to bank height, channel width/depth, sinuosity, and gradient. Results show that log jams are a product of LW transport and occur more frequently in areas with high snag concentrations, low to intermediate bank heights, high sinuosity, high local LW recruitment rates, and narrow channel widths. The largest concentration of log jams (21.5 log jams/km) occurs in an actively eroding reach. Log jam concentrations downstream of this reach are lower due to a loss of river competency as the channel reaches sea level and the concurrent development of unvegetated mudflats separating the active channel from the floodplain forest. Substantial LW transport occurs on this low‐gradient, dam‐regulated large river; this study, paired with future research on transport mechanisms should provide resource managers and policymakers with options to better manage aquatic habitat while mitigating possible negative impacts to human interests. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
In many large alluvial rivers, trees often recruit and survive along laterally accreted sediments on bars. This produces a gradient of tree ages and composition with distance from the active channel. However, in low‐order, gravel‐bed mountain streams, such as the stream investigated in this study, it is suggested that vertical accretion results in sediment deposition patterns on bars that are often highly patchy. Consequently, tree species and ages are also heterogeneously distributed, rather than having distinct linear or arcuate banding patterns with distance from the channel. In addition, overall age patterns of trees on these bars follow the distribution of floods, with numerous young trees and few older trees. Recruitment is fairly continuous on these bars and is not correlated with high water years, suggesting that even flows close to bankfull levels are capable of transporting fine sediment to the bars on which trees establish. This pattern of sediment deposition/erosion and the resulting tree recruitment and survival seem to be a result of valley confinement and the lack of lateral accretion in these smaller, mountainous channels. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Stream bank erosion rates measured over a two-year period on a moorland and a forested stream in the Institute of Hydrology's Balquhidder Paired Catchments in central Scotland were compared. Bank erosion rates are generally higher on the mainstream of the moorland catchment and highest in wintger on both streams. Bank erosion is correlated with the incidence of frost: minimum temperatures measured on stream banks of the forested stream were an average of 3·7°C higher than on stream banks both outside the forest and on the moorland stream. This makes the incidence of frost on forested stream banks half as frequent. Volumes of material eroded from the mainstreams were combined with bulk density measurements and it is estimated that erosion of the mainstream banks is contributing 1·5 and 7·3 per cent of the sediment yield of the forested and moorland catchments, respectively. Analysis of the vertical distribution of erosion on the banks of both streams suggests an undercutting mechanism which is more pronounced in the moorland stream. The influence of trees on bank erosion and possible implications for the management of forest streams are discussed. © 1997 by John Wiley & Sons, Ltd.  相似文献   

6.
Two landsliding episodes between late 1973 and early 1975 delivered about 60000 m3 of sediment to six small deeply incised streams draining a 2·7 km2 area. About 4700 m3 of logs in the landslide debris formed major log jams in five streams, which impounded large volumes of landslide-derived sediment. Five years after the landsliding, 42 per cent (25000 m3) of sediment was still in storage behind 35 log jams ranging from 1·4–8·2 m high. The landsliding episodes have produced multi-stepped stream profiles, aggradation of channel reaches up to 150 m long to mean depths between 1·2 and 4·1 m, reductions in gradient, fining of bed material size, and related changes in bedforms and channel width:depth ratios that seem likely to persist for at least several decades. Sediment presently stored behind log jams is equivalent to between 50 and 220 years normal supply of sediment from hillslopes to stream channels. Long-delayed, large magnitude impacts on higher-order channels may occur if sudden failure of log jams is induced by a large storm at some future date.  相似文献   

7.
Wood load, channel parameters and valley parameters were surveyed in 50 contiguous stream segments each 25 m in length along 12 streams in the Colorado Front Range. Length and diameter of each piece of wood were measured, and the orientation of each piece was tallied as a ramp, buried, bridge or unattached. These data were then used to evaluate longitudinal patterns of wood distribution in forested headwater streams of the Colorado Front Range, and potential channel‐, valley‐ and watershed‐scale controls on these patterns. We hypothesized that (i) wood load decreases downstream, (ii) wood is non‐randomly distributed at channel lengths of tens to hundreds of meters as a result of the presence of wood jams and (iii) the proportion of wood clustered into jams increases with drainage area as a result of downstream increases in relative capacity of a stream to transport wood introduced from the adjacent riparian zone and valley bottom. Results indicate a progressive downstream decrease in wood load within channels, and correlations between wood load and drainage area, elevation, channel width, bed gradient and total stream power. Results support the first and second hypotheses, but are inconclusive with respect to the third hypothesis. Wood is non‐randomly distributed at lengths of tens to hundreds of meters, but the proportion of pieces in jams reaches a maximum at intermediate downstream distances within the study area. We use these results to propose a conceptual model illustrating downstream trends in wood within streams of the Colorado Front Range. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Low‐energy streams in peatlands often have a high sinuosity. However, it is unknown how this sinuous planform formed, since lateral migration of the channel is hindered by relatively erosion‐resistant banks. We present a conceptual model of Holocene morphodynamic evolution of a stream in a peat‐filled valley, based on a palaeohydrological reconstruction. Coring, ground‐penetrating radar (GPR) data, and 14C and OSL dating were used for the reconstruction. We found that the stream planform is partly inherited from the Late‐Glacial topography, reflecting stream morphology prior to peat growth in the valley. Most importantly, we show that aggrading streams in a peat‐filled valley combine vertical aggradation with lateral displacement caused by attraction to the sandy valley sides, which are more erodible than the co‐evally aggrading valley‐fill. Owing to this oblique aggradation in combination with floodplain widening, the stream becomes stretched out as channel reaches may alternately aggrade along opposed valley sides, resulting in increased sinuosity over time. Hence, highly sinuous planforms can form in peat‐filled valleys without the traditional morphodynamics of alluvial bed lateral migration. Improved understanding of the evolution of streams provides inspiration for stream restoration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

Previous work on the initiation of debris flows has emphasized the roles played by material strength, stream gradient, and fluid pressure, but in most published models the friction angle (φ′) of the channel material is assigned some characteristic or constant value. The model presented here retains gradient and pressure as variables, and considers the probable changes in φ′ and hydraulic conductivity, K, of channel debris over time. Preliminary results from the Howe Sound area in southwest British Columbia suggest that stream reworking may lead to small increases in φ′ and large increases in K, rendering channel debris more stable with time. This is partially offset by a local increase in channel gradient as debris accumulates. These factors favour the growth of large, marginally stable debris deposits, and may lead to high-magnitude, low-frequency debris torrents in channels not steep enough to produce torrents directly from hillslope failure events.  相似文献   

10.
Urbanization through the addition of impervious cover can alter catchment hydrology, often resulting in increased peak flows during floods. This phenomenon and the resulting impact on stream channel morphology is well documented in temperate climatic regions, but not well documented in the humid tropics where urbanization is rapidly occurring. This study investigates the long‐term effects of urbanization on channel morphology in the humid sub‐tropical region of Puerto Rico, an area characterized by frequent high‐magnitude flows, and steep coarse‐grained rivers. Grain size, low‐flow channel roughness, and the hydraulic geometry of streams across a land‐use gradient that ranges from pristine forest to high density urbanized catchments are compared. In areas that have been urbanized for several decades changes in channel features were measurable, but were smaller than those reported for comparable temperate streams. Decades of development has resulted in increased fine sediment and anthropogenic debris in urbanized catchments. Materials of anthropogenic origin comprise an average of 6% of the bed material in streams with catchments with 15% or greater impervious cover. At‐a‐station hydraulic geometry shows that velocity makes up a larger component of discharge for rural channels, while depth contributes a larger component of discharge in urban catchments. The average bank‐full cross‐sectional area of urbanized reaches was 1.5 times larger than comparable forested reaches, and less than the world average increase of 2.5. On average, stream width at bank‐full height did not change with urbanization while the world average increase is 1.5 times. Overall, this study indicates that the morphologic changes that occur in response to urban runoff are less in channels that are already subject to frequent large magnitude storms. Furthermore, this study suggests that developing regions in the humid tropics shouldn't rely on temperate analogues to determine the magnitude of impact of urbanization on stream morphology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Effects of coarse woody debris (CWD) on channel morphology and sediment storage were investigated at five sites, representative of first-order to fifth-order streams. In the steep and bedrock-confined stream (first-second order), interaction between the channel and CWD was limited, except where breakage upon falling produced CWD pieces shorter than channel width. Channel widening, steepening and sediment storage associated with CWD were observed predominantly in third- to fifth-order streams. Variation in channel width and gradient was regulated by CWD. In the fifth-order stream, most of the CWD pieces derived from the riparian forest interacted directly with the channel without being suspended by sideslopes. In this system CWD promoted lateral channel migration, but sediment storage was temporary, with annual release and capture.  相似文献   

12.
We measured longitudinal spacing and wood volume of channel‐spanning logjams along 30 1‐km reaches of forest streams in the Colorado Front Range, USA. Study streams flow through old‐growth (> 200 year stand age) or younger subalpine conifer forest. Evaluating correlations between the volume and longitudinal spacing of logjams in relation to channel and forest characteristics, we find that old‐growth forest streams have greater in‐stream wood loads and more jams per kilometer than streams in younger forest. Old‐growth forests have a larger basal area close to the stream and correlate with larger piece diameters of in‐stream wood. Jam volume correlates inversely with the downstream spacing for ramp and bridge pieces that can act as key pieces in jams. Most importantly, old‐growth streams have shorter downstream spacing for ramp and bridge pieces (< 20 m). Our results suggest that management of in‐stream wood and associated stream characteristics can be focused most effectively at the reach scale, with an emphasis on preserving old‐growth riparian stands along lower gradient stream reaches or mimicking the effects of old growth by manipulating the spacing of ramp and bridge pieces. Our finding that average downstream spacing between jams declines as wood load increases suggests that the most effective way to create and retain jams is to ensure abundant sources of wood recruitment, with a particular emphasis on larger pieces that are less mobile because they have at least one anchor point outside the active channel. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Experimental removal of woody debris from a small, gravel-bed stream in a forested area resulted in a four-fold increase in bedload transport at bankfull discharge. This was caused by increased transportability of sediment previously stored upslope of debris buttresses or in low-energy hydraulic environments related to debris. Bank erosion delivered additional sediment to the channel, and transport energy was increased by an inferred increase in the component of total boundary shear stress affecting grains on the bed. Increased transport following debris removal in May 1987 continued throughout the entire autumn storm season through late November 1987, indicating persistent adjustment of the stream bed and banks despite marked response to earlier flows as large as bankfull. Stream bed adjustments included development of a semi-regular sequence of alternate bars and pools, many of which were spaced independently of former pool locations.  相似文献   

14.
The proportional contributions of stream bank and surface sources to fine sediment loads in watersheds in New York State were quantified with uncertainty analysis. Eroding streamside glacial drift, including glaciolacustrine deposits, were examined to help explain variations in the proportional contributions made by bank erosion. Sediment sources were quantified by comparing concentrations of the bomb‐derived radionuclide 137Cs in fluvial sediment with sediment from potential source areas such as agricultural soils, forest soils and stream banks. To compare sediment sources in streams containing abundant deposits of fine‐grained glacial drift with watersheds that lacked moderate or extensive streamside deposits, samples were taken from 15 watersheds in the region. The mean contribution of bank erosion to sediment loads in the six streams with glaciolacustrine deposits was 60% (range 46–76%). The proportional contribution of bank erosion was also important in one stream lacking glaciolacustrine deposits (57%) but was less important in the remainder, with contributions ranging from 0 to 46%. Data from this study on the varying contributions of bank erosion and data from past studies of sediment yield in 15 watersheds of New York State suggest that eroding streamside glacial deposits dominate sediment yield in many watersheds. In other watersheds, past impacts to streams, such as channelization, have also resulted in high levels of bank erosion. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Stream‐tracer injections were used to examine the effect of channel morphology and changing stream discharge on hyporheic exchange flows. Direct observations were made from well networks to follow tracer movement through the hyporheic zone. The reach‐integrated influence of hyporheic exchange was evaluated using the transient storage model (TSM) OTIS‐P. Transient storage modelling results were compared with direct observations to evaluate the reliability of the TSM. Results from the tracer injection in the bedrock reach supported the assumption that most transient storage in headwater mountain streams results from hyporheic exchange. Direct observations from the well networks in colluvial reaches showed that subsurface flow paths tended to parallel the valley axis. Cross‐valley gradients were weak except near steps, where vertical and cross‐valley hydraulic gradients indicated a strong potential for stream water to downwell into the hyporheic zone. The TSM parameters showed that both size and residence time of transient storage were greater in reaches with a few large log‐jam‐formed steps than in reaches with more frequent, but smaller steps. Direct observations showed that residence times in the unconstrained stream were longer than in the constrained stream and that little change occurred in the location and extent of the hyporheic zone between low‐ and high‐baseflow discharges in any of the colluvial reaches. The transient storage modelling results did not agree with these observations, suggesting that the TSM was insensitive to long residence‐time exchange flows and was very sensitive to changes in discharge. Disagreements between direct observations and the transient storage modelling results highlight fundamental problems with the TSM that confound comparisons between the transient storage modelling results for tracer injections conducted under differing flow conditions. Overall, the results showed that hyporheic exchange was little affected by stream discharge (at least over the range of baseflow discharges examined in this study). The results did show that channel morphology controlled development of the hyporheic zone in these steep mountain stream channels. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents the results of a movable‐boundary, distorted, Froude‐scaled hydraulic model based on Abiaca Creek, a sand‐bedded channel in northern Mississippi. The model was used to examine the geomorphic and hydraulic impact of simplified large woody debris (LWD) elements. The theory of physical scale models is discussed and the method used to construct the LWD test channel is developed. The channel model had bed and banks moulded from 0·8 mm sand, and flow conditions were just below the threshold of motion so that any sediment transport and channel adjustment were the result of the debris element. Dimensions and positions of LWD elements were determined using a debris jam classification model. Elements were attached to a dynamometer to measure element drag forces, and channel adjustment was determined through detailed topographic surveys. The fluid drag force on the elements decreased asymptotically over time as the channel boundary eroded around the elements due to locally increased boundary shear stress. Total time for geomorphic adjustment computed for the prototype channel at the Q2 discharge (discharge occurring once every two years on average) was as short as 45 hours. The size, depth and position of scour holes, bank erosion and bars created by flow acceleration past the elements were found to be related to element length and position within the channel cross‐section. Morphologies created by each debris element in the model channel were comparable with similar jams observed in the prototype channel. Published in 2001 John Wiley & Sons, Ltd.  相似文献   

17.
18.
19.
We draw on published studies of floodplain organic carbon storage, wildfire-related effects on floodplains in temperate and high latitudes, and case studies to propose a conceptual model of the effects of wildfire on floodplain organic carbon storage in relation to climate and valley geometry. Soil organic carbon typically constitutes the largest carbon stock in floodplains in fire-prone regions, although downed wood can contain significant organic carbon. We focus on the influence of wildfire on soil organic carbon and downed wood as opposed to standing vegetation to emphasize the geomorphic influences resulting from wildfire on floodplain organic carbon stocks. The net effect of wildfire varies depending on site-specific characteristics including climate and valley geometry. Wildfire is likely to reduce carbon stock in steep, confined valley segments because increased water and sediment yields following fire create net floodplain erosion. The net effect of fire in partly confined valleys depends on site-specific interactions among floodplain aggradation and erosion, and, in high-latitude regions, permafrost degradation. In unconfined valleys in temperate latitudes, wildfire is likely to slightly increase floodplain organic carbon stock as a result of floodplain aggradation and wood deposition. In unconfined valleys in high latitudes underlain by permafrost, wildfire is likely in the short-term to significantly decrease floodplain organic carbon via permafrost degradation and reduce organic-layer thickness. Permafrost degradation reduces floodplain erosional resistance, leading to enhanced stream bank erosion and greater carbon fluxes into channels. The implications of warming climate and increased wildfires for floodplain organic carbon stock thus vary. Increasing wildfire extent, frequency, and severity may result in significant redistribution of organic carbon from floodplains to the atmosphere via combustion in all environments examined here, as well as redistribution from upper to lower portions of watersheds in the temperate zone and from floodplains to the oceans via riverine transport in the high-latitudes. © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
Riparian vegetation is frequently used for stream bank stabilization, but the effects of vegetation on subaerial processes have not been quantified. Subaerial processes, such as soil desiccation and freeze–thaw cycling, are climate‐related phenomena that deliver soil directly to the stream and make the banks more vulnerable to fluvial erosion by reducing soil strength. This study compares the impact of woody and herbaceous vegetation on subaerial processes by examining soil temperature and moisture regimes in vegetated stream banks. Soil temperature and water tension were measured at six paired field sites in southwestern Virginia, USA, for one year. Results showed that stream banks with herbaceous vegetation had higher soil temperatures and a greater diurnal temperature range during the summer compared to forested stream banks. Daily average summer soil water tension was 13 to 57 per cent higher under herbaceous vegetation than under woody vegetation, probably due to evapotranspiration from the shallow herbaceous root system on the bank. In contrast to summer conditions, the deciduous forest buffers provided little protection for stream banks during the winter: the forested stream banks experienced diurnal temperature ranges two to three times greater than stream banks under dense herbaceous cover and underwent as many as eight times the number of freeze–thaw cycles. During the winter, the stream banks under the deciduous forests were exposed to solar heating and night time cooling, which increased the diurnal soil temperature range and the occurrence of freeze–thaw cycling. Study results also indicated that freeze–thaw cycling and soil desiccation were greater on the upper stream bank due to thermal and moisture regulation of the lower bank by the stream. Therefore, subaerial erosion and soil weakening may be greater on the upper stream banks. Additional research is needed on the influence of subaerial processes on both subaerial and fluvial erosion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号