首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current flood protection policies in the Netherlands are based on design water levels. This concept does not allow for a proper evaluation of costs and benefits of flood protection. Hence, research is being carried out on the introduction of a flood risk approach, which looks into both the probability of flooding and the consequences of flooding. This research is being carried out within the framework of a major project called the Floris project (FLOod RISk in the Netherlands). To assess the probability of flooding the Floris project distinguishes different failure modes for dikes and structures within the dike ring. Based on a probabilistic analysis of both loads and resistance the probability of failure is determined for each failure mode. Subsequently the probabilities of failure for different failure modes and dike sections are integrated into an estimate of the probability of flooding of the dike ring as a whole. In addition the Floris project looks into the different consequences of flooding, specifically the economic damages and the number of casualties to be expected in case of flooding of a particular dike ring. The paper describes the approach in the Floris project to assess the flood risk of dike rings in the Netherlands. One of the characteristics of the Floris project is the explicit attention to different types of uncertainties in assessing the probability of flooding. The paper discusses the different starting-points adopted and presents an outline on how the Floris project will deal with uncertainties in the analysis of weak spots in a dike ring as well as in the cost benefit analysis of flood alleviation measures.  相似文献   

2.
River flooding is a problem of international interest. In the past few years many countries suffered from severe floods. A large part of the Netherlands is below sea level and river levels. The Dutch flood defences along the river Rhine are designed for water levels with a probability of exceedance of 1/1250 per year. These water levels are computed with a hydrodynamic model using a deterministic bed level and a deterministic design discharge. Traditionally, the safety against flooding in the Netherlands is obtained by building and reinforcing dikes. Recently, a new policy was proposed to cope with increasing design discharges in the Rhine and Meuse rivers. This policy is known as the Room for the River (RfR) policy, in which a reduction of flood levels is achieved by measures creating space for the river, such as dike replacement, side channels and floodplain lowering. As compared with dike reinforcement, these measures may have a stronger impact on flow and sediment transport fields, probably leading to stronger morphological effects. As a result of the latter the flood conveyance capacity may decrease over time. An a priori judgement of safety against flooding on the basis of an increased conveyance capacity of the river can be quite misleading. Therefore, the determination of design water levels using a fixed-bed hydrodynamic model may not be justified and the use of a mobile-bed approach may be more appropriate. This problem is addressed in this paper, using a case study of the river Waal (one of the Rhine branches in the Netherlands). The morphological response of the river Waal to a flood protection measure (floodplain lowering in combination with summer levee removal) is analysed. The effect of this measure is subject to various sources of uncertainty. Monte Carlo simulations are applied to calculate the impact of uncertainties in the river discharge on the bed levels. The impact of the “uncertain” morphological response on design flood level predictions is analysed for three phenomena, viz. the impact of the spatial morphological variation over years, the impact of the seasonal morphological variation and the impact of the morphological variability around bifurcation points. The impact of seasonal morphological variations turns out to be negligible, but the other two phenomena appear to have each an appreciable impact (order of magnitude 0.05–0.1 m) on the computed design water levels. We have to note however, that other sources of uncertainty (e.g. uncertainty in hydraulic roughness predictor), which may be of influence, are not taken into consideration. In fact, the present investigation is limited to the sensitivity of the design water levels to uncertainties in the predicted bed level.  相似文献   

3.

Currently, the effect of dike breaches on downstream discharge partitioning and flood risk is not addressed in flood safety assessments. In a bifurcating river system, a dike breach may cause overland flows which can change downstream flood risk and discharge partitioning. This study examines how dike breaches and overflow affect overland flow patterns and discharges of the rivers of the Rhine delta. For extreme discharges, an increase in flood risk along the river branch with the smallest discharge capacity was found, while flood risk along the other river branches was reduced. Therefore, dike breaches and resulting overland flow patterns must be included in flood safety assessments.

  相似文献   

4.
Wang  Dayang  Wang  Dagang  Mo  Chongxun  Du  Yi 《Natural Hazards》2021,108(2):1585-1608

The risk analysis of reservoir regulation in the flood season is crucial and provides the valuable information for reservoir flood control, safety operation, and decision making, especially under climate change. The purpose of this study is to propose a framework for reasonably estimating the variation of reservoir regulation risk including the dam extreme risk and the overtopping risk during the flood season under climate change. The framework consists of an integrated diagnostic system for detecting the climate abrupt change time, a copula function-based bivariate statistical approach for modeling the dependence between the flood peak and flood volume, a Monte Carlo simulation for generating numerous random flood peak–volume pairs, and a risk calculation model for routing the design flood hydrographs to obtain the frequency curve of the maximum water level reached in front of dam and evaluating the reservoir regulation risk. The methodology was implemented in the Chengbihe reservoir in south China by using the 55-year (1963–2017) hydrometeorological data, including temperature, evaporation, precipitation, and streamflow, in the flood season. Results show that the hydrometeorological series during the flood season changed abruptly in 1992 and the entire data can be divided into two periods (1963–1992 and 1993–2017). The dam extreme risk and overtopping risk during the two periods are assessed, respectively, and a comparison analysis is made based on different flood limit water-level schemes (185.00–188.50 m). It demonstrates that both the dam extreme risk and the dam overtopping risk increase under the influence of climate change. The dam extreme risk increases by 22.91–95.03%, while the climate change-induced increase in the dam overtopping risk is between 38.62 and 123.59%, which indicates that the dam overtopping risk is more sensitive to climate change than the dam extreme risk. The risk evaluations in the study are of great significance in the safety operation and risk management of reservoirs under future climate change.

  相似文献   

5.
A comprehensive flood risk assessment should aim not only at quantifying uncertainties but also the variability of risk over time. In this study, an efficient modelling framework was proposed to perform probabilistic hazard and risk analysis in dike-protected river systems accounting for morphological variability and uncertainty. The modelling framework combined the use of: (1) continuous synthetic discharge forcing, (2) a stochastic dike breach model dynamically coupled to a stochastic unsteady one-dimensional hydraulic model (MIKE1D) describing river flows, (3) a catalogue of pre-run probabilistic inundation maps (MIKE SHE) and (4) a damage and loss model (CAPRA). The methodology was applied using continuous simulations to a 45-km reach of the Upper Koshi River, Nepal, to investigate the changes in breach and flood hazards and subsequent risks after 2 and 5 years of probable river bed aggradation. The study results indicated an increase in annual average loss of 4% per year driven by changes in loss distribution in the most frequent loss return periods (20–500 years). The use of continuous simulations and dike breach model also provided a more robust estimation of risk metrics as compared to traditional binary treatment of flood defence and/or the direct association of flow with loss return periods. The results were helpful to illustrate the potential impacts of dynamic river morphology, dike failure and continuous simulation and their significance when devising flood risk study methodologies.  相似文献   

6.
In August 2001, the worst flash flooding event of the Caspian Sea regions in over two centuries claimed over 300 lives after a weekend of heavy rainfall and brought about a devastating disaster in the Mother-Soo catchment, province of Golestan, Iran. As a result of this event, a series of site investigation were carried out to identify the pertinent factors that led to a flood of this magnitude. This paper identifies the fundamental causes of the frequent floods and debris flow occurrence in the area prone to flooding and analyzes the main runoff mechanism of these events. The maximum observed 24-h rainfall depths and maximum peak discharges at the existing gauges were compared with the depths of rainfall and the peak values corresponding to the August 2001 flood respectively. For the majority of the rain gauges, the rainfall depth exceeded those of historical recorded events. In Golestan dam, an increase of 7.5 times the maximum value observed in the past 20 years was noted. The flood height was 10–15 m while passing through the middle subcatchment area of Golestan National Park. The preliminary evaluation indicates the existence of bare soil in the catchment, movable material, steep slopes, high rainfall intensity, deterioration of pasture and forest land, and inappropriate agriculture and development practices as well as climate change were the main factors for the occurrence and the extent of the August 2001 disaster. Finally, due to the likelihood of flooding and debris flow events in future, some countermeasures are proposed.  相似文献   

7.
The Subarnarekha River in east India experiences frequent high magnitude flooding in monsoon season.In this study, we present an in-depth analysis of flood hydrology and GIS-based flood susceptibility mapping of the entire catchment. About 40 years of annual peak discharge data, historical cross-sections of different gauging sites, and 12 flood conditioning factors were considered. Our flood susceptibility mapping followed an expert knowledge-based multi-parametric analytical hierarchy process(AHP) and optimized AHP-VIP methods. Peak hydrology data indicated more than 5 times higher discharge contrasted with the mean streamflow of the peak monsoon month in all hydro-monitoring stations that correspond to possible overbank flooding in the shallow semi-alluvial reaches of the Subarnarekha River. Widthdepth ratio revealed continuous changes on the channel cross-sections at decadal scale in all gauging sites. Predicted flood susceptibility map through optimized AHP-VIP method showed a great amount of areas(38%) have a high probability of flooding and demands earnest attention of administrative bodies.The AHP-VIP based flood susceptibility map was theoritically validated through AUC approach and it showed fairly high accuracy(AUC = 0.93). Our study offers an exceptionally cost and time effective solution to the flooding issues in the Subarnarekha basin.  相似文献   

8.
Australia is currently experiencing climate change effects in the form of higher temperatures and more frequent extreme events, such as floods. Floods are its costliest form of natural disaster accounting for losses estimated at over $300 million per annum. This article presents an historical case study of climate adaptation of an Australian town that is subject to frequent flooding. Charleville is a small, inland rural town in Queensland situated on an extensive flood plain, with no significant elevated areas available for relocation. The study aimed to gain an understanding of the vulnerability, resilience and adaptive capacity of this community by studying the 2008 flood event. Structured questionnaires were administered in personal interviews in February 2010 to householders and businesses affected by the 2008 flood, and to institutional personnel servicing the region (n = 91). Data were analysed using appropriate quantitative and qualitative techniques. Charleville was found to be staunchly resilient, with high levels of organisation and cooperation, and well-developed and functioning social and institutional networks. The community is committed to remaining in the town despite the prospect of continued future flooding. Its main vulnerabilities included low levels of insurance cover (32% residents, 43% businesses had cover) and limited monitoring data to warn of impending flooding. Detailed flood modelling and additional river height gauging stations are needed to enable more targeted evacuations. Further mitigation works (e.g., investigate desilting Bradley’s Gully and carry out an engineering assessment) and more affordable insurance products are needed. Regular information on how residents can prepare for floods and the roles different organisations play are suggested. A key finding was that residents believe they have a personal responsibility for preparation and personal mitigation activities, and these activities contribute substantially to Charleville’s ability to respond to and cope with flood events. More research into the psychological impacts of floods is recommended. Charleville is a valuable representation of climate change adaptation and how communities facing natural disasters should organise and operate.  相似文献   

9.
The Paraná River is one of the largest drainage systems in the Americas. Its hydrology is characterized by an active teleconnection with the ENSO, and by a significant discharge increase trend, evident since the mid-1970s. An Eh–pH data set collected in the Paraná’s middle stretch suggests that large flood events, such as the one triggered by the 1982–1983 ENSO, are discernible in the plot, probably due to the influx of water draining flood plain water bodies. The total (particulate + dissolved) concentration of a set of heavy metals (Cr, Mn, Ni, Cu, Zn, As, Cd, and Pb) was determined in a downriver survey of the middle stretch. With the exception of Cu, Cd, and Pb, the metals exhibit a significantly increasing concentration trend towards the river mouth. The slopes of the regression lines imply that Zn and Ni, on one hand, and Mn and Cr, on the other would have common controlling sources. Another set of analyses were performed during the 1982–1983 flooding event; besides an increased variability observable during the flood arrival, most elements, with the only exception of Pb, did not show a variability coherent with the discharge series.  相似文献   

10.
Hydrological parameters are among the widely used parameters in assessing flood risk. On the other hand, anticipated flood damages, in case of flooding, are estimated with the help of expected losses in areas nearer to the watercourse. The major source of almost every-year flooding in Pakistan is the Indus River system that comprises the major rivers of Pakistan. We first use observed data to construct simulated data models based on various probability distributions namely normal, lognormal, Weibull, largest extreme value, gamma-3, and log-Pearson type-3 distributions and thereby compute probable maximum flood. Secondly, we perform log-Pearson type-3 analysis with and without historic adjustment on the observed data series of 17 years to forecast floods with return periods T of 2, 5, 10, 25, 50, 100, and 200 years. We also categorize the river structures based on the risk of flooding. Lastly, we estimate risk of flood damages in terms of expected losses based on observed data. The present study reveals that the log-Pearson type-3 distribution is relatively better for estimating probable maximum flood. We use exceedence probability to assess the risk of flooding in the various structures of the said rivers. The analysis shows that flood damages in Pakistan may be reduced by increasing the design capacity of the structures and also by giving awareness to people about the flood-generating factors.  相似文献   

11.
A Probabilistic Modelling System for Assessing Flood Risks   总被引:4,自引:2,他引:4  
In order to be economically viable, flood disaster mitigation should be based on a comprehensive assessment of the flood risk. This requires the estimation of the flood hazard (i.e. runoff and associated probability) and the consequences of flooding (i.e. property damage, damage to persons, etc.). Within the “German Research Network Natural Disasters” project, the working group on “Flood Risk Analysis” investigated the complete flood disaster chain from the triggering event down to its various consequences. The working group developed complex, spatially distributed models representing the relevant meteorological, hydrological, hydraulic, geo-technical, and socio-economic processes. In order to assess flood risk these complex deterministic models were complemented by a simple probabilistic model. The latter model consists of modules each representing one process of the flood disaster chain. Each module is a simple parameterisation of the corresponding more complex model. This ensures that the two approaches (simple probabilistic and complex deterministic) are compatible at all steps of the flood disaster chain. The simple stochastic approach allows a large number of simulation runs in a Monte Carlo framework thus providing the basis for a probabilistic risk assessment. Using the proposed model, the flood risk including an estimation of the flood damage was quantified for an example area at the river Rhine. Additionally, the important influence of upstream levee breaches on the flood risk at the lower reaches was assessed. The proposed model concept is useful for the integrated assessment of flood risks in flood prone areas, for cost-benefit assessment and risk-based design of flood protection measures and as a decision support tool for flood management.  相似文献   

12.
As streamflow is non-stationary due to climate change and human activities, adapting reservoir operation in the changing environment is of significant importance. Specifically, the flood limited water level (FLWL) needs to be re-established to ensure flood safety when the reservoir inflow is altered. The aims of this study are: (1) to clarify the relationship between the FLWL and streamflow when statistical parameters of the flood peak and volume vary through time and (2) to re-establish the FLWL when the reservoir inflow changes under the non-stationary condition. The adaptive FLWL is derived based on flood routing of non-stationary design floods, and the flood risk probability is then estimated. With China’s Three Gorges Reservoir (TGR) as a case study, the changing pattern of FLWL is quantified when statistical parameters (i.e., mean, \( C_{\text{V}} \) and \( C_{\text{S}} \)) of design floods have a linear temporal trend. The results indicate that the FLWL is sensitive with design floods, i.e., (1) means of design flood peak, 3-day volume, 7-day volume, 15-day volume and 30-day volume yearly decrease by 33 m3/s, 0.008, 0.021, 0.482 and 0.905 billion m3, respectively, (2) when the non-stationary design flood is used, the cumulative flood risk probability of the reservoir water level exceeding 175.0 m during 2011–2030 decreases from 1.98 to 1.82% with the conventional FLWL scheme and (3) the FLWL of the TGR could be re-set without increasing the flood risk probability, and the FLWL would increase about 4.7 m by 2030 in this non-stationary streamflow scenario. These findings are helpful to derive the FLWL in a changing environment.  相似文献   

13.
基于Copula函数的组合变量联合概率分布研究及应用   总被引:1,自引:0,他引:1  
基于Copula函数原理,利用武江流域实测水文资料,以广义GDP为洪峰洪量边缘分布,构建了流域组合变量Copula概率分布模型,分析了洪峰与洪量、洪量与洪水历时、洪峰与洪水历时的联合概率分布,绘制各种变量组合下的联合分布图及重现期等值线图,并比较了同重现期条件下,洪水单变量设计值与多维联合设计值的区别。结果表明:广义GDP分布能很好的描述洪峰、洪量边缘分布,而基于广义GDP分布和指数分布构建的两变量Copula联合概率分布模型不限定变量的边缘分布,对各种类型的水文变量联合分布拟合效果较好;能全面反映洪水各特征属性不同等级下的联合发生频率,对同一频率下联合分布推求的洪水设计值比单变量设计值偏于安全。基于Copula函数的组合变量概率分布模型描述洪峰流量、洪量、洪水历时等特征的联合分布,较为全面地反映组合特征的洪水发生的概率和重现期,进一步反映洪水风险。  相似文献   

14.
冰川、积雪和冻土变化产生的水文效应对下游水资源供给具有重要影响,近几十年来新疆区域洪水呈显著加重趋势,尤其是南疆区域洪水明显加剧. 以天山南坡黄水沟与清水河寒区流域为研究区域,通过分析水文站极端水文事件,结合流域上游山区巴伦台气象站资料,研究了高寒山地流域在气候变化背景下极端水文过程出现时间、年最大和最小径流的响应特征. 结果表明:1986年是水文过程的突变点,从1986年开始随着降水、气温的增加,河流径流量呈增加趋势;最大年径流出现时间从6月中下旬推迟到7月下旬;最大径流和最小径流与年径流量呈正相关关系,最大径流与夏季降水关系密切,而最小年径流与冬春季的气温关系密切. 随着1986年以来的气温升高,冻土退化产生的水文效应使冬季径流增加明显,也使年最小径流明显增大;1986年以来降水变化决定着年径流量增加,使年最大径流集中出现在夏季且量级增大. 总体来讲,20世纪80年代中期以后山区河流年极端洪峰量增大,洪水量增多,年际间变化幅度明显增大,从而对下游造成更严重的灾害. 因此,加强气候变化对寒区流域水资源和洪水灾害的影响评估,使科学技术在减灾方面发挥主导作用.  相似文献   

15.
Landslide dam failure can trigger catastrophic flooding in the downstream. However, field observation of such flooding is rarely available, while laboratory experimental studies are sparse. The mechanism of landslide dam failure and the flood has so far remained insufficiently understood. Here, we present an experimental investigation of landslide dam failure and the flood. A total of 28 runs of experiments are carried out in a flume of 80 m × 1.2 m × 0.8 m, with differing inflow discharge, dam composition, dam geometry, and initial breach dimension. An array of twelve automatic water-level probes is deployed to measure the stage hydrographs along the flume, and the video recording of the dam failure processes facilitates an estimation of the widening of initial breach. Under the present experimental conditions with dams composed of homogeneous materials, landslide dam failure is primarily caused by erosion of overtopping flow, and lateral mass collapse is also considerable during the cause of breach widening. Cohesive clay may act to mitigate the seepage through the dam and thus its subsidence and appreciably modulate the dam failure process and the flood. However, the impacts of clay may be readily overwhelmed by a large inflow discharge and initial breach. Gravels in the dam may appreciably depress the rate of the dam failure process and thus modify the flood. The present work provides new experimental data set for testing mathematical models of the flood flow due to landslide dam failure.  相似文献   

16.
当前洪水风险分析按照典型设计标准洪水进行计算的模式难以满足实际防洪管理需要,为了提高洪水风险分析的实时性以及适应洪水演进的动态性,设计了动态实时洪水风险分析框架。在本框架中,先采用一维和二维动态耦合水动力学数值方法耦合溃堤模型,然后在樵桑联围防洪保护区建立洪水演进模拟模型,通过灵活处理模型计算边界条件以及动态设置溃堤功能,计算不同设计标准洪水发生时,堤防出现单一溃口或者组合溃口后保护区内洪水演进过程。按照上述框架开发了樵桑联围动态实时洪水风险图编制与管理应用系统,并利用历史洪水资料开展模型验证,验证结果表明,2008-06洪水马口站、三水站、大熬站、甘竹(一)站的实测最高水位和模型计算最高水位的绝对误差分别为-0.10、0.10、0.09、0.04 m,均满足洪水模拟精度要求。利用模型计算了西江发生200年一遇的洪水情况下,江根堤防出现溃口后的洪水流量及溃口内外洪水水位变化过程,模拟溃口宽度168 m,最大溃口洪水流量达到5 190 m3,分析了堤防溃决后3、6和24 h洪水漫延导致村落淹没情况,结果表明其满足合理性分析。  相似文献   

17.
受到全球气候变化和大规模人类活动等变化环境的影响,特别是长江三峡水库、葛洲坝电站等大型水电工程的兴建,洞庭湖区各站点的洪水序列发生了变异,并引发了洪水频率分布的非一致性问题。以洞庭湖区内弥陀寺站为例,采用线性趋势、非线性趋势、小波分析及希尔伯特-黄变换四种考虑趋势变异的非一致性洪水频率计算方法推求了年最大洪峰流量的频率分布,并进行了四种方法的择优比较分析。结果显示弥陀寺站年最大洪峰流量序列的均值存在显著下降趋势变异,四种方法推求的过去和现状条件下频率曲线的差异较小,而对未来时期的预测差异较大;经择优度计算与比较分析,基于非线性趋势方法所得结果为最优,且进一步得出年最大洪峰流量的频率分布在过去、现状和未来三个时期存在显著的差异,将直接影响洞庭湖区内弥陀寺站附近堤防的安全评价和区域防洪规划。  相似文献   

18.
Intense rainstorms in 2008 resulted in wide-spread flooding across the Midwestern United States. In Wisconsin, floodwater inundated a 17.7-km2 area on an outwash terrace, 7.5 m above the mapped floodplain of the Wisconsin River. Surface-water runoff initiated the flooding, but results of field investigation and modeling indicate that rapid water-table rise and groundwater inundation caused the long-lasting flood far from the riparian floodplain. Local geologic and geomorphic features of the landscape lead to spatial variability in runoff and recharge to the unconfined sand and gravel aquifer, and regional hydrogeologic conditions increased groundwater discharge from the deep bedrock aquifer to the river valley. Although reports of extreme cases of groundwater flooding are uncommon, this occurrence had significant economic and social costs. Local, state and federal officials required hydrologic analysis to support emergency management and long-term flood mitigation strategies. Rapid, sustained water-table rise and the resultant flooding of this high-permeability aquifer illustrate a significant aspect of groundwater system response to an extreme precipitation event. Comprehensive land-use planning should encompass the potential for water-table rise and groundwater flooding in a variety of hydrogeologic settings, as future changes in climate may impact recharge and the water-table elevation.  相似文献   

19.
The failure of a lava dam 165,000 yr ago produced the largest known flood on the Colorado River in Grand Canyon. The Hyaloclastite Dam was up to 366 m high, and geochemical evidence linked this structure to outburst-flood deposits that occurred for 32 km downstream. Using the Hyaloclastite outburst-flood deposits as paleostage indicators, we used dam-failure and unsteady flow modeling to estimate a peak discharge and flow hydrograph. Failure of the Hyaloclastite Dam released a maximum 11 × 109 m3 of water in 31 h. Peak discharges, estimated from uncertainty in channel geometry, dam height, and hydraulic characteristics, ranged from 2.3 to 5.3 × 105 m3 s−1 for the Hyaloclastite outburst flood. This discharge is an order of magnitude greater than the largest known discharge on the Colorado River (1.4 × 104 m3 s−1) and the largest peak discharge resulting from failure of a constructed dam in the USA (6.5 × 104 m3 s−1). Moreover, the Hyaloclastite outburst flood is the oldest documented Quaternary flood and one of the largest to have occurred in the continental USA. The peak discharge for this flood ranks in the top 30 floods (>105 m3 s−1) known worldwide and in the top ten largest floods in North America.  相似文献   

20.
Increased flooding caused by global warming threatens the safety of coastal and river basin dwellers, but the relationship of flooding frequency, human settlement and climate change at long time scales remains unclear. Paleolithic, Neolithic and Bronze Age cultural deposits interbedded with flood sediments were found at the Shalongka site near the north bank of the upper Yellow River, northeastern Tibetan Plateau. We reconstruct the history of overbank flooding and human occupation at the Shalongka site by application of optically stimulated luminescence and radiocarbon dating, grain size, magnetic susceptibility and color reflectance analysis of overbank sediment and paleosols. The reliability of OSL dating has been confirmed by internal checks and comparing with independent 14C ages; alluvial OSL ages have shown a systematic overestimation due to poor bleaching. Our results indicate that the Yellow River episodically overflowed and reached the Shalongka site from at least ~ 16 ka and lasting until ~ 3 ka. Soil development and reduced flooding occurred at ~ 15, ~ 8.3–5.4, and after ~ 3 ka, and prehistoric populations spread to the Shalongka site area at ~ 8.3, ~ 5.4, and ~ 3 ka. We suggest that climate change influenced the overbank flooding frequency and then affected prehistoric human occupation of the Shalongka site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号