首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The general solution of the Henon–Heiles system is approximated inside a domain of the (x, C) of initial conditions (C is the energy constant). The method applied is that described by Poincaré as ‘the only “crack” permitting penetration into the non-integrable problems’ and involves calculation of a dense set of families of periodic solutions that covers the solution space of the problem. In the case of the Henon–Heiles potential we calculated the families of periodic solutions that re-enter after 1–108 oscillations. The density of the set of such families is defined by a pre-assigned parameter ε (Poincaré parameter), which ascertains that at least one periodic solution is computed and available within a distance ε from any point of the domain (x, C) for which the approximate general solution computed. The approximate general solution presented here corresponds to ε = 0.07. The same solution is further improved by “zooming” into four square sub-domain of (x, C), i.e. by computing sufficient number of families that reduce the density parameter to ε = 0.003. Further zooming to reduce the density parameter, say to ε = 10−6, or even smaller, although easily performable in both areas occupied by stable as well as unstable solutions, was found unnecessary. The stability of all members of each and all families computed was calculated and presented in this paper for both the large solution domain and for the sub-domains. The correspondence between areas of the approximate general solution occupied by stable periodic solutions and Poincaré sections with well-aligned section points and also correspondence between areas occupied by unstable solutions and Poincaré sections with randomly scattered section points is shown by calculating such sections. All calculations were performed using the Runge-Kutta (R-K) 8th order direct integration method and the large output received, consisting of many thousands of families is saved as “Atlas of the General Solution of the Henon–Heiles Problem,” including their stability and is available at request. It is concluded that approximation of the general solution of this system is straightforward and that the chaotic character of its Poincaré sections imposes no limitations or difficulties.  相似文献   

2.
This paper presents the approximate general solution of the triple well, double oscillator non-linear dynamical system. This system is non-integrable and the approximate general solution is calculated by application of the Last Geometric Theorem of Poincaré (Birkhoff, 1913, 1925). The original problem, known as the Duffing one, is a 1 degree of freedom system that, besides the conservative force component, includes dumping and external forcing terms (see details in the web site: http://www.uncwil.edu/people/hermanr/chaos/ted/chaos.html). The problem considered here is a 2 degree of freedom, autonomous and conservative one, without dumping, and of axisymmetric potential. The space of permissible motions is scanned for identification of all solutions re-entering after from one to nine oscillations and the precise families of periodic solutions are computed, including their stability parameter, covering all cases with periods T corresponding to 4osc/T. Seven sub-domains of the space of solutions were investigated in detail by zooming, an operation that proved the possibility to advance the accuracy of the approximate general solution to the level permitted by the integration routine. The approximation of the general solution, although impressive, provides clear evidence of the complexity of the problem and the need to proceed to larger period families. Nevertheless, it allows prediction of the areas where chaos and order regions in the Poincaré surfaces of section are to be expected. Examples of such surfaces of sections, as well as of types of closed solutions, are given. Two peculiar points of the space of solutions were identified as crossing, or source points from which infinite families of periodic solutions emanate. The morphology and stability of solutions of the problem are studied and discussed.  相似文献   

3.
Two basic problems of dynamics, one of which was tackled in the extensive work of Z. Kopal (see e.g. Kopal, 1978, Dynamics of Close Binary Systems, D. Reidel Publication, Dordrecht, Holland.), are presented with their approximate general solutions. The ‘penetration’ into the space of solution of these non-integrable autonomous and conservative systems is achieved by application of ‘The Last Geometric Theorem of Poincaré’ (Birkhoff, 1913, Am. Math. Soc. (rev. edn. 1966)) and the calculation of sub-sets of ‘solutions précieuses’ that are covering densely the spaces of all solutions (non-periodic and periodic) of these problems. The treated problems are: 1. The two-dimensional Duffing problem, 2. The restricted problem around the Roche limit. The approximate general solutions are developed by applying known techniques by means of which all solutions re-entering after one, two, three, etc, revolutions are, first, located and then calculated with precision. The properties of these general solutions, such as the morphology of their constituent periodic solutions and their stability for both problems are discussed. Calculations of Poincaré sections verify the presence of chaos, but this does not bear on the computability of the general solutions of the problems treated. The procedure applied seems efficient and sufficient for developing approximate general solutions of conservative and autonomous dynamical systems that fulfil the PoincaréBirkhoff theorems. The same procedure does not apply to the sub-set of unbounded solutions of these problems.  相似文献   

4.
This paper gives the results of a programme attempting to exploit ‘la seule bréche’ (Poincaré, 1892, p. 82) of non-integrable systems, namely to develop an approximate general solution for the three out of its four component-solutions of the planar restricted three-body problem. This is accomplished by computing a large number of families of ‘solutions précieuses’ (periodic solutions) covering densely the space of initial conditions of this problem. More specifically, we calculated numerically and only for μ = 0.4, all families of symmetric periodic solutions (1st component of the general solution) existing in the domain D:(x 0 ∊ [−2,2],C ∊ [−2,5]) of the (x 0, C) space and consisting of symmetric solutions re-entering after 1 up to 50 revolutions (see graph in Fig. 4). Then we tested the parts of the domain D that is void of such families and established that they belong to the category of escape motions (2nd component of the general solution). The approximation of the 3rd component (asymmetric solutions) we shall present in a future publication. The 4th component of the general solution of the problem, namely the one consisting of the bounded non-periodic solutions, is considered as approximated by those of the 1st or the 2nd component on account of the `Last Geometric Theorem of Poincaré' (Birkhoff, 1913). The results obtained provoked interest to repeat the same work inside the larger closed domain D:(x 0 ∊ [−6,2], C ∊ [−5,5]) and the results are presented in Fig. 15. A test run of the programme developed led to reproduction of the results presented by Hénon (1965) with better accuracy and many additional families not included in the sited paper. Pointer directions construed from the main body of results led to the definition of useful concepts of the basic family of order n, n = 1, 2,… and the completeness criterion of the solution inside a compact sub-domain of the (x 0, C) space. The same results inspired the ‘partition theorem’, which conjectures the possibility of partitioning an initial conditions domain D into a finite set of sub-domains D i that fulfill the completeness criterion and allow complete approximation of the general solution of this problem by computing a relatively small number of family curves. The numerical results of this project include a large number of families that were computed in detail covering their natural termination, the morphology, and stability of their member solutions. Zooming into sub-domains of D permitted clear presentation of the families of symmetric solutions contained in them. Such zooming was made for various values of the parameter N, which defines the re-entrance revolutions number, which was selected to be from 50 to 500. The areas generating escape solutions have being investigated. In Appendix A we present families of symmetric solutions terminating at asymptotic solutions, and in Appendix B the morphology of large period symmetric solutions though examples of orbits that re-enter after from 8 to 500 revolutions. The paper concludes that approximations of the general solution of the planar restricted problem is possible and presents such approximations, only for some sub-domains that fulfill the completeness criterion, on the basis of sufficiently large number of families.  相似文献   

5.
The galactic dynamical system expressed by a third-order axisymmetric polynomial potential is investigated numerically by computing periodic solutions. We define as Sthe compact set of initial conditions generating bounded motions, and as S p , with S p ? S, the countable set of all initial conditions generating periodic solutions. Then, we consider the subsets S s p and S a p of S p , where S s p S a p = S p , S s p S a p = Ø, the first of which corresponds to symmetric periodic solutions, and the second to asymmetric solutions. Then, we approximate the set S s p , leaving treatment of the set S a p of asymmetric solutions for a future publication. The set S s p is known to be dense in S (‘Last Geometric Theorem of Poincar;’, Birkhoff, 1913). Using a computer programme capable to locate all elements of the set S s p that generate symmetric periodic solutions that re-enter after intersecting the axis of symmetry from 1 to ntimes. The results of the approximation of S s p in the total domain and in the sample sub-domains of zooming, we present in graphical form as family curves in the (x, C) plane. The solutions located with the largest periods re-enter after 440 galaxy revolutions while the families calculated fully (initial conditions, period, energy, stability co-efficient) include solutions that re-enter after 340 galaxy revolutions. To advance further the approximation of the set S s p thus obtained, we applied the same procedure inside eight sub-domains of the domain Sinto which we ‘zoomed’ through selection of finer search steps and double maximum periods. The family curves thus calculated presented in the (x, C) plane do not intersect anywhere in some sub-domains and their pattern resembles that of laminar flow. In other sub-domains, however, we found family curves from which branching families emanate. The concepts of completeand non-completeapproximation of S s p in sub-domains of laminar and sub-domains with branching family curves, respectively, is introduced. Also, the concept of basic family of order1, 2, ..., n, are defined. The morphology of individual periodic solutions of all families is investigated, and the types of envelopes found are described. The approximate set S s p was also checked by computing Poincar; sections for energy values corresponding to the mean energy range of the eight sub-domains of zooming mentioned above. These sections show that most parts of the compact domain in Sgenerating non-periodic but bounded solutions correspond to with well-shaped tori that intersect the x-axis, a fact that implies that dominant to exclusive type of periodic solutions are the symmetric ones with two normal crossings of this axis. The presence of non-symmetric periodic solutions as well as of chaotic regions is encountered. All calculations reported here were performed using the variable step R-K 8th-order direct integration and setting the allowable energy variation Δ C= |C start? C end| < 10?13. The output, consisting of many thousands of families and their properties (initial conditions, morphology, stability, etc.), is stored in a directory entitled ‘Atlas of the Symmetric Periodic Solution of the Galactic Motion Problem’.  相似文献   

6.
徐兴波 《天文学报》2022,63(4):40-31
考虑周期解的数值延拓问题并提出基于Broyden拟牛顿法来延拓周期解的一种有效算法,先后以布鲁塞尔振子、平面圆型限制性三体问题(Planar Circular Restricted Three-Body Problem, PCRTBP)的周期解为例进行了验证.这里的Broyden方法包含线性搜索、正交三角分解求线性方程组的步骤.对一般的周期解,周期性条件方程组中含有周期作为待延拓参数,可用周期来决定积分时长,将解代入周期性条件得到积分型的非线性方程组,利用Broyden方法迭代延拓直至初值收敛.根据两次垂直通过一个超平面的轨道是对称周期轨道的性质,可采用插值的方法求得再次抵达超平面的解分量,得到周期性条件方程组,再用Broyden方法求解.结合哈密顿系统的对称性和PCRTBP周期轨道的一些分类,对2/1、3/1的内共振周期解族进行了数值研究.最后,对算法和计算结果做了总结和讨论.  相似文献   

7.
The work presented in paper I (Papadakis, K.E., Goudas, C.L.: Astrophys. Space Sci. (2006)) is expanded here to cover the evolution of the approximate general solution of the restricted problem covering symmetric and escape solutions for values of μ in the interval [0, 0.5]. The work is purely numerical, although the available rich theoretical background permits the assertions that most of the theoretical issues related to the numerical treatment of the problem are known. The prime objective of this work is to apply the ‘Last Geometric Theorem of Poincaré’ (Birkhoff, G.D.: Trans. Amer. Math. Soc. 14, 14 (1913); Poincaré, H.: Rend. Cir. Mat. Palermo 33, 375 (1912)) and compute dense sets of axisymmetric periodic family curves covering the initial conditions space of bounded motions for a discrete set of values of the basic parameter μ spread along the entire interval of permissible values. The results obtained for each value of μ, tested for completeness, constitute an approximation of the general solution of the problem related to symmetric motions. The approximate general solution of the same problem related to asymmetric solutions, also computable by application of the same theorem (Poincaré-Birkhoff) is left for a future paper. A secondary objective is identification-computation of the compact space of escape motions of the problem also for selected values of the mass parameter μ. We first present the approximate general solution for the integrable case μ = 0 and then the approximate solution for the nonintegrable case μ = 10−3. We then proceed to presenting the approximate general solutions for the cases μ = 0.1, 0.2, 0.3, 0.4, and 0.5, in all cases building them in four phases, namely, presenting for each value of μ, first all family curves of symmetric periodic solutions that re-enter after 1 oscillation, then adding to it successively, the family curves that re-enter after 2 to 10 oscillations, after 11 to 30 oscillations, after 31 to 50 oscillations and, finally, after 51 to 100 oscillations. We identify in these solutions, considered as functions of the mass parameter μ, and at μ = 0 two failures of continuity, namely: 1. Integrals of motion, exempting the energy one, cease to exist for any infinitesimal positive value of μ. 2. Appearance of a split into two separate sub-domains in the originally (for μ = 0) unique space of bounded motions. The computed approximations of the general solution for all values of μ appear to fulfill the ‘completeness’ criterion inside properly selected sub-domains of the domain of bounded motions in the (x, C) plane, which means that these sub-domains are filled countably densely by periodic family curves, which form a laminar flow-line pattern. The family curves in this pattern may, or may not, be intersected by a ‘basic’ family curve segment of order from 1 up to 3. The isolated points generating asymptotic solutions resemble ‘sink’ points toward which dense sets of periodic family curves spiral. The points in the compact domain in the (x, C) plane resting outside the domain of bounded motions (μ = 0), including the gap between the two large sub-domains (μ > 0) created by the aforementioned split, generate escape motions. The gap between the two large sub-domains of bounded motions grows wider for growing μ. Also, a number of compact gaps that generate escape motions exist within the body of the two sub-domains of bounded motions. The approximate general solutions computed include symmetric, heteroclinic, asymptotic, collision and escape solutions, thus constituting one component of the full approximate general solution of the problem, the second and final component being that of asymmetric solutions.  相似文献   

8.
The techniques used for the numerical computation of families of periodic orbits of dynamical systems rely on predictor-corrector algorithms. These algorithms usually depend on the solution of systems of approximate equations constructed from the periodicity conditions of these orbits. In this contribution we transform the root finding procedure to an optimization one which is applied on an objective function based on the exact periodicity conditions. Thus, the determination of periodic solutions and families of such orbits can be accomplished through unconstrained optimization. In this paper we apply and compare some well-known minimization methods for the solution of this problem. The obtained results are promising. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
We consider the general spatial three body problem and study the dynamics of planetary systems consisting of a star and two planets which evolve into 2/1 mean motion resonance and into inclined orbits. Our study is focused on the periodic orbits of the system given in a suitable rotating frame. The stability of periodic orbits characterize the evolution of any planetary system with initial conditions in their vicinity. Stable periodic orbits are associated with long term regular evolution, while unstable periodic orbits are surrounded by regions of chaotic motion. We compute many families of symmetric periodic orbits by applying two schemes of analytical continuation. In the first scheme, we start from the 2/1 (or 1/2) resonant periodic orbits of the restricted problem and in the second scheme, we start from vertical critical periodic orbits of the general planar problem. Most of the periodic orbits are unstable, but many stable periodic orbits have been, also, found with mutual inclination up to 50?–60?, which may be related with the existence of real planetary systems.  相似文献   

10.
The rectilinear equal-mass and unequal-mass three-body problems are considered. The first part of the paper is a review that covers the following items: regularization of the equations of motion, integrable cases, triple collisions and their vicinities, escapes, periodic orbits and their stability, chaos and regularity of motions. The second part contains the results of our numerical simulations in this problem. A classification of orbits in correspondence with the following evolution scenarios is suggested: ejections, escapes, conditional escapes (long ejections), periodic orbits, quasi-stable long-lived systems in the vicinity of stable periodic orbits, and triple collisions. Homothetic solutions ending by triple collisions and their dependence on initial parameters are found. We study how the ejection length changes in response to the variation of the triple approach parameters. Regions of initial conditions are outlined in which escapes occur after a definite number of triple approaches or a definite time. In the vicinity of a stable Schubart periodic orbit, we reveal a region of initial parameters that corresponds to trajectories with finite motions. The regular and chaotic structure of the manifold of orbits is mostly defined by this periodic orbit. We have studied the phase space structure via Poincaré sections. Using these sections and symbolic dynamics, we study the fine structure of the region of initial conditions, in particular the chaotic scattering region.  相似文献   

11.
We present families of periodic orbits and their stability for the exterior mean motion resonances 1:2, 1:3 and 1:4 with Neptune in the framework of the planar circular restricted three-body problem. We found that in each resonance there exist two branches of symmetric elliptic periodic orbits with stable and unstable segments. Asymmetric periodic orbits bifurcate from the corresponding symmetric ones. Asymmetric periodic orbits are stable and the motion in their neighbourhood is a libration with respect to the resonant angle variable. In all the families of asymmetric periodic orbits the eccentricity extends to high values. Poincaré sections reveal the changes of the topology in phase space.  相似文献   

12.
We describe global bifurcations from the libration points of non-stationary periodic solutions of the restricted three body problem. We show that the only admissible continua of non-stationary periodic solutions of the planar restricted three body problem, bifurcating from the libration points, can be the short-period families bifurcating from the Lagrange equilibria L 4, L 5. We classify admissible continua and show that there are possible exactly six admissible continua of non-stationary periodic solutions of the planar restricted three body problem. We also characterize admissible continua of non-stationary periodic solutions of the spatial restricted three body problem. Moreover, we combine our results with the Déprit and Henrard conjectures (see [8]), concerning families of periodic solutions of the planar restricted three body problem, and show that they can be formulated in a stronger way. As the main tool we use degree theory for SO(2)-equivariant gradient maps defined by the second author in [25].This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

13.
We analyze nearly periodic solutions in the plane problem of three equal-mass bodies by numerically simulating the dynamics of triple systems. We identify families of orbits in which all three points are on one straight line (syzygy) at the initial time. In this case, at fixed total energy of a triple system, the set of initial conditions is a bounded region in four-dimensional parameter space. We scan this region and identify sets of trajectories in which the coordinates and velocities of all bodies are close to their initial values at certain times (which are approximately multiples of the period). We classify the nearly periodic orbits by the structure of trajectory loops over one period. We have found the families of orbits generated by von Schubart’s stable periodic orbit revealed in the rectilinear three-body problem. We have also found families of hierarchical, nearly periodic trajectories with prograde and retrograde motions. In the orbits with prograde motions, the trajectory loops of two close bodies form looplike structures. The trajectories with retrograde motions are characterized by leafed structures. Orbits with central and axial symmetries are identified among the families found.  相似文献   

14.
We deal with the planar restricted circular problem of three bodies. We study trajectories in a small neighborhood of the Lagrange equilibrium point L 4 when mass ratio is close to Routh's value. In particular, we show that the case of proper degeneracy takes place and for most initial conditions trajectories are conditionally-periodic. We obtain an approximate representation of families of periodic solution emanating from the equilibrium point L 4. We also show that in the case of instability of L 4 the trajectories starting in a vicinity of L 4 remain in a finite domain forever. We give an upper bound of this domain. To carry out our investigation, we analyze the dynamics of a general Hamiltonian system with two degrees of freedom in the case of 1 : 1 resonance in detail.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

15.
A systematic numerical exploration of the families of asymmetric periodic orbits of the restricted three-body problem when a) the primary bodies are equal and b) for the Earth-Moon mass ratio, is presented. Decades families of asymmetric periodic solutions were found and three of the simplest ones, in the first case, and ten of the second one are illustrated. All of these families consist of periodic orbits which are asymmetric with respect to x-axis while are simple symmetric periodic orbits with respect to y-axis (i.e. the orbit has only one perpendicular intersection at half period with y-axis). Many asymmetric periodic orbits, members of these families, are calculated and plotted. We studied the stability of all the asymmetric periodic orbits we found. These families consist, mainly, of unstable periodic solutions but there exist very small, with respect to x, intervals where these families have stable periodic orbits. We also found, using appropriate Poincaré surface of sections, that a relatively large region of phase space extended around all these stable asymmetric periodic orbits shows chaotic motion.  相似文献   

16.
We present an improved grid search method for the global computation of periodic orbits in model problems of Dynamics, and the classification of these orbits into families. The method concerns symmetric periodic orbits in problems of two degrees of freedom with a conserved quantity, and is applied here to problems of Celestial Mechanics. It consists of two main phases; a global sampling technique in a two-dimensional space of initial conditions and a data processing procedure for the classification (clustering) of the periodic orbits into families characterized by continuous evolution of the orbital parameters of member orbits. The method is tested by using it to recompute known results. It is then applied with advantage to the determination of the branch families of the family f of retrograde satellites in Hill’s Lunar problem, and to the determination of irregular families of periodic orbits in a perturbed Hill problem, a species of families which are difficult to find by continuation methods.   相似文献   

17.
The computation of periodic orbits of nonlinear mappings or dynamical systems can be achieved by applying a root-finding method. To determine a periodic solution, an initial guess should be located within a proper area of the mapping or a surface of section of the phase space of the dynamical system. In the case of Newton or Newton-like methods these areas are the basins of convergence corresponding to the considered solution. When several solutions of the same period exist in a particular region, then the deflation technique is suitable for the calculation of all these solutions. This technique is applied here to the Hénon's mapping and the driven conservative Duffing's oscillator.  相似文献   

18.
The regions of quasi-periodic motion around non-symmetric periodic orbits in the vicinity of the triangular equilibrium points are studied numerically. First, for a value of the mass parameter less than Routh's critical value, the stability regions determined by quasi-periodic motion are examined around the existing families of short (Ls 4) and long (Ll 4) period solutions. Then, for two values of μ greater than the Routh value, the unified family Lsl 4, to which, in these cases, Ls 4 and Ll 4 merge, is considered. It is found that such regions surround in general the linearly stable segments of the corresponding families and become smaller as the mass ratio increases. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The objective of this paper is to find periodic solutions of the circular Sitnikov problem by the multiple scales method which is used to remove the secular terms and find the periodic approximated solutions in closed forms. Comparisons among a numerical solution (NS), the first approximated solution (FA) and the second approximated solution (SA) via multiple scales method are investigated graphically under different initial conditions. We observe that the initial conditions play a vital role in the numerical and approximated solutions behaviour. The obtained motion is periodic, but the difference of its amplitude is directly proportional with the initial conditions. We prove that the obtained motion by the numerical or the second approximated solutions is a regular and periodic, when the infinitesimal body starts its motion from a nearer position to the common center of primaries. Otherwise when the start point distance of motion is far from this center, the numerical solution may not be represent a periodic motion for along time, while the second approximated solution may present a chaotic motion, however it is always periodic all time. But the obtained motion by the first approximated solution is periodic and has regularity in its periodicity all time. Finally we remark that the provided solutions by multiple scales methods reflect the true motion of the Sitnikov restricted three–body problem, and the second approximation has more accuracy than the first approximation. Moreover the solutions of multiple scales technique are more realistic than the numerical solution because there is always a warranty that the motion is periodic all time.  相似文献   

20.
We consider the ordinary differential equation of the second order, which describes oscillations of a satellite with respect to its mass center moving along an elliptic orbit with eccentricity e. The equation has two parameters: e and μ. It is regular for 0 ≤ e < 1 and singular when e = 1. For 1 we obtain three limit problems. Their bounded solution to the first limit problem form a two-dimensional (2D) continuous invariant set with a periodic structure. Solutions to the second limit problem form 2D and 3D manifolds. The μ-depending families of odd bounded solutions are singled out. One of the families is twisted into a self-similar spiral. To obtain the limit families of the periodic solutions to the original problem match together the odd bounded solutions to the first and the second limit problem. The point of conjunction is described by the third (the basic) limit problem. The limit families are very close to prelimit ones computed in earlier studies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号