首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report XMM-Newton observations of the isolated neutron star RBS1774 and confirm its membership as an XDINS. The X-ray spectrum is best fit with an absorbed blackbody with temperature kT=101 eV and absorption edge at 0.7 keV. No power law component is required. An absorption feature in the RGS data at 0.4 keV is not evident in the EPIC data, but it is not possible to resolve this inconsistency. The star is not seen in the UV OM data to m AB ∼21. There is a sinusoidal variation in the X-ray flux at a period of 9.437 s with an amplitude of 4%. The age as determined from cooling and magnetic field decay arguments is 105–106 yr for a neutron star mass of 1.35–1.5 M.   相似文献   

2.
We present the results of our infrared observations of WR 140 (=V1687 Cyg) in 2001–2010. Analysis of the observations has shown that the J brightness at maximum increased near the periastron by about 0 m .3; the M brightness increased by ∼2 m in less than 50 days. The minimum J brightness and the minimum L and M brightnesses were observed 550–600 and 1300–1400 days after the maximum, respectively. The JHKLM brightness minimum was observed in the range of orbital phases 0.7–0.9. The parameters of the primary O5 component of the binary have been estimated to be the following: R(O5) ≈ 24.7R , L(O5) ≈ 8 × 105 L , and M bol(O5) ≈ −10 m . At the infrared brightness minimum, T g ∼ 820–880 K, R g ≈ 2.6 × 105 R , the optical depth of the shell at 3.5 μm is ∼5.3 × 10−6, and its mass is ≈1.4 × 10−8 M . At the maximum, the corresponding parameters are ∼1300 K, 8.6 × 104 R , ∼2 × 10−4, and ∼6 × 10−8 M ; the mean rate of dust inflow (condensation) into the dust structure is ∼3.3 × 10−8 M yr−1. The mean escape velocity of the shell from the heating source is ∼103 km s−1 and the mean dispersal rate of the shell is ∼1.1 × 10−8 M yr−1.  相似文献   

3.
The morphological and velocity structures in the gaseous (HI and CO) and stellar components of two interacting systems are examined. Both Arp 140 and Arp 104 reveal extended tidal tails in the HI. The Hα and FIR fluxes of Arp 140 yield similar SFR of ∼ 0.8 M yr-1. In contrast the Hα flux of Arp 104 yields a SFR of ∼ 0.05 M yr-1, ∼ 20 times smaller than that obtained from the FIR flux. Spectra were used to examine the changing velocity of atomic and molecular gas in NGC 5218 (Arp 104). The atomic and molecular gas were found to be dynamically similar with comparable velocities and velocity widths across the galaxy; consistent with the two phases responding similarly to the interaction, or enhanced HI to CO conversion in the centre of the galaxy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The ionizing star BD+60°2522 is known as the central star of Bubble Nebulae NGC 7635—wind-blown bubble created by the interaction of the stellar wind of BD+60°2522 (O6.5 IIIef, V=8.7 mag, mass loss rate 10−5.76 M /year) with the ambient interstellar medium. From the evolutionary calculations for the star with mass loss and overshooting, we find that the initial mass of the star is 60M , its present age is 2.5×106 years, and the present mass is 45M .  相似文献   

5.
Using the Submillimeter Array (SMA), we have obtained high angular-resolution (∼1″) interferometric maps of the submillimeter (0.88 mm) continuum and CO J=3–2 line from IRAS 22036+5306 (I 22036), a bipolar pre-planetary nebula (PPN) with knotty jets discovered in our HST SNAPshot survey of young PPNe. In addition, we have obtained supporting lower-resolution (∼10″) 2.6 mm continuum and CO, 13CO J=1–0 observations with the Owens Valley Radio Observatory (OVRO) interferometer. We find an unresolved source of submillimeter (and millimeter-wave) continuum emission in I 22036, implying a very substantial mass (0.02–0.04M ) of large (i.e., radius ≳1 mm), cold (≲50 K) dust grains associated with I 22036’s toroidal waist. The CO J=3–2 observations show the presence of a very fast (∼220 km s−1), highly collimated, massive (0.03M ) bipolar outflow with a very large scalar momentum (about 1039 g cm s−1), and the characteristic spatio-kinematic structure of bow-shocks at the tips of this outflow. The fast outflow in I 22036, as in most PPNe, cannot be driven by radiation pressure. The large mass of the torus suggests that it has most likely resulted from common-envelope evolution in a binary, however it remains to be seen whether or not the time-scales required for the growth of grains to millimeter sizes in the torus are commensurate with such a formation scenario. The presence of the torus should facilitate the formation of the accretion disk needed to launch the jet. We also find that the 13C/12C ratio in I 22036 is very high (0.16), close to the maximum value achieved in equilibrium CNO-nucleosynthesis (0.33). The combination of the high circumstellar mass (i.e., in the torus and an extended dust shell inferred from ISO far-infrared spectra) and the high 13C/12C ratio in I 22036 provides strong support for this object having evolved from a massive (≳4M ) progenitor in which hot-bottom-burning has occurred.  相似文献   

6.
High resolution VLBI hybrid map of the BL Lacertae object AO 0235+164 has been produced at a wavelength of 6 cm. The map shows that the object's radio structure is dominated by a strong, nearly unresolved core with a weak and clear component in northeast direction and a faint one in southwest direction. The positional angle of its jet component are equal to66.4°, which is the biggest one in comparison with previous results. Based on the variation of its flux density with time at three different frequencies, we find that the flux density of AO 0235+164 shows bi-periodic variation, i.e., the shorter periodic variation of ∼ 1.81 years and a longer periodic variation of ∼ 3.63 years. The later is essentially in agreement with our earlier predicted results that the existence of the periodic variation of ∼ 3.63 years may be caused by the precession of its `central engine'. This bi-periodic variation is probably the results of the joint action of jet outbursts and jet rotation. With the binary black hole models of Kaastra and Roos, we get the minimum total mass of the binary system of 1.46 × 108 M . This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
We present multi-colour CCD observations of the low-temperature contact binaries, V453 Mon and V523 Cas. Their light curves are modelled to determine a new set of stellar and orbital parameters. Analysis of mid-eclipse times yields a new linear ephemeris for both systems. A period decrease (dP/dt=2.3×10−7 days/yr) in V453 Mon is discovered. V523 Cas, however, is detected to show a period increase (dP/dt=9.8×10−8 days/yr) because of the mass transfer of a rate of 1.1×10−7 M yr−1, from a less massive donor. Using these findings we can determine the physical parameters of the components of V523 Cas to be M 1=0.76 (3)M , M 2=0.39 (2)M , R 1=0.74 (2)R , R 2=0.55 (2)R , L 1=0.19 (3)L , L 2=0.14 (3)L , and the distance of system as 46(9) pc.  相似文献   

8.
A catalog of massive (⩾10 M ) stars in binary and multiple systems with well-known masses and luminosities has been compiled. The catalog is analyzed using a theoretical mass-luminosity relation. This relation allows both normal main-sequence stars and stars with peculiarities: with clear manifestations of mass transfer, mass accretion, and axial rotation, to be identified. Least-squares fitting of the observational data in the range of stellar masses 10M M ≲ 50 M yields the relation LM 2.76. An erratum to this article is available at .  相似文献   

9.
The evolution of Population I stars (X = 0.7, Z = 0.02) with initial masses 40M M ZAMS ≤ 120M until core hydrogen exhaustion has been computed. Models of evolutionary sequences have been used as the initial conditions in solving the equations of radiation hydrodynamics that describe the spherically symmetric motion of a self-gravitating gas. Stars with initial masses M ZAMS ≥ 50M are shown to become unstable against radial oscillations during the main-sequence evolution. The instability growth rate and the limit-cycle oscillation amplitude increase as the star evolves and as its initial mass increases. The pulsational instability is attributable to the iron Z-bump κ mechanism (T ∼ 2 × 105 K). Convection that transfers from 20 to 50% of the total energy flux and, thus, reduces the efficiency of the κ mechanism emerges in the same layers. The periods of the radial oscillations of main-sequence stars lie within the range from 0.09 to 8 days. The boundaries of the instability region of radial pulsations in the Hertzsprung-Russell diagram have been determined and observational criteria for revealing pulsating variable main-sequence stars have been proposed.  相似文献   

10.
DDO 68 (UGC 5340) is the second most metal-poor star-forming galaxy (12 + log(O/H) = 7.14). Its peculiar optical morphology and its HI distribution and kinematics are indicative of a merger origin. We use the u, g, r, and i photometry based on the SDSS images of DDO 68 to estimate its stellar population ages. The Hα images of DDO 68 were used to select several representative regions without nebular emission. The derived colors were analyzed by comparison with the PEGASE2 evolutionary tracks for various star formation (SF) scenarios, including the two extreme cases: (i) an instantaneous starburst and (ii) continuous SF with a constant rate. The (ug) and (gr) colors for all of the selected regions are consistent with the scenario of several “instantaneous” SF episodes with ages between ∼0.05 and ∼1 Gyr. The total mass of the visible stars in DDO 68 was estimated by comparing the colors and fluxes of the observed stellar subsystems with PEGASE2 models to be ∼2.4 × 107 M . This accounts for ∼6% of the total baryonic mass of the galaxy. All of the available data are consistent with the fact that DDO 68 is a very rare candidate for young galaxies. The bulk of its stars were formed during the recent (with the first encounter ∼1 Gyr ago) merger of two very gas-rich disks. DDO 68 is closest in its properties to cosmologically young low-mass galaxies. This article was submitted by the authors in English.  相似文献   

11.
We present two new luminous blue variable (LBV) candidate stars discovered in the M33 galaxy. We identified these stars as massive star candidates at the final stages of evolution, presumably with a notable interstellar extinction. The candidates were selected from the Massey et al. catalog based on the following criteria: emission in H α , V<18./m 5 and 0.m 35 < (B - V) < 1.m 2. The spectra of both stars reveal a broad and strong H α emission with extended wings (770 and 1000 kms−1). Based on the spectra we estimated the main parameters of the stars. Object N45901 has a bolometric luminosity log(L/L) = 6.0–6.2 with the value of interstellar extinction A V = 2.3 ± 0.1. The temperature of the star’s photosphere is estimated as T⋆ ∼ 13000–15000 K, its probable mass on the Zero Age Main Sequence is M∼ 60–80 M. The infrared excess in N 45901 corresponds to the emission of warm dust with the temperature Twarm ∼ 1000 K, and amounts to 0.1%of the bolometric luminosity. A comparison of stellar magnitude estimates from different catalogs points to the probable variability of the object N45901. Bolometric luminosity of the second object, N125093, is log(L/L) = 6.3 − 6.6, the value of interstellar extinction is A V = 2.75 ± 0.15. We estimate its photosphere’s temperature as T⋆∼ 13000–16000K, the initial mass as M ∼ 90–120 M. The infrared excess in N125093 amounts to 5–6% of the bolometric luminosity. Its spectral energy distribution reveals two thermal components with the temperatures Twarm ∼ 1000K and Tcold ∼ 480 K. The [Ca II] λλ7291, 7323 lines, observed in LBV-like stars Var A and N93351 in M33 are also present in the spectrum of N 125093. These lines indicate relatively recent gas eruptions and dust activity linked with them. High bolometric luminosity of these stars and broad H α emissions allow classifying the studied objects as LBV candidates.  相似文献   

12.
A new orbital period analysis for U Geminorum is made by means of the standard O–C technique based on 187 times of light minima including the three newest CCD data from our observation. Although there are large scatter near 70,000 cycles in its O–C diagram, there is strong evidence (>99.9% confidence level) to show the secular increase of orbital period with a rate  s−1. Using the physical parameters recently derived by Echevarría et al. (Astron. J. 134:262, 2007), the range of mass transfer rate for U Geminorum is estimated as from −3.5(5)×10−9 M  yr−1 to −1.30(6)×10−8 M  yr−1. Moreover, the data before 60,000 cycles shows the obvious quasi-period variations. The least square estimation of a ∼17.4 yr quasi-periodic variation superimposed on secular orbital period increase is derived. Considering the possibility that solar-type magnetic activity cycles in the secondary star of U Geminorum may produce the quasi-period variations of the orbital period, Applegate’s mechanism is discussed and the results indicate such mechanism has difficulty explaining the quasi-period variation for U Geminorum. Hence, we attempted to apply the light-travel time effect to interpret the quasi-period variation and found the perturbation of ∼17.4 yr quasi-period may result from a brown dwarf. If the orbital inclination is assumed as i∼15°, corresponding to the upper limit of mass of a brown dwarf, then its orbital radii is ∼7.7 AU.  相似文献   

13.
We have constructed the bolometric light curve of SN 1993J based on UBVRI(JHK) photometric data obtained from various sources and assumingA V = 0 and a distance modulus of 27.6. Effective temperatures and photosphere radius at various times have been obtained from detailed blackbody fits. The bolometric light curve shows two maxima. The short rise time to the second maximum, and the luminosities at the minimum and the second maximum are used to constrain the properties of the progenitor star. The total mass of the hydrogen envelope MH, in the star is found to be ≲ 0.2 M at the time of explosion, and the explosion ejected about 0.05 M of Ni56. Thin hydrogen envelope combined with a sufficient presupernova luminosity suggest that the exploding star was in a binary with a probable period range of 5yr ≤P orb 11yr.  相似文献   

14.
New ephemeris and the absolute parameters—masses, radii and luminosities—of the contact systems VW LMi and BX Dra have been obtained, by means of the analysis of the minima data available in the literature (for the determination of the ephemeris) and combining the previously published spectroscopic information and the results of the Wilson-Devinney method using photometric data (for the determination of the absolute parameters). The VW LMi OC analysis confirms the multiplicity of the system detected previously from the spectroscopic data. Masses of the VW LMi contact system primary and secondary components are 1.67 ± 0.02M and 0.70 ± 0.02M , respectively. The corresponding radii are 1.709 ± 0.007R and 1.208 ± 0.006R , respectively. For the BX Dra contact system the masses are 2.19 ± 0.13M and 0.63 ± 0.06M , and the radii, 2.13 ± 0.04R and 1.26 ± 0.03R , for the primary and secondary, respectively. In both cases, the estimated luminosities seem to be slightly greater that the values derived from the Hipparcos distances.  相似文献   

15.
The study of X-ray clusters of galaxies, started 30 years ago, has revealed an increasing complexity in the thermodynamics of the X-ray emitting intracluster medium (ICM) as long as the sensitivity and the resolution of the X-ray satellites increased. At the same time, deep surveysdetected several, unexpected, high-z clusters. Here we focus on the Chandra observations of the most distant X-ray selected clusters (0.3 < z < 1.3), in order to constrain their thermodynamic evolution. The X-ray scaling properties show hints of negative evolution in the luminosity–temperature and M gas–temperature relations, and a positive evolution in the entropy–temperature relation. We find that the mean iron abundance at 〈z〉 = 0.8 is Z Fe = 0.25+0.04 −0.06 Z , and at 〈z〉 ∼ 1.2 is Z Fe = 0.35+0.06 −0.05 Z , both measures consistent with no evolution with respect to the local value Z Fe≃ 0.3 Z . These results can provide interesting constraints on the thermodynamics of the ICM at large look back times, pointing towards a redshift z ≳ 2 for the onset of non-gravitational processes.  相似文献   

16.
The supernova yields of r-process elements are obtained as a function of the mass of their progenitor stars from the abundance patterns of extremely metal-poor stars on the left-side [{Ba/Mg}]--[{Mg/H}] boundary with a procedure proposed by Tsujimoto and Shigeyama. The ejected masses of r-process elements associated with stars of progenitor mass M ms ≤ 18 M are infertile sources and the SNe II with 20 M M ms ≤ 40 M are the dominant source of r-process nucleosynthesis in the Galaxy. The ratio of these stars 20 M M ms ≤ 40 M with compared to the all massive stars is about∼ 18%. In this paper, we present a simple model that describes a star's [r/Fe] in terms of the nucleosynthesis yields of r-process elements and the number of SN II explosions. Combined the r-process yields obtained by our procedure with the scatter model of the Galactic halo, the observed abundance patterns of the metal-poor stars can be well reproduced.  相似文献   

17.
The peculiar combination of a relatively short pulse period and a relatively weak surface dipole magnetic field strength of binary radio pulsars finds a consistent explanation in terms of (i) decay of the surface dipole component of neutron-star magnetic fields on a timescale of (2–5) × 106 yr, in combination with (ii) spin-up of the rotation of the neutron star during a subsequent mass-transfer phase. The four known binary radio pulsars appear to fall into two different categories. Two of them, PSR 0655 + 64 and PSR 1913 + 16, have short orbital periods (<25 h) and high mass functions, indicating companion masses 0.7M⊙ (∼1 (± 0.3) M⊙ and 1.4 M⊙, respectively). The other two, PSR 0820 + 02 and PSR 1953 + 29, have long orbital periods (117d), nearly circular orbits, and low, almost identical mass functions of about 3×10-3 M⊙, suggesting companion masses of about 0.3M⊙. It is pointed out that these two classes of systems are expected to be formed by the later evolution of binaries consisting of a neutron star and a normal companion star, in which the companion was (considerably) more massive than the neutron star, or less massive than the neutron star, respectively. In the first case the companion of the neutron star in the final system will be a massive white dwarf, in a circular orbit, or a neutron star in an eccentric orbit. In the second case the final companion to the neutron star will be a low-mass (∼ 0.3 M⊙) helium white dwarf in a wide and nearly circular orbit. In systems of the second type the neutron star was most probably formed by the accretion-induced collapse of a white dwarf. This explains in a natural way why PSR 1953 + 29 has a millisecond rotation period and PSR 0820 + 02 has not. Among the binary models proposed for the formation of the 1.5-millisecond pulsar, the only ones that appear to be viable are those in which the companion disappeared by coalescence with the neutron star. In such models the companion may have been a red dwarf of mass 0.03M⊙, a neutron star, or a massive (>0.7M⊙) white dwarf. Only in the last-mentioned case is a position of the pulsar close to the galactic plane a natural consequence. In the first-mentioned case the progenitor system most probably was a cataclysmic-variable binary in which the white dwarf collapsed by accretion.  相似文献   

18.
We investigate numerically the chemodynamical evolution of major disc–disc galaxy mergers in order to explore the origin of the mass-dependent chemical, photometric and spectroscopic properties observed in elliptical galaxies. We investigate especially the dependence of the fundamental properties on merger progenitor disc mass (M d). Three main results are obtained in this study:– More massive (luminous) ellipticals formed by galaxy mergers between more massive spirals have higher metallicity (Z) and thus show redder colours; the typical metallicity ranges from ∼ 1.0 solar abundance (Z∼ 0.02) for ellipticals formed by mergers with M d = 1010 M to ∼ 2.0 solar (Z∼ 0.04) for those with M d= 1012 M .– Both the Mg2 line index in the central part of ellipticals (R ≤ 0.1 R e) and the radial gradient of Mg2 (δ Mg2 / δ log R) are more likely to be larger for massive ellipticals. δ Mg2 / δ log R correlates reasonably well with the central Mg2 in ellipticals. For most of the present merger models, ellipticals show a positive radial gradient of the Hβ line index. – Both M/L B and M/L K (where M, L B, and L K are the total stellar mass of galaxy mergers, the B-band and the K-band luminosities, respectively) depend on galactic mass in such a way that more massive ellipticals have larger M/L B and smaller M/L K. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The nature of Ultraluminous X-ray Sources – X-ray sources which exceed the Eddington luminosity for a ∼10 M black hole – remains a mystery. One possible explanation is an inhomogeneous accretion disk around a solar mass black hole where photon transport through radiation-pressure dominated “photon bubbles” can lead to super-Eddington accretion. While previous studies of this model have focused primarily on its radiation-hydrodynamics aspects, here we explore some observational implications of such a model with a Monte Carlo–Fokker Planck radiation transport code.  相似文献   

20.
Several gravitationally lensed quasars are observed with anomalous magnifications in pairs of images that straddle a critical curve. Simple theoretical arguments suggest that the magnification of these images should be approximately equivalent, whereas one image is observed to be significantly demagnified. Microlensing provides a possible explanation for this discrepancy. There are two key parameters when modelling this effect. The first, the fraction of smooth matter in the lens at the image positions, has been explored by Schechter & Wambsganss. They have shown that the anomalous flux ratio observed in the lensed quasar MG 0414+0534 is a priori a factor of 5 more likely if the assumed smooth matter content in the lens model is increased from 0 to 93 per cent. The second parameter, the size of the emission region, is explored in this paper, and shown to be more significant. We find that the broadening of the magnification probability distributions due to smooth matter content is washed out for source sizes that are predicted by standard models for quasars. We apply our model to the anomalous lensed quasar MG 0414+0534, and find a 95 per cent upper limit of  2.62 × 1016  h −1/270 ( M /M)1/2 cm  on the radius of the I -band emission region. The smooth matter percentage in the lens is unconstrained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号