首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 413 毫秒
1.

The trachyte and basaltic trachyte and intruded granite-porphyry of Gazacun formation of Wuyu Group in central Tibet are Neogene shoshonitic rocks. They are rich in LREE, with a weak to significant Eu negative anomalies. The enriched Rb, Th, U, K, negative HFS elements Nb, Ta, Ti and P, and Sr, Nd and Pb isotope geochemistry suggest that the volcanic rocks of Wuyu Group originated from the partial melting of lower crust of the Gangdese belt, with the involvement of the Tethyan oceanic crust. It implies that the north-subducted Tethys ocean crust have arrived to the lower crust of Gangdese belt and recycled in the Neogene magmatism.

  相似文献   

2.
冈底斯成矿带为我国著名的成矿区域,其东段存在一系列规模较大的矿床.为了研究冈底斯成矿带东段的电性结构特征,对覆盖主要矿集区的大地电磁测深数据进行全面的处理分析,通过二维与三维反演的综合对比得到了可靠的电性结构模型.结合其他地质与地球物理资料,对电性结构模型进行分析得到冈底斯成矿带东段的矿床分布规律:矿床主要分布在地壳浅表的电性分界面附近;中地壳高导体可能通过上地壳隐伏的南-北向断裂控制着与地壳伸展作用有关的矿床;南-北向张性构造与东-西向逆冲-推覆构造的交汇部位可能是冈底斯成矿带东段重要的成矿区域;下地壳可能受到软流圈物质上涌的影响发生部分熔融,从而与中地壳的高导体共同影响地壳浅部的成矿作用.  相似文献   

3.
Meta-igneous mafic and ultramafic rocks, which constitute about 60% of the granulitic xenoliths enclosed in the Neogene alkali basalts of the Bournac pipe (French Massif Central) have well preserved magmatic trends of element variations. The meta-igneous suite was probably derived from at least two different parental magmas and it may be a part of a gabbroic complex which resembles mafic bodies associated with anorthosites. The xenoliths are also very similar to many other granulitic xenoliths and to meta-igneous mafic granulitic massifs. This indicates that the gabbroic intrusions may be widespread in the lower crust and the close association of gabbroic rocks with meta-sedimentary granulites suggests a model for the composition of the lower continental crust.  相似文献   

4.
It is recognized that there are at least two sorts of significant environments for porphyry copper deposits, i.e. magmatic arcs and collisional orogens[14]. The deposits in the former environments are exampled by the circle-Pacific porphyry copper belt, such as An-dean-type deposits, which mainly formed in the period of the Andean tectonic cycle characterized by trans- pressional and transtensional movements along the arc-parallel strike-slip fault zone in the Late Eo-cene-Early Oligocene[5…  相似文献   

5.
The Proterozoic anorogenic magmatic rocks are well developed in the Bayan Obo deposit region. They are composed of trachyte, magnesioarfvedesonite-feldspatite, potash-rhyolite, dacite, rhyolite, quartz porphyry and trachy basalt. A lot of high-K diabase veins (dykes) are also found. These anorogenic magmatic rocks are derived from the mantle. They have lowerεNd (t) (4.52-5.88) with T(Nd DM)=1.54-1.92 Ga. Their Nd isotopic compositions and T(Nd DM)are consistent with those of ores, implying that the ore-forming materials were derived from these anorogenic magmatic rocks. The zircon U-Pb ages of the rocks are 1.8 Ga. Research results indicate that the Bayan Obo Group was replaced by the hydrothermal solution related to the anorogenic magmatic rocks, resulting in the formation of the deposit.  相似文献   

6.
河北沽源—多伦地区中生代含铀火山岩地球化学   总被引:1,自引:0,他引:1  
沽源和多伦地区是燕辽多金属成矿带的重要组成部分,中生界主要发育上侏罗统白旗组、张家口组,下白垩统大北沟组和花吉营组。张家口组火山岩分布广、厚度大,是铀(钼)矿床的主要含矿主岩。中生代火山岩属于钙碱性系列,化学成分富硅、偏碱,δ值1.17-7.60。稀土元素特征反映火山岩有壳幔混合和壳源改造两种成因。火山岩形成于弱造山环境,其年龄与库拉—太平洋板块向亚洲板块俯冲的时间吻合。张家口组酸性火山岩具有我国相山产铀火山杂岩富硅、富钾,铕极亏损的地球化学特征。  相似文献   

7.
Detailed studies indicate that the main rock type of the Neogene high-potassium calc-alkaline volcanic rock association from north Qiangtang is andesite, dacite and rhyolite. They belong to typical crust-generation magmatic system and originate from the special thickened crust of the Tibetan Plateau by dehydration melting. This group of rocks exhibits LREE enrichment but no remarkable Eu anomaly that shows their source region should be a thickened deep crust consisting of eclogitic mass group, implying that the crust had been thickened and an eclogitic deep crust had been formed during the Neogene period in Qiangtang area. This understanding is important and significant to making further discussion on the uplift mechanism and continental dynamics of the Tibetan Plateau.  相似文献   

8.
The Gangdese magmatic belt is located in the southern margin of the Lhasa terrane, south Tibet. Here zircon U–Pb ages and Hf isotopic data, as well as whole‐rock geochemistry and Sr–Nd isotopes on andesites from the Bima Formation with a view to evaluating the history of the Gangdese magmatism and the evolution of the Neotethys Ocean. Zircon U–Pb dating yields an age of ca 170 Ma from six samples, representing the eruptive time of these volcanic rocks. Zircon Hf isotopes show highly positive εHf(t) values of +13 to +16 with a mean of +15.2. Whole‐rock geochemical and Sr–Nd isotopic results suggest that the magma source of these andesites was controlled by partial melting of a depleted mantle source with addition of continental‐derived sediments, similar to those in the southern arcs of the Lesser Antilles arc belt. In combination with published data, the volcanic rocks of the Bima Formation are proposed to have been generated in an intra‐oceanic arc system, closely associated with northward subduction of the Neotethyan oceanic lithosphere.  相似文献   

9.
The mafic volcanic rocks and hypabyssal rocks in the Chon Dean‐Wang Pong area are possibly the southern extension of the western Loei Volcanic Sub‐belt, Northeast Thailand. They are least‐altered, and might have been formed in Permian–Triassic times. The rocks are commonly porphyritic, with different amounts of plagioclase, clinopyroxene, orthopyroxene, amphibole, Fe–Ti oxide, unknown mafic mineral, and apatite phenocrysts or microphenocrysts, and are uncommonly seriate textured. The groundmass mainly shows an intergranular texture, with occasionally hyalophitic, intersertal and ophitic–subophitic textures. The groundmass constituents have the same minerals as the phenocrysts or microphenocrysts and may contain altered glass. The groundmass plagioclase laths may show a preferred orientation. Chemically, the studied rock samples can be separated into three magmatic groups: Group I, Group II, and Group III. These magmatic groups are different in values for Ti/Zr ratios. The averaged Ti/Zr values for Group I, Group II, and Group III rocks are 83 ± 6, 46 ± 12, and 29 ± 5, respectively. In addition, the Group I rocks have higher P/Zr, but lower Zr/Nb relative to Group II and Group III rocks. The Group I and Group II rocks comprise tholeiitic andesite–basalt and microdiorite–microgabbro, while the Group III rocks are calc‐alkalic andesite and microdiorite. According to the magmatic affinities and the negative Nb anomalies on normal mid‐oceanic ridge basalt (N‐MORB) normalized multi‐element plot, arc‐related lavas are persuasive. The similarity between the studied lavas and the Quaternary lavas from the northern Kyukyu Arc, in terms of chondrite‐normalized rare earth element (REE) patterns and N‐MORB normalized multi‐element patterns, leads to a conclusion that the mafic volcanic rocks and hypabyssal rocks in the Chon Daen–Wang Pong area have been formed in a volcanic arc environment.  相似文献   

10.

Detailed studies indicate that the main rock type of the Neogene high-potassium calc-alkaline volcanic rock association from north Qiangtang is andesite, dacite and rhyolite. They belong to typical crust-generation magmatic system and originate from the special thickened crust of the Tibetan Plateau by dehydration melting. This group of rocks exhibits LREE enrichment but no remarkable Eu anomaly that shows their source region should be a thickened deep crust consisting of eclogitic mass group, implying that the crust had been thickened and an eclogitic deep crust had been formed during the Neogene period in Qiangtang area. This understanding is important and significant to making further discussion on the uplift mechanism and continental dynamics of the Tibetan Plateau.

  相似文献   

11.
大别-苏鲁造山带是中国大陆东部地区最重要的构造带之一. 为了研究该地区上中下地壳的速度结构, 选用国家数字地震台网和中国区域地震数据台网5省(山东、 安徽、 江苏、 河南和湖北)连续两年(2009年5月—2011年5月)的垂直向地震记录, 进行背景噪声互相关处理, 叠加得到了台站对间的面波经验格林函数. 采用多重滤波法提取了近4000条频散曲线, 并反演得到了研究区10—25 s的瑞雷波群速度分布结果. 通过分析大别-苏鲁及其邻区的瑞雷波群速度结构图像, 发现不同构造块体具有不同的瑞雷波群速度结构: ① 研究区内的郯庐断裂带及其周边地区包括鲁西地块和胶北地块上中下地壳均表现出明显的高速异常, 可能是在拉张环境下岩浆岩上涌, 导致高速、 高密度的变质岩在地壳富集而形成; ② 苏鲁高压变质带的瑞雷波速度在10—25 s周期内明显高于其它地区, 其上中下地壳均表现出较高的群速度结构特征, 认为苏鲁高压变质带至少延伸到下地壳, 而大别造山带在10 s时表现出高速特征, 但在15—25 s没有明显的高速特征, 故无法从其结果中判断大别高压变质带的垂向延伸范围; ③ 华北板块上中下地壳均表现为低速特征, 体现了研究区内华北板块的大陆地壳减薄特征.   相似文献   

12.

The Proterozoic anorogenic magmatic rocks are well developed in the Bayan Obo deposit region. They are composed of trachyte, magnesioarfvedesonite-feldspatite, potash-rhyolite, dacite, rhyolite, quartz porphyry and trachy basalt. A lot of high-K diabase veins (dykes) are also found. These anorogenic magmatic rocks are derived from the mantle. They have lowerɛNd(t) (4.52-5.88) with T Nd DM = 1.54-1.92 Ga. Their Nd isotopic compositions and T Nd DM are consistent with those of ores, implying that the ore-forming materials were derived from these anorogenic magmatic rocks. The zircon U-Pb ages of the rocks are 1.8 Ga. Research results indicate that the Bayan Obo Group was replaced by the hydrothermal solution related to the anorogenic magmatic rocks, resulting in the formation of the deposit.

  相似文献   

13.
Swarms of mafic-intermediate volcaniclastic bodies occur in the Minggang region of Henan Province, a tectonic boundary between the North Qinling and the North China Block, and emplaced at (178.31±3.77) Ma. These volcanic rocks are subalkaline basaltic andesites and contain abundance of lower crust and mantle xenoliths. Thus this area is an ideal place to reveal the lithospheric composition and structure beneath the northern margin of the Qinling orogenic belt. Geochemical data indicate that these mafic granulites, eclogites and metagabbros have trace elemental and Pb isotopic characteristics very similar to those rocks from the South Qinling Block, representing the lower part of lower crust of the South Qinling which subducted beneath the North China Block. Talcic peridotites represent the overlying mantle wedge materials of the North China Block, which underwent the metasomatism of the acidic melt/fluid released from the underlying lower crust of the South Qinling Block. Deep tectonic model proposed i  相似文献   

14.
The Abitibi Volcanic Belt in eastern Superior Province of the Canadian Shield is the largest continuous greenstone belt in the world and is a key example of late Archean crust. This belt has, in general, suffered a low intensity of metamorphism and deformation, and, as a result, the stratigraphy and geology are well established. Tholeiitic and calc-alkaline series of igneous rocks are present in this belt in about equal proportions. However, the undersaturated potassic and leucitic volcanics of the Timiskaming Group are a unique feature of this belt.SmNd systematics were determined for twelve Timiskaming volcanic rocks. These rocks show nepheline, diopside and/or olivine plus leucite in the norm and a highly fractionated REE pattern. Sm and Nd concentrations range from 25 to 160 and 45 to 300 times the chondritic abundance, respectively. The Sm and Nd isotopic data yield an isochron age of 2702±105Ma for these volcanic rocks with an initial εNd of +1.9±1.6. This age establishes the Timiskaming alkalic rock to be one of the oldest of their kind. From stratigraphic relations, 2705 Ma is an upper limit for the age and the εNd values of +1.8 to +2.2 at this age for the twelve rocks are also upper limits. Further, this small but positive εNd value for the isochron, when compared to other mantle-derived Archean rocks in the Superior Province, indicates that the Archean mantle was heterogeneous beneath the Canadian Shield and that the Timiskaming alkalic lavas were derived from a depleted mantle.  相似文献   

15.
Swarms of mafic-intermediate volcaniclastic bodies occur in the Minggang region of Henan Province, a tectonic boundary between the North Qinling and the North China Block, and emplaced at (178.31±3.77) Ma. These volcanic rocks are subalkaline basaltic andesites and contain abundance of lower crust and mantle xenoliths. Thus this area is an ideal place to reveal the lithospheric composition and structure beneath the northern margin of the Qinling orogenic belt. Geochemical data indicate that these mafic granulites, eclogites and metagabbros have trace elemental and Pb isotopic characteristics very similar to those rocks from the South Qinling Block, representing the lower part of lower crust of the South Qinling which subducted beneath the North China Block. Talcic peridotites represent the overlying mantle wedge materials of the North China Block, which underwent the metasomatism of the acidic melt/fluid released from the underlying lower crust of the South Qinling Block. Deep tectonic model proposed in this paper is that after the Late Paleozoic South Qinling lithosphere subducted northward and decoupled, the upper part of the lithosphere emplaced under the North Qinling and the lower part continuously subducted northward under the North China Block. In Early Mesozoic, the North Qinling Block obducted northward and the North China Block inserted into the Qinling orogenic belt in a crocodile-mouth shape.  相似文献   

16.
The Qinling–Dabie–Sulu orogenic belt in east-central China is the largest high and ultrahigh pressure (HP and UHP) metamorphic zone in the world. The Dabie Mountains are the central segment of this orogenic belt between the North China and Yangtze cratons. This work studies the nature of the crustal structure beneath the Dabie orogenic belt to better understand the orogeny. To do that, we apply ambient noise tomography to the Dabie orogenic belt using ambient noise data from 40 stations of the China National Seismic Network (CNSN) between January 2008 and December 2009. We retrieve high signal noise ratio (SNR) Rayleigh waves by cross-correlating ambient noise data between most of the station pairs and then extract phase velocity dispersion measurements from those cross-correlations using a spectral method. Taking those dispersion measurements, we obtain high-resolution phase velocity maps at 8–35 second periods. By inverting Rayleigh wave phase velocity maps, we construct a high-resolution 3D shear velocity model of the crust in the Dabie orogenic belt.The resulting 3D model reveals interesting crustal features related to the orogeny. High shear wave velocities are imaged beneath the HP/UHP metaphoric zones at depths shallower than 9 km, suggesting that HP/UHP metaphoric rocks are primarily concentrated in the upper crust. Underlying the high velocity HP/UHP metamorphic zones, low shear velocities are observed in the middle crust, probably representing ductile shear zones and/or brittle fracture zones developed during the exhumation of the HP/UHP metamorphic rocks. Strong high velocities are present beneath the Northern Dabie complex unit in the middle crust, possibly related to cooling and crystallization of intrusive igneous rocks in the middle crust resulting from the post-collisional lithosphere delamination and subsequent magmatism. A north-dipping Moho is revealed in the eastern Dabie with the deepest Moho appearing beneath the Northern Dabie complex unit, consistent with the model of Triassic northward subduction of the Yangtze Craton beneath the North China Craton.  相似文献   

17.
Three ring-complexes are considered as possible sources for the volcanic sequences of the Lamington Group and Main Range Volcanics, all of Lower Miocene age. The Lamington Group lavas comprise transitional tholeiitic basalts and rhyolites with alkali basalts at the base; the Main Range Volcanics are an alkali olivine basalt - trachyte - soda rhyolite association. The Mt. Warning intrusive complex is thought to be the source of most of the lavas of the Lamington Group. It consists largely of plutonic rocks which have probably moved upwards by ring-faulting determining the initiation of erosion of the wide caldera in which the complex lies. Most of the members of the Mt. Barney complex preceded the Lamington Group lavas; the Mt. Alford complex was synchronous with the Main Range lavas, but is unlikely, from structural considerations, to have contributed to them. The two major volcanic groups are compared with each other and with the intrusive rocks of Mt. Warning and Mt. Alford by an alkali-silica diagram and 0 values.  相似文献   

18.
Ar–Ar dating, major and trace element analyses, and Sr–Nd–Pb isotope results of two groups of Lower Cretaceous (erupted at 126 and 119 Ma, respectively) intermediate–felsic lava from the northeastern North China Block (NCB) suggest their derivation from melting of mixtures between the heterogeneous lower crust and underplated basalts. Both groups exhibit high‐K calc‐alkaline to shoshonitic affinities, characterized by light rare earth element (LREE) and large ion lithophile element (LILE) enrichment and variable high field strength element (HFSE, e.g. Nb, Ta and Ti) depletion, and moderately radiogenic Sr and unradiogenic Nd and Pb isotopic compositions. Compared with Group 2, Group 1 rocks have relatively higher K2O and Al2O3/(CaO + K2O + Na2O) in molar ratio, higher HFSE concentrations and lower Nb/Ta ratios, and higher Sr–Nd–Pb isotope ratios. Group 1 rocks were derived from a mixture of an enriched mantle‐derived magma and a lower crust that has developed radiogenic Sr and unradiogenic Nd and Pb isotopic compositions, whereas the Group 2 magmas were melts of another mixture between the same mantle‐derived component and another type of lower crust having even lower Sr, Nd, and Pb isotopic ratios. Shift in source region from Group 1 to Group 2 coincided with a change in melting conditions: hydrous melting of both the underplated basalt and the lower crust produced the earlier high‐Nb and low‐Nb/Ta melts with little or no residual Ti‐rich phases; while the younger low‐Nb and high‐Nb/Ta magmas were melted under a water‐deficient system, in which Ti‐rich phases were retained in the source. Generation of the two groups of intermediate–felsic volcanic rocks was genetically linked with the contemporaneous magma underplating event as a result of lithospheric thinning in the eastern NCB.  相似文献   

19.
The Proterozoic anorogenic magmatic rocks are well developed in the Bayan Obo deposit region. They are composed of trachyte, magnesioarfvedesonite-feldspatite, potash-rhyolite, dacite, rhyolite, quartz porphyry and trachy basalt. A lot of high-K diabase veins (dykes) are also found. These anorogenic magmatic rocks are derived from the mantle. They have lower?Nd(t) (4.52-5.88) with T Nd DM = 1.54-1.92 Ga. Their Nd isotopic compositions and T Nd DM are consistent with those of ores, implying that the ore-forming materials were derived from these anorogenic magmatic rocks. The zircon U-Pb ages of the rocks are 1.8 Ga. Research results indicate that the Bayan Obo Group was replaced by the hydrothermal solution related to the anorogenic magmatic rocks, resulting in the formation of the deposit.  相似文献   

20.
Archean greenstone belts are supracrustal sequences, the lower part of which is usually composed of voluminous ultramafic-mafic volcanics. Intermediate and acid volcanic rocks increase in abundance towards the upper domains. Greenstone belts constitute ~30% of the total volume of Archean cratons, and preserve significant information on the surface environment and magmatism in the early earth, which are useful in unraveling the nature of crustal formation and evolution. The western Shandong Province(WSP) is located at the eastern part of the North China Craton(NCC), where greenstone sequences formed at ~2.7 and ~2.5 Ga were well preserved. The early Neoarchean supracrustal rocks include komatiite-basalt sequence, some meta-sediments of the lower part of the Taishan Group and the Mengjiatun Formation. The volcanism had been correlated to mantle plume, which resulted in vertical crustal accretion. The late Neoarchean supracrustal rocks were composed of metamorphosed felsic volcano-sedimentary sequences and BIFs of the upper part of the Taishan Group and the Jining Group. The geochemical features of the meta-volcanics show calc-alkaline affinities, similar to modern arc-related magmatism, suggesting that the continental crust in the western Shandong Province witnessed horizontal plate movements at ~2.5 Ga. The metasediments and leucosomes in the Qixingtai area display regional upper amphibolite facies metamorphism and anatexis at 2.53–2.50 Ga, coeval with formation of large volumes of crustally-derived granites. These tectono-thermal events suggest that a unified continental crust was formed in the western Shandong Province at the end of Neoarchean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号