首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The absolute elevations of sea level 103,000 and 82,000 years ago have been estimated as ?15 and ?13 m, respectively, from the present elevations of emergent reefs on Barbados (Broecker et al., 1968; Matthews, 1973; Bloom et al., 1974). The “Barbados model” requires two assumptions: (1) that sea level was +6 m 124,000 years ago, and (2) that rates of uplift on short individual traverses have been uniform during the last 125,000 years.A test of the derived values on Barbados itself does not yield uniform rates of uplift between 124,000 and 82,000 years ago. Less reliably dated strand line features on less uplifted coasts suggest that sea level 124,000 years ago differed from sea levels 103,000 and 82,000 years ago by smaller amounts than those suggested by the “Barbados model.” Such smaller differences yield more uniform rates of uplift between 124,000 and 82,000 years ago, on New Guinea as well as on Barbados, than do the larger. The “Barbados model” is not sufficiently precise to yield close estimates of past elevations of sea level. Better values will eventually be derived from low uplift coasts, when stratigraphic and radiometric data from them have achieved the credibility of data from moderate to high uplift coasts.  相似文献   

2.
Bracketing ages on marine—freshwater transitions in isolation basins extending from sea level to 100 m elevation on Lasqueti Island, and data from shallow marine cores and outcrops on eastern Vancouver Island, constrain late Pleistocene and Holocene sea-level change in the central Strait of Georgia. Relative sea level fell from 150 m elevation to about —15 m from 14000 cal. yr BP to 11 500 cal. yr BP. Basins at higher elevations exhibit abrupt changes in diatom assemblages at the marine-freshwater transition. At lower elevations an intervening brackish phase suggests slower rates of uplift. Relative sea level rose to about +1 m about 9000 cal. yr BP to 8500 cal. yr BP, and then slowly fell to the modern datum. The mean rate of glacio-isostatic rebound in the first millennium after deglaciation was about 0.11 in a -1, similar to the peak rate at the centres of the former Laurentide and Fennoscandian ice complexes. The latter feature smooth, exponential-style declines in sea level up to the present day, whereas in the study area the uplift rate dropped to less than one-tenth of its initial value in only about 2500 years. Slower, more deeply seated isostatic recovery generated residual uplift rates of <0.01 m a-1 in the early Holocene after the late-Pleistocene wasting of the Cordilleran ice sheet.  相似文献   

3.
If rising sea levels dominate in the northern hemisphere (NH), falling or fluctuating sea levels predominate in the southern hemisphere (SH). Endogenic processes (tectonics, isostasy or geoidal changes) could explain local or regional mean sea level (MSL) fluctuations but not an hemispherical one.Evidence from South America, Africa, Antarctica, Australia and the Pacific and Indian Oceans suggest that the Holocene transgression rose above the present MSL, in higher latitudes before the tropics. By plotting latitude against the age of MSL arrival at present coasts, good correlation is observed.Oceanic salinity mixing has been already proposed to explain this mid-Holocene sea-level fluctuation. Climate could be the only factor responsible for this hemisphere-wide behavior of MSL. It has been suggested previously that the climate of the SH precedes that of the NH by 3000 years. The climatic optimum, or maximum warmth, occurred predominantly about 6000 BP in the NH, but about 10–9000 BP in the SH.Short-term climatic effects on the sea level (monsoons, southern oscillation/El Niño phenomena) should have significant occurrences during the past in the windiest oceanic hemisphere.This latitudinal trend in former MSL should be considered when using shorelines as reference points for measuring vertical crustal movements.  相似文献   

4.
Archaeological sites in the northern Ha'apai Group of central Tonga occur on small islands within the uplifted forearc belt of the Tonga-Kermadec arc-trench system. The present inland positions of occupation sites that probably once occupied coastal settings imply significant expansion of some island shorelines during late Holocene time (ca. 3250 B.P. to present). Geologic processes leading potentially to enlargement of the islands include continuing forearc uplift, eustatic or glacio-hydro-isostatic fall in sea level following a mid-Holocene highstand, and progressive accretion of beach ridges to island coasts, with or without changes in relative sea level. Radiometric dates for uplifted coral terraces in Tonga indicate that forearc uplift has been negligible during Holocene time. By contrast, theoretical considerations, regional analysis of shoreline indicators throughout the South Pacific, and limited empirical data from Tonga itself all imply that regional sea level has declined locally by 1–2 m since a mid-Holocene highstand (ca. 6000-3000 B.P.), which was a hydro-isostatic response to transfer of water mass from Pleistocene ice caps to the ocean basins. Emergence of originally coastal sites is thus expected since initial settlement of the islands by Lapita peoples. Accretionary coastal flats composed of multiple beach ridges are 250–500 m wide on favorable leeward shores and the flanks of sand cays, but some presently unknown proportion of this incremental island growth may have occurred prior to the post-mid-Holocene decline in relative sea level. Ash falls from tephra eruptions at Tongan volcanoes also modified island environments through Quaternary time. Evidence for significant change in the configuration and morphology of islands in Ha'apai during the period of human settlement highlights the need for systematic interdisciplinary archaeological and geological research in the study of Pacific prehistory. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
The paper presents the evolution of the geographic environment imposed by sea-level changes in selected sites of the Aegean Sea region during the Upper Holocene. The changes are due, mainly, to paroxysmic phases of the actual neotectonic evolution and to differential—in time and space—block movements, and emerged or submerged coasts. The reconstitution of these coasts is presented and, in some cases, natural harbor morphology is revealed. The use and evolution of these sites is discussed. Other sites concern coastal or inland ancient settlements or constructions affected by submersion by the sea, by the rise of the groundwater table, or by uplift movements. A general discussion on engineering measures to be applied for protection of the antiquities affected by these geographic changes closes the presentation.  相似文献   

6.
This paper expounds the quantitative tectonic indicators and some qualitative indicators of large earthquakes in the coast areas of Fujian, Guangdong, Taiwan and Hainan. The main quantitative indicators include uplift amplitude of the Moho, Quaternary and Late Holocene coasts. The paper also gives a brief account of the research method on quantitative indicators of surface uplifted zones. Taiwan is a famous neotectonic zone and an area of large earthquakes in the world. There is only one large-earthquake area in each of Fujian, Guangdong and Hainan Provinces. Along the coast large earthquake areas there are certainly many remains of crustal activity. Among these remains, coast activity, taking the sea level as the accurate marker horizon, can determine not only the amplitude of coastal elevation and subsidence in a certain period, but also the cycle and rate of positive or negative movements.  相似文献   

7.
Marine transgression and regression, i.c. movements of the sea relative to the land, occurred in south-western Scotland during the Holocene epoch. Wigtown Bay may have been more extensive than now, and the (now abandoned) Lochar Gulf may have been in existence at the beginning of the Epoch. Holocene marine transgression in S. Ayrshire began after 8400 B.P. Commencement of marine transgression from place to place along the northern shore of the Solway Firth was diachronous: between 9400 and 7200 B.P. Culmination also was diachionous; the Lochar Gulf was abandoned by the sea by 6600 B.P., but transgression continued in the eastern Solway Firth until about 5600 B.P., and near the head of Wigtown Bay until 5000 B.P. or later. A pause in regression of the sea from its maximum occurred about 2000 B.P. Comparison of curves for relative movements of sea level suggests that land uplift in S.W. Scotland between 9200 and 6000 B.P. was rapid compared with contemporaneous land uplift in N.W. England, Sweden, and the Netherlands.  相似文献   

8.
海南岛南岸全新世珊瑚礁的发育   总被引:6,自引:0,他引:6       下载免费PDF全文
海南岛南岸的珊瑚礁,是我国全新世珊瑚岸礁最为发育的地区之一,仅次于台湾岛南端的恒春半岛沿岸。前人从生物学[1-5]、地貌学[6-8]和地质学[9-12]角度对海南岛南岸的珊瑚礁进行过较为广泛的研究。作者报道过崖县鹿回头水尾岭剖面珊瑚礁样品的C14年代测定结果[13,14]。1979年底至1980年初,作者在海南岛南岸东起小东海沿岸西至西瑁岛西岸地区进行了野外调查与采样。根据野外和室内分析资料,本文公布了一批新测试的C14年代数据,并进一步讨论了全新世珊瑚礁的发育历史及其与海岸变迁、海面变化和地壳运动的关系等问题。  相似文献   

9.
Glacio-isostatic adjustment(GIA)and tectonic activity are important factors in the formation of marine terraces.Late Holocene wave-cut benches in the eastern part of the West Sea of Korea,also called the Yellow Sea,can be divided into two steps:531 cm above sea level(ASL)for the upper bench(T2)and 464-481 cm ASL for the lower bench(T1).Sediments on the benches a re classified into four units,and are interpreted to be beach deposits acco rding to gravel shape,textu re,and seaward inclination.The ove rlying sediment indicates that T2 was formed at approximately 530 cm ASL before 2900 yr BP,and T1 at approximately 460-480 cm ASL before 1520 yr BP.Late Holocene(4000-2000 yr BP)relative sea level(RSL)curves based on GIA models are inconsistent with the wave-cut bench elevations.Comparing T1 and T2 benches to the RSL curves of the West Sea,the upper and the lower benches were uplifted by approximately 5-8 m and 4-7 m,respectively.Although the area is several hundred kilometers away from plate boundaries,the high frequency of earthquakes in the West Sea may have induced the uplift of wave-cut benches during the last 2000 years.These indicate that the west coast of the Korean Peninsula(KP)should no longer be considered an area of subsidence,but be assigned to a regime of uplift during the late Holocene.  相似文献   

10.
闽南、粤东全新世海平面变化   总被引:8,自引:0,他引:8       下载免费PDF全文
本文对7类古海面标志物的137个样品年龄数据进行沉积深度校正、构造升降幅度校正和潮差校正后,绘出闽南、粤东全新世以来海平面变化曲线。闽南、粤东出现全新世第一次高海面时间为6300aB.P.前后。闽南、粤东全新世海平面变化曲线反映海水进退的波动情况基本相似。海平面发生波动的时间从东往西逐渐推迟。海平面变化曲线与硅藻垂向变化、孢粉所反映的气候变化、滨岸沙堤形成期和古文化遗址堆积的变化有较好的一致性。  相似文献   

11.
河流输沙与中国海岸线变化   总被引:3,自引:0,他引:3       下载免费PDF全文
我国沿海地区构造升降使入海河流沉积物分布不均,95%于构造下降地区入海,构造上升区接纳的河流泥沙不足5%,入海河流泥沙分布不均是我国海岸基本类型和海岸线变化差别的主要原因。在此基础上讨论了最大海侵的范围及时间,海岸线变化的趋势、速度和周期以及河流输沙对未来海岸线变化预测的影响。  相似文献   

12.
Human population movements into and around the outer Shumagin Islands of southwestern Alaska during the last 5000 years, and temporal gaps in Shumagin habitation correlate inversely with geologically inferred prehistoric earthquakes. Clusters of inferred seismic activity correlate with temporal gaps or with small, sparsely distributed archaeological sites; periods of relative seismic quiescence coincide with settlement florescence. Variations in terrace and archaeological site heights across the study area indicate differential uplift of the outer Shumagin Islands when corrected for the Holocene sea level rise and post-glacial isostatic adjustments.  相似文献   

13.
The history of sea level within the Red Sea basin impinges on several areas of research. For archaeology and prehistory, past sea levels of the southern sector define possible pathways of human dispersal out of Africa. For tectonics, the interglacial sea levels provide estimates of rates for vertical tectonics. For global sea level studies, the Red Sea sediments contain a significant record of changing water chemistry with implications on the mass exchange between oceans and ice sheets during glacial cycles. And, because of its geometry and location, the Red Sea provides a test laboratory for models of glacio-hydro-isostasy. The Red Sea margins contain incomplete records of sea level for the Late Holocene, for the Last Glacial Maximum, for the Last Interglacial and for earlier interglacials. These are usually interpreted in terms of tectonics and ocean volume changes but it is shown here that the glacio-hydro-isostatic process is an additional important component with characteristic spatial variability. Through an iterative analysis of the Holocene and interglacial evidence a separation of the tectonic, isostatic and eustatic contributions is possible and we present a predictive model for palaeo-shorelines and water depths for a time interval encompassing the period proposed for migrations of modern humans out of Africa. Principal conclusions include the following. (i) Late Holocene sea level signals evolve along the length of the Red Sea, with characteristic mid-Holocene highstands not developing in the central part. (ii) Last Interglacial sea level signals are also location dependent and, in the absence of tectonics, are not predicted to occur more than 1–2 m above present sea level. (iii) For both periods, Red Sea levels at ‘expected far-field’ elevations are not necessarily indicative of tectonic stability and the evidence points to a long-wavelength tectonic uplift component along both the African and Arabian northern and central sides of the Red Sea. (iv) The observational evidence is consistent with tectonic and isostatic processes both operating over the past 300,000 years without requiring changes in the time averaged (over a few thousand years) tectonic rates. (v) Recent bathymetric data for the Bab al Mandab region have been compiled to confirm the location and depth of the sill controlling flow in and out of the Red Sea. Throughout the last 400,000 years the Red Sea has remained open to the Gulf of Aden with cross sectional areas at times of glacial maxima about 2% of that today. (vi) The minimum channel widths connecting the Red Sea to the Gulf of Aden at times of lowstand occur south of the Hanish Sill. The channels are less than 4 km wide and remain narrow for as long as local sea levels are below ?50 m. This occurs for a number of sustained periods during the last two glacial cycles and earlier. (vii) Periods suitable for crossing between Africa and Arabia without requiring seaworthy boats or seafaring skills occurred periodically throughout the Pleistocene, particularly at times of favourable environmental climatic conditions that occurred during times of sea level lowstand.  相似文献   

14.
晚更新世江苏海岸带沉积分布模拟研究   总被引:1,自引:0,他引:1  
于革  叶良涛  廖梦娜 《沉积学报》2016,34(4):670-678
中国边缘海大陆架在晚更新世时期曾是海岸平原,在古长江、古黄河泥沙填充下形成了陆架堆积体,并在全新世发育了南黄海辐射沙脊群、废黄河三角洲和长江三角洲。根据点状的地质钻孔分析和重建,对南黄海-江苏海岸的沉积体系的分布和变化机制尚不明了。作为动力机制探讨,基于气候-海面-沉积系统,根据气候水文学、沉积学原理以及泥沙沉积面的动态高程计算,构建了气候冰川驱动-东黄海地海系统响应-河流沉积建造的数值模式,模拟了14万年、4万年和1万年不同时间尺度江苏海岸线和长江三角洲沉积的变化过程和分布,进而对冰川气候、构造沉降、沉积压实等复杂效应下的海面特征、陆源泥沙沉积和海岸线进行分析。模拟结果与地质钻孔资料揭示的层序和埋深能够进行对比。  相似文献   

15.
Late Quaternary landscape development along the Rancho Marino coastal range front in the central‐southern Pacific Coast Ranges of California has been documented using field mapping, surveying, sedimentary facies analysis and a luminescence age determination. Late Quaternary sediments along the base of the range front form a single composite marine terrace buried by alluvial fans. Marine terrace sediments overlie two palaeoshore platforms at 5 m and 0 m altitude. Correlation with the nearby Cayucos and San Simeon sites links platform and marine terrace development to the 125 ka and 105 ka sea‐level highstands. Uplift rate estimates based on the 125 ka shoreline angle are 0.01–0.09 m ka?1 (mean 0.04 m ka?1), and suggest an increase in regional uplift along the coast towards the NW where the San Simeon fault zone intersects the coastline. Furthermore, such low rates suggest that pre‐125 ka uplift was responsible for most of the relief generation at Rancho Marino. The coastal range front landscape development is, thus, primarily controlled by post 125 ka climatic and sea‐level changes. Post 125 ka sea‐level lowering expanded the range front piedmont area to a width of 7.5 km by the 18 ka Last Glacial Maximum lowstand. This sea‐level lowering created space for alluvial fan building along the range front. A 45 ± 3 ka optically stimulated luminescence (OSL) age provides a basal age for alluvial fan building or marks the time by which distal alluvial fan sedimentation has reached 300 m from the range front slope. Fan sedimentation is related to climatic change, with increased sediment supply to the range front occurring during (1) glacial period cold stage maxima and/or (2) the Late Pleistocene–Holocene transition, when respective increases in precipitation and/or storminess resulted in hillslope erosion. Sea‐level rise after the 18 ka lowstand resulted in range front erosion, with elevated localised erosion linked to the higher relief and steeper slopes in the SE. This study demonstrates that late Quaternary coastal range front landscape development is driven by interplay of tectonics, climatic and sea‐level change. In areas of low tectonic activity, climatic and sea‐level changes dominate coastal landscape development. When the sea‐level controlled shoreline is in close proximity to the coastal range front, localised patterns of sedimentation and erosion are passively influenced by the pre‐125 ka topography. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Boxcore 99LSSL‐001 (68.095° N, 114.186° W; 211 m water depth) from Coronation Gulf represents the first decadal‐scale marine palynology and late Holocene sediment record for the southwestern part of the Northwest Passage. The record was studied for organic‐walled microfossils (dinoflagellate cysts, non‐pollen palynomorphs), pollen, terrestrial spores, and sediment characteristics. 210Pb, 137Cs, and three accelerator mass spectrometry 14C dates constrain the chronology. Three prominent palaeoenvironmental zones were identified. During the interval AD 1470–1680 (Zone I), the climate was warmer and wetter than at present, and environmental conditions were more favourable to biological activity and northward boreal forest migration, with reduced sea‐ice and a longer open‐water (growing) season. The interval AD 1680–1940 (Zone II) records sea‐ice increase, and generally cool, polar conditions during the Little Ice Age. During AD 1940–2000 (Zone III), organic microfossils indicate an extended open‐water season and decreased sea‐ice, with suggested amelioration surpassing that of Zone I. Although more marine studies are needed to place this record into an appropriate context, the succession from ameliorated (Zone I) to cooler, sea‐ice influenced conditions (Zone II) and finally to 20th‐century warming (Zone III) corresponds well with several terrestrial climatic records from the neighbouring mainland and Victoria Island, and with lower‐resolution marine records to the west. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
《Quaternary Science Reviews》2007,26(7-8):1106-1128
The coastal geomorphology of the northeastern Raukumara Peninsula, New Zealand, is examined with the aim of determining the mechanisms of Holocene coastal uplift. Elevation and coverbed stratigraphic data from previously interpreted coseismic marine terraces at Horoera and Waipapa indicate that, despite the surface morphology, there is no evidence that these terraces are of marine or coseismic origin. Early Holocene transgressive marine deposits at Hicks Bay indicate significant differences between the thickness of preserved intertidal infill sediments and the amount of space created by eustatic sea level rise, therefore uplift did occur during early Holocene evolution of the estuary. The palaeoecology and stratigraphy of the sequence shows no evidence of sudden land elevation changes. Beach ridge sequences at Te Araroa slope gradually toward the present day coast with no evidence of coseismic steps. The evolution of the beach ridges was probably controlled by sediment supply in the context of a background continuous uplift rate. No individual dataset uniquely resolves the uplift mechanism. However, from the integration of all evidence we conclude that Holocene coastal uplift of this region has been driven by a gradual, aseismic mechanism. An important implication of this is that tectonic uplift mechanisms do vary along the East Coast of the North Island. This contrasts with conclusions of previous studies, which have inferred Holocene coastal uplift along the length of the margin was achieved by coseismic events. This is the first global example of aseismic processes accommodating uplift at rates of >1 mm yr−1 adjacent to a subduction zone and it provides a valuable comparison to subduction zones dominated by great earthquakes.  相似文献   

18.
海岸生物地貌过程研究海岸带生物过程和动力-沉积-地貌过程之间的双向相互作用,是海岸生态系统响应和反馈全球变化的重要机制,被列为全球变化核心项目海岸带陆海相互作用研究的重点内容。20世纪90年代以来的调查研究揭示了华南红树林和珊瑚礁热带生物海岸生物地貌过程的主要特点。造礁石珊瑚的高生长率和珊瑚礁高堆积速率是珊瑚礁生物地貌过程的物质基础;红树林生态系统的高生产力、高归还率和捕沙促淤功能是红树林生物地貌过程的物质基础。热带生物海岸地貌结构显示分带性和生物地貌类型和动力地貌类型的叠加和共存,潮汐水位严格控制群落分布格局并形成重要的生物地貌界限。热带生物海岸生物地貌过程有利于消除或减缓海平面上升的浸淹效应。热带生物海岸不断加剧的人类活动干扰和生态破坏导致生物地貌功能削弱和海岸资源环境恶化。  相似文献   

19.
Understanding how Holocene sea levels influenced coastal wetland development in the Caribbean will aid wetland management in the context of predicted sea level rise. Nine radiocarbon dates from the Maracas and Nariva Swamps on wave-dominated coasts from Trinidad, show sea level was –9 m approximately 7000 yr BP, and rose gradually to –2 m by 2000 yr BP. Since then there may have been isostatic readjustment. Wetlands developed with a transgression of dry upland habitats by rising seas and the facultative halophyte Rhizophora colonized the new brackish water environment. A freshwater plant community gradually replaced the Rhizophora as the marine influence decreased. At Maracas, higher sea levels caused wetland retreat as beach and lagoon habitats migrated inland. Sand ridges in Nariva Swamp indicate that, as in Maracas Swamp, sea level rise created beaches and lagoons, but that these landforms prograded as additional nearshore sediments were deposited. Basins were also filled with sediment delivered by streams that drain the watershed, and by mangrove peat accumulation.  相似文献   

20.
This paper reviews recent studies of Holocene coastal uplift in tectonically active areas near the plate boundaries of the western Pacific Rim. Emergent Holocene terraces exist along the coast of North Island of New Zealand, the Huon Peninsula of Papua New Guinea, the Japanese Islands, and Taiwan. These terraces have several features in common. All comprise series of subdivided terraces. The highest terrace is a constructional terrace, underlain by estuarine or marine deposits, and the lower terraces are erosional, cutting into transgressive deposits or bedrock. The highest terrace records the culmination of Holocene sea-level rise at ca. 6–6.5 ka BP. Lower terraces were coseismically uplifted. Repeated major earthquakes have usually occurred at ka intervals and meter-scale uplift. The maximum uplift rate and number of terraces are surprisingly similar, about 4 m/ka and seven to four major steps in North Island, Huon Peninsula, and Japan. Taiwan, especially along the east coast of the Coastal Range, is different, reaching a maximum uplift rate of 15 m/ka with 10 subdivided steps. They record a very rapid uplift. Comparison between short-term (Holocene) and long-term since the last interglacial maximum (sub-stage 5e) uplift rates demonstrates that a steady uplift rate (Huon Peninsula) or accelerated uplift toward the present (several areas of Japan and North Island) has continued at least since isotope sub-stage 5e. Rapid uplift in eastern Taiwan probably started only in the early Holocene, judging from the absence of any older marine terraces. Most of the causative faults for the coastal uplift may be offshore reverse faults, branched from the main plate boundary fault, but some of them are onshore faults, which deformed progressively with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号