首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary productivity of three size classes of phytoplankton (<5 μm, 5–22 μm, >22 μm) was measured monthly at six sites within San Francisco Bay throughout 1980. These sites in the three principal embayments were chosen to represent a range of environments, phytoplankton communities, and seasonal cycles in the estuary. Temporal variations in productivity for each size class generaly followed the seasonality of the corresponding fraction of phytoplankton biomass. The 5–22 μm size class accounted for 40 to 50% of the annual production in each embayment, but production by phytoplankton >22 μm ranged from 26% in the southern reach to 54% of total phytoplankton production in the landward embayment of the northern reach. A productivity index is derived that predicts daily productivity for each size class as a function of ambient irradiance and integrated chlorophylla in the photic zone. For the whole phytoplankton community and for each size class, this index was constant and estimated as ?0.76 g C m?2 (g chlorophylla Einstein)?1. The annual means of maximum carbon assimilation numbers were usually similar for the three size classes. Spatial and temporal variations in size-fractionated productivity are shown to be primarily due to differences in biomass rather than size-dependent carbon assimilation rates. *** DIRECT SUPPORT *** A01BY034 00005  相似文献   

2.
The impacts of off-road vehicles on vegetation and soil were investigated at seven representative sites in the San Francisco Bay area. Plant cover of grass and chaparral (with shrubs to 4 m tall) have been stripped by the two- and four-wheel vehicles in use. Impacts on loamy soils include increased surface strength (as much as 275 bars), increased bulk density (averaging 18%) to depths of 90 cm or more, reduction of soil moisture by an average 43% to 30 cm depths, greatly reduced infiltration, extension of the diurnal temperature range by as much as 12°C, and reduction of organic carbon by an average 33% in exposed soils. Very sandy soils respond similarly to vehicular use except that moisture is increased and surface strength of beach sand is decreased. These physical and chemical impacts reduce the land's capability of restoring its vegetative cover, which in turn adversely affects animal populations. Both the loss of plant cover and the physical changes caused by vehicles promote erosion. Measured soil and substrate losses from vehicular use zones range from 7 to 1180 kg/m2. The estimated erosion rate of the Chabot Park site exceeds the rate of erosion considered a serious problem by a factor 30, it exceeds United States Soil Conservation Service tolerance values by a factor of 46, and it exceeds average San Francisco Bay area erosion rates by a factor of 17. The resulting soil losses are effectively permanent. Neither the increased sediment yield nor the increased runoff is accomodated on the sites of use, and both are causing adverse effects to neighboring properties.  相似文献   

3.
4.
Spatial gradients of silver concentrations in the surface waters of San Francisco Bay reveal substantial anthropogenic perturbations of the biogeochemical cycle of the element throughout the estuarine system. The most pronounced perturbations are in the south bay, where dissolved (<0.45 μm) silver concentrations are as high as 250 pM. This is more than one order-of-magnitude above baseline concentrations in the northern reach of the estuary (6 pM) and approximately two orders-of-magnitude above natural concentrations in adjacent coastal waters (3 pM). The excess silver is primarily attributed to wastewater discharges of industrial silver to the estuary on the order of 20 kg d?1. The contamination is most evident in the south bay, where wastewater discharges of silver are on the order of 10 kg d?1 and natural freshwater discharges are relatively insignificant. The limited amount of freshwater flushing in the south bay was exacerbated by persistent drought conditions during the study period. This extended the hydraulic residence time in the south bay (≥160 d), and revealed the apparent seasonal benthic fluxes of silver from anthropogenically contaminated sediments. These were conservatively estimated to average ≈16 nmol m?2 d?1 in the south bay, which is sufficient to replace all of the dissolved silver in the south bay within 22 d. Benthic fluxes of silver throughout the estuary were estimated to average ≈11 nmol m?2 d?1, with an annual input of approximately 540 kg yr?1 of silver to the system. This dwarfs the annual fluvial input of silver during the study period (12 kg yr?1) and is equivalent to approximately 10% of the annual anthropogenic input of silver to the estuary (3,700–7,200 kg yr?1). It is further speculated that benthic fluxes of silver may be greater than or equal to waste water fluxes of silver during periods of intense diagenic remobilization. However, all inputs of dissolved silver to the estuary are efficiently sorbed by suspended particulates, as evidenced by the relatively constant conditional distribution coefficient for silver throughout the estuary (Kd≈105).  相似文献   

5.
Sediment and porewater samples (1997–1999) were collected in the Northern Reach of the San Francisco Bay and Sacramento–San Joaquin Delta for determinations of sedimentary selenium and its chemical speciation. Total sedimentary selenium increased with depth, with approximately 50% of the sedimentary selenium as elemental selenium and 35% as organic selenide. Porewater total dissolved selenium increased with depth in the estuary and Delta, and fluxes out of the sediments were calculated at 0.01 and 0.06 nmol cm−2 year−1 for the estuary and Delta, respectively. Present-day sediment–water exchange of dissolved selenium and internal transformations cannot explain the observed increase in total sedimentary selenium with depth. However, mass balance calculations demonstrate that the increase in total selenium with depth may be linked to higher dissolved selenium concentrations in the water column in the 1980s, suggesting that the sediments could be used as historical recorders of selenium in the estuary.  相似文献   

6.
Analyses of organic content, pollen, and the carbon-isotopic composition of a 3.5-m sediment core collected from a subsided tidal marsh located in South San Francisco Bay, California, have provided a 500-yr record of sediment accretion and vegetation change before, during, and after a rapid 1 m increase in sea level. Core chronology was established using14C dating of fossil plant material, the first appearance of pollen types produced by plants not native to California, and changes in lead concentrations coincident with anthropogenic contamination. Prior to the mid 19th century, rates of sediment accretion were between 1 and 4 mm yr−1; sediment accretion accelerated to an average of 22 mm yr−1 following the initiation of subsidence. Changes in tidal marsh vegetation also accompanied this depositional change. Vegetation shifted from a high to low marsh assemblage, as indicated by a larger percentage of grass pollen, rhizomes ofSpartina foliosa, and a strong C4 signal. Between 1980 and 2001, Triangle marsh again developed high marsh vegetation, as indicated by higher percentages of the Amaranthaceane pollen type, seed deposition, includingSalicornia spp., and more negative carbon isotopic ratios.  相似文献   

7.
传统的水质预测模型计算复杂,且在大对流情况下会引发误差,对于大数据时代下智能化的水质预测问题并不适用。本文针对旧金山湾地表水质研究区的数据资料,利用数据分析、统计检验、深度学习时序模型等技术方法对该研究区的水质进行研究,根据主成分信息构建了长短时记忆(LSTM)循环神经网络模型,对研究区的5个地表水质采样站点进行了水质预测。结果表明:长短时记忆循环神经网络模型通过门控制循环和记忆单元结构,有效控制传入模型的输入特征,从而降低模型的复杂度;双层长短时记忆循环神经网络模型较单层长短时记忆循环神经网络模型的预测精度平均提高5.3%。利用LSTM模型可以对旧金山湾地表水质进行有效评价。  相似文献   

8.
San Francisco Bay has been considered an HNLC or HNLG (high nutrient low chlorophyll or low growth) region with nonlimiting concentrations of inorganic nutrients yet low standing stocks of phytoplankton. Most of the studies leading to this conclusion come from the South Bay and little is known about nutrient processes and phytoplankton productivity in the northern and central parts of the estuary. Data collected over 3 yr (1999–2003) in Suisun, San Pablo, and Central Bays describe the availability of dissolved inorganic nitrogen (DIN), silicate, and phosphate and the seasonal variability in phytoplankton abundance. Rate measurements of fractionated nitrogen productivity provide the relative contributions of different forms of DIN (ammonium and nitrate) and different sized phytoplankton to the development of seasonal phytoplankton blooms. Regional differences in bloom dynamics are observed with Suisun Bay, the least saline, highest nutrient, most turbid region having less phytoplankton biomass and productivity than San Pablo and Central Bays, except in the abnormally wet spring of 2000. Spring blooms in San Francisco Bay are driven primarily by high rates of nitrate uptake by larger phytoplankton cells following a period of increased ammonium uptake that depletes the ambient ammonium. The smaller occasional fall blooms are apparently flueled mostly by ammonium uptake by small sized phytoplankton. The data suggest that the HNLC condition in the northern and central parts of San Francisco Bay is due primarily to light availability modulated by the interaction between ammonium and nitrate, and the relative amounts of the two forms of the DIN pool available to the phytoplankton.  相似文献   

9.
The potential toxicity of elevated selenium (Se) concentrations in aquatic ecosystems has stimulated efforts to measure Se concentrations in benthos, nekton, and waterfowl in San Francisco Bay (SF Bay). In September 1998, we initiated a 14 mo field study to determine the concentration of Se in SF Bay zooplankton, which play a major role in the Bay food web, but which have not previously been studied with respect to Se. Monthly vertical plankton tows were collected at several stations throughout SF Bay, and zooplankton were separated into two operationally defined size classes for Se analyses: 73–2,000 μm, and ≥2,000 μm. Selenium values ranged 1.02–6.07 μg Se g?1 dry weight. No spatial differences in zooplankton Se concentrations were found. However, there were inter- and intra-annual differences. Zooplankton Se concentrations were enriched in the North Bay in Fall 1999 when compared to other seasons and locations within and outside SF Bay. The abundance and biovolume of the zooplankton community varied spatially between stations, but not seasonally within each station. Smaller herbivorous-omnivorous zooplankton had higher Se concentrations than larger omnivorous-carnivorous zooplankton. Selenium concentrations in zooplankton were negatively correlated with the proportion of total copepod biovolume comprising the large carnivorous copepodTortanus dextrilobatus, but positively correlatid with the proportion of copepod biovolume comprising smaller copepods of the family Oithonidae, suggesting an important role of trophic level and size in regulating zooplankton Se concentrations.  相似文献   

10.
We studied nutrient sources to the Sacramento River and Suisun Bay (northern San Francisco Bay) and the influence which these sources have on the distributions of dissolved inorganic nitrogen (DIN) and dissolved reactive phosphorus (DRP) in the river and bay. We found that agricultural return flow drains and a municipal wastewater treatment plant were the largest sources of nutrients to the river during low river flow. The Sutter and Colusa agricultural drains contributed about 70% of the transport of DIN and DRP by the river above Sacramento (about 20% of the total transport by the river) between August 8 and September 26, 1985. Further downstream, the Sacramento Regional Wastewater Treatment Plant discharged DIN and DRP at rates that were roughly 70% of total DIN and DRP transport by the river at that time. Concentrations at Rio Vista on the tidal river below the Sacramento plant and at the head of the estuary were related to the reciprocals of the river flows, indicating the importance of dilution of the Sacramento waste by river flows. During very dry years, elevated DIN and DRP concentrations were observed in Suisun Bay. We used a steady-state, one-dimensional, single-compartment box model of the bay, incorporating terms for advection, exchange, and waste input, to calculate a residual rate for all processes not included in the model. We found that the residual for DIN was related to concentrations of chlorophylla (Chla). The residual for DRP was also related to Chla at high concentrations of Chla, but showed significant losses of DRP at low Chla concentrations. These losses were typically equivalent to about 80% of the wastewater input rate.  相似文献   

11.
In September 2011 and March 2012, benthic nutrient fluxes were measured in the San Francisco Bay Delta, across a gradient from above the confluence of the Sacramento and San Joaquin Rivers to Suisun Bay. Dark and illuminated core incubation techniques were used to measure rates of denitrification, nutrient fluxes (phosphate, ammonium, nitrate), and oxygen fluxes. While benthic nutrient fluxes have been assessed at several sites in northern San Francisco Bay, such data across a Delta–Bay transect have not previously been determined. Average September rates of DIN (nitrate, nitrite, ammonium) flux were net positive across all sites, while March DIN flux indicated net uptake of DIN at some sites. Denitrification rates based on the N2/Ar ratio approach were between 0.6 and 1.0 mmol m?2 day?1, similar to other mesotrophic estuarine sediments. Coupled nitrification–denitrification was the dominant denitrification pathway in September, with higher overlying water nitrate concentrations in March resulting in denitrification driven by nitrate flux into the sediments. Estimated benthic microalgal productivity was variable and surprisingly high in Delta sediments and may represent a major source of labile carbon to this ecosystem. Variable N/P stoichiometry was observed in these sediments, with deviations from Redfield driven by processes such as denitrification, variable light/dark uptake of nutrients by microalgae, and adsorption of soluble reactive phosphorus.  相似文献   

12.
We examined microbial processes and the distribution of particulate materials in the estuarine turbidity maximum (ETM, salinity 2–10 PSS) of northern San Francisco Bay on three cruises during the late spring of 1994 (low flow: April 19, April 28, May 17) and two cruises during the early summer of 1995 (high flow; June 13, July 18). Under low flow conditions, chlorophyll concentrations decreased by a factor of 2–4, bacterial abundance decreased by 20%, and L-leucine incorporation rate decreased by a factor of about 2 over a salinity range of 0–2 PSS, then remained relatively constant at higher salinities. Over this same salinity range under high flow conditions, chlorophyll concentration was c. twofold lower, bacterial abundance was c. threefold higher, and L-leucine incorporation rate was in the same range as during low flow. Under high flow conditions, chlorophyll concentration increased by 20%., bacterial abundance decreased by a factor of 2, and L-leucine incorporation rate decreased by half (June 13) or remained unchanged (July 19) with increasing salinity. Under low flow conditions the concentration of suspended particulate material (SPM), particulate organic carbon (POC), and particulate organic nitrogen (PON) increased 3–10 fold with salinity, to a maximum at intermediate salinities (c. 6 PSS). As a result, the contribution of phytoplankton to POC decreased from a maximum of 32% in fresh water to c. 6% in the ETM. The contribution of bacterial biomass similarly decreased from 5% in fresh water to 0.8% in the ETM. The C:N ratio of particulate material increased from <10 in fresh water to >12 in the ETM. High variability in abundance estimates confounded analysis of patterns in bacterial biomass partitioning between particle-associated and free-living fractions along the salinity gradient. However, the partitioning of L-leucine incorporation shifted dramatically from being predominantly by free-living cells in fresh water to being predominantly by particleassociated populations in the ETM. The metabolic fate of thymidine taken up differed, between particle-associated and free-living bacteria, suggesting some metabolic divergence of these assemblages.  相似文献   

13.
Distribution of colloidal trace metals in the San Francisco Bay estuary   总被引:11,自引:0,他引:11  
The size distribution of trace metals (Al, Ag, Cd, Cu, Fe, Mn, Ni, Sr, and Zn) was examined in surface waters of the San Francisco Bay estuary. Water samples were collected in January 1994 across the whole salinity gradient and fractionated into total dissolved (<0.2 μm colloidal (10 KDa–0.2 μm) and < 10 kDa molecular weight phases. In the low salinity region of the estuary, concentrations of colloidal A1, Ag, and Fe accounted for ≥84% of the total dissolved fraction, and colloidal Cu and Mn accounted for 16–20% of the total. At high salinities, while colloidal Fe was still relatively high (40% of the dissolved), very little colloidal Al, Mn, and Cu (<10%) and no colloidal Ag was detectable. Colloidal Zn accounted for <3% of the total dissolved along the estuary, and colloidal Ni was only detectable (<2%) at the river endmember. All of the total dissolved Cd and Sr throughout the estuary consisted of relatively low molecular weight (<10 kDa) species. The relative affinity of metals for humic substances and their reactivity with particle surfaces appear to determine the amounts of metal associated with colloids. The mixing behavior of metals along the estuary appears to be determined by the relative contribution of the colloidal phase to the total dissolved pool. Metals with a small or undetectable colloidal fraction showed a nonconservative excess (Cd, Cu, Ni, and Mn) or conservative mixing (Sr) in the total dissolved fraction, relative to ideal dilution of river water and seawater along the estuary.

The salt-induced coagulation of colloidal A1, Fe, and Cu is indicated by their highly nonconservative removal along the salinity gradient. However, colloidal metals with low affinity for humic substances (Mn and Zn) showed conservative mixing behavior, indicating that some riverine colloids are not effectively aggregated during their transport to the sea. While colloidal metal concentrations correlated with dissolved organic carbon, they also covaried with colloidal Al, suggesting that colloids are a mixture of organic and inorganic components. Furthermore, the similarity between the colloidal metal:A1 ratios with the crustal ratios indicated that colloids could be the product of weathering processes or particle resuspension. Distribution coefficients for colloidal particles (Kc) and for large, filter-retained particles (Kd) were of the same magnitude, suggesting similar binding strength for the two types of particles. Also, the dependence of the distribution coefficients on the amount of suspended particulate matter (the so-called particle concentration effect) was still evident for the colloids-corrected distribution coefficient (Kp+c) and for metals (e.g., Ni) without affinity for colloidal particles.  相似文献   


14.
Measurements of low-level dissolved-sulfide concentrations in estuarine water from San Francisco Bay have been made using the sulfide-specific electrode after preservation, separation, and preconcentration of the sulfide species. The separation and preconcentration were acheived by coprecipitation of ZnS with Zn(OH)2 followed by collection and dissolution of the precipitate, giving concentration factors up to 160-fold Preconcentration provided sulfide solutions that were adequately measurable within the practical working range of the specific-ion electrode The sulfide detection limit with the preconcentration step is 0 02 μg/l Spike recoveries in the range of 81 to 10 1% have been achieved for laboratory-prepared samples having S2− concentrations as low as 0 6 μg/l and 84 to 100% for an estuarine sample spiked in the field with 2 μg/l (S(−II) Positive correlations have been found between dissolved S(−II) concentrations and concentrations of dissolved Cd, Cu, and Ni, negative correlations have been found between bisulfide (HS) activity and activities of Cd2+, Cu2+, and Ag+ species  相似文献   

15.
Tidal wetlands play an important role with respect to climate change because of both their sensitivity to sea-level rise and their ability to sequester carbon dioxide from the atmosphere. Policy-based interest in carbon sequestration has increased recently, and wetland restoration projects have potential for carbon credits through soil carbon sequestration. We measured sediment accretion, mineral and organic matter accumulation, and carbon sequestration rates using 137Cs and 210Pb downcore distributions at six natural tidal wetlands in the San Francisco Bay Estuary. The accretion rates were, in general, 0.2?C0.5?cm?year?1, indicating that local wetlands are keeping pace with recent rates of sea-level rise. Mineral accumulation rates were higher in salt marshes and at low-marsh stations within individual sites. The average carbon sequestration rate based on 210Pb dating was 79?g?C?m?2?year?1, with slightly higher rates based on 137Cs dating. There was little difference in the sequestration rates among sites or across stations within sites, indicating that a single carbon sequestration rate could be used for crediting tidal wetland restoration projects within the Estuary.  相似文献   

16.
Currently, the largest tidal wetlands restoration project on the US Pacific Coast is being planned and implemented in southern San Francisco Bay; however, knowledge of baseline conditions of salt marsh extent in the region prior to European settlement is limited. Here, analysis of 24 sediment cores collected from ten intact southern San Francisco Bay tidal marshes were used to reconstruct spatio-temporal patterns of marsh expansion to provide historic context for current restoration efforts. A process-based marsh elevation simulation model was used to identify interactions between sediment supply, sea-level rise, and marsh formation rates. A distinct age gradient was found: expansion of marshes in the central portion of southern San Francisco Bay dated to 500 to 1500 calendar years before present, while expansion of marshes in southernmost San Francisco Bay dated to 200 to 700 calendar years before present. Thus, much of the tidal marsh area mapped by US Coast Survey during the 1853–1857 period were in fact not primeval tidal marshes that had persisted for millennia but were recently formed landscapes. Marsh expansion increased during the Little Ice Age, when freshwater inflow and sediment influx were higher than during the previous millennium, and also during settlement, when land use changes, such as introduction of livestock, increased watershed erosion, and sediment delivery.  相似文献   

17.
During three weeks of September 1979, the breakdown of a waste treatment plant resulted in the discharge of a large volume (1.5×107m3) of primary-treated sewage into a tributary of South San Francisco Bay, California. Chemical and microbial changes occurred within the tributary as decomposition and nitrification depleted dissolved oxygen. Associated with anoxia were relatively high concentrations of particulate organic carbon, dissolved CO2, CH4, C2H4, NH 4 + , and fecal bacteria, and low phytoplankton biomass and photosynthetic oxygen production. South San Francisco Bay experienced only small changes in water quality, presumably because of its large volume and the assimilation of wastes that occurred within the tributary. Water quality improved rapidly in the tributary once normal tertiary treatment resumed.  相似文献   

18.
The distributions of particulate elements (Al, P, Mn, Fe, Co, Cu, Zn, Cd, and Pb), dissolved trace metals (Mn, Fe, Co, Cu, Zn, and Cd), and dissolved nutrients (nitrate, phosphate, and silicic acid) were investigated in the Gulf of the Farallones, a region of high productivity that is driven by the dynamic mixing of the San Francisco Bay plume, upwelled waters, and California coastal surface waters. Particulate metals were separated into >10 and 0.4-10 μm size-fractions and further fractionated into leachable (operationally defined with a 25% acetic acid leach) and refractory particulate concentrations. Dissolved metals (< 0.4 μm pore-size filtrate) were separated into colloidal (0.03-0.4 μm) and soluble (<0.03 μm) fractions. The percent leachable particulate fractions ranged from 2% to 99% of the total particulate concentration for these metals with Mn and Cd being predominantly leachable and Fe and Al being predominantly refractory. The leachable particulate Pb concentration was associated primarily with suspended sediments from San Francisco Bay and was a tracer of the plume in coastal waters. The particulate trace metal data suggest that the leachable fraction was an available source of trace metal micronutrients to the primary productivity in coastal waters. The dissolved trace metals in the San Francisco Bay plume and freshly upwelled surface waters were similar in concentration, with the exception of Cu and Co, which exhibited relatively high concentrations in plume waters and served as tracers of this water mass. The dissolved data and estimates of the plume dynamics suggest that the impact of anthropogenic inputs of nutrients and trace metals in the San Francisco Bay plume contributes substantially to the concentrations found in the Gulf of the Farallones (10-50% of estimated upwelled flux values), but does not greatly disrupt the natural stoichiometric balance of trace metal and nutrient elements within coastal waters given the similarity in concentrations to sources in upwelled water. In all, the data from this study demonstrate that the flux of dissolved nutrients and bioactive trace metals from the San Francisco Bay plume contribute to the high and relatively constant phytoplankton biomass observed in the Gulf of the Farallones.  相似文献   

19.
Specific conductance and concentrations of alkalinity, dissolved silica, nitrate, and ammonium were measured daily in the Sacramento River flow to northern San Francisco Bay during the rainfall seasons of 1983 and 1984 (high flow) and during late summer and early fall of 1984 (low flow). Flow and concentrations of chemical species varied in response to storm events during high flow, but flow was more variable than concentrations of chemical species. Runoff from agriculturally developed areas appeared to increase specific conductance and concentrations of alkalinity during high flow. During low flow, inputs of agricultural tailwaters caused variations in concentrations of alkalinity and dissolved silica. Dilution of municipal waste by river flow caused variability in concentrations of ammonium during both high flow and low flow. Distributions of alkalinity, dissolved silica, nitrate, and ammonium were measured in northern San Francisco Bay during late summer and fall of 1984. Changes in distributions of alkalinity in the estuary were caused by variations in alkalinity in the Sacramento River. Changes in distributions of dissolved silica, nitrate, and ammonium appeared to be primarily related to variations in supply by the river and removal by phytoplankton. Effects of removal by phytoplankton were large for ammonium and dissolved silica, but appeared relatively small for nitrate.  相似文献   

20.
Trace contaminants enter major estuaries such as San Francisco Bay from a variety of point and nonpoint sources and may then be repartitioned between solid and aqueous phases or altered in chemical speciation. Chemical speciation affects the bioavailability of metals as well as organic ligands to planktonic and benthic organisms, and the partitioning of these solutes between phases. Our previous, work in south San Francisco Bay indicated that sulfide complexation with metals may be of particular importance because of the thermodynamic stability of these complexes. Although the water column of the bay is consistently well-oxygenated and typically unstratified with respect to dissolved oxygen, the kinetics of sulfide oxidation could exert at least transient controls on metal speciation. Our initial data on dissolved sulfides in the main channel of both the northern and southern components of the bay consistently indicate submicromolar concenrations (from <1 nM to 162 nM), as one would expect in an oxidizing environment. However, chemical speciation calculations over the range of observed sulfide concentrations indicate that these trace concentrations in the bay water column can markedly affect chemical speciation of ecologically significant trace metals such as cadmium, copper, and zinc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号