首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An interpretation of the parameters of earthquake sources is proposed for the two large earthquakes in the Rat Islands of February 4, 1965 (M W = 8.7), and November 17, 2003 (M W = 7.7–7.8), based on the analysis of focal mechanisms, the manifestation of aftershocks, and the specific features of the geological structure of the island slope of the Rat Islands. The source of the earthquake of 1965 is a reverse fault of longitudinal strike, with a length of ~350 km. It is located in the lower part of the Aleutian Terrace and probably is genetically connected with the development of the Rat submarine ridge. The westward boundary of the earthquake source is determined by the Heck Canyon structures, and the eastward boundary is determined by the end of Rat Ridge in the region of λ ~ 179°E–179.5°E. The source of the earthquake of 2003 is a steep E-W reverse fault extending for about 100 km. It is located in the eastern part of the Rat Islands, higher on the slope than the source of the earthquake of 1965. The westward end of the earthquake source is determined by Rat Canyon structures, and the eastward end is an abrupt change in isobaths in the region of λ ~ 179°E. According to the aftershock hypocenters, the depth of occurrence of the reverse fault could reach ~60 km. According to our interpretation, on the southern slope of the Rat and Near islands, there is a complex system of seismogenic faults that is caused by tectonic development of different structural elements. The dominant types of faults here are reverse faults, as in other island arcs. During earthquakes, reverse faults oriented along the island arc and also faults that intersect it exhibit themselves. The reverse faults of northeastern strike that intersect the arc characterize the type of tectonic motions in a series of canyons of the western part of the Aleutian Islands.  相似文献   

2.
利用匹配定位方法对2020年5月18日云南巧家Ms5.0地震震后24h震源附近台站.记录的连续波形进行遗漏地震扫描和定位,共识别出327个地震事件,约为台网目录的2.4倍,最小完整震级由最初的ML1.9降至ML1.1.随后,依据最新目录计算了震后震源区的b值,并结合余震展布形态,初步分析此次地震发震构造.研究结果显示,...  相似文献   

3.
An interpretation of the occurrence conditions and source parameters is proposed for the catastrophic earthquake of December 26, 2004, in the northwestern part of the Sunda island arc. The interpretation is based on the analysis of spatial distributions of aftershock epicenters and regions subjected to destructive tsunamis, seismicity manifestations in the NW part of the Sunda island arc in the past century, and locations of large tsunami sources of historical earthquakes off the Sumatra Island coast. The source parameters of the December 26, 2004, earthquake are compared with the reliably established main characteristics of sources of the largest tsunamigenic earthquakes in island arcs of the Pacific Ocean. According to the proposed interpretation, the December 26, 2004, earthquake source is a steep reverse fault striking NW and dipping toward the Indian Ocean. The source, ~450 km long, is located in front of the NW termination of Sumatra Island, in the southern part of the Nicobar Islands. Possible positions and sizes of large potential seismic sources in the NW part of the Sunda island arc are suggested.  相似文献   

4.
At 3:05, September 4, 2017, an ML4.4 earthquake occurred in Lincheng County, Xingtai City, Hebei Province, which was felt obviously by surrounding areas. Approximately 60km away from the hypocenter of Xingtai MS7.2 earthquake in 1966, this event is the most noticeable earthquake in this area in recent years. On the one hand, people are still shocked by the 1966 Xingtai earthquake that caused huge disaster, on the other hand, Lincheng County is lack of strong earthquakes. Therefore, this quake has aroused widespread concerns by the government, society and seismologists. It is necessary to clarify whether the seismogenic structure of this event is consistent with the previous seismicity and whether it has any new implications for the seismic activity and seismic hazard in this region. Therefore, it is of great significance to study its seismogenic mechanism for understanding the earthquake activity in Xingtai region where a MS7.2 earthquake had occurred in 1966. In this study, the Lincheng earthquake and its aftershocks are relocated using the multi-step locating method, and the focal mechanism and focal depth are determined by the "generalized Cut and Paste"(gCAP)method. The reliability of the results is analyzed based on the data of Hebei regional seismic network. In order to better constrain the focal depth, the depth phase sPL fitting method is applied to the relocation of focal depth. The inversion and constraint results show that aftershocks are mainly distributed along NE direction and dip to SE direction as revealed by depth profiles. Focal depths of aftershocks are concentrated in the depths of 6.5~8.2km with an average of about 7km. The best double-couple solution of the mainshock is 276°, 69° and -40° for strike, dip and slip angle for nodal plane I and 23°, 53° and -153° for nodal plane Ⅱ, respectively, revealing that it is a strike-slip event with a small amount of normal-fault component. The initial rupture depth of mainshock is about 7.5km obtained by the relocation while the centroid depth is 6km derived from gCAP method which was also verified by the seismic depth phase sPL observed by several stations, indicating the earthquake is ruptured from deep to shallow. Combined with the research results on regional geological structure and the seismic sequence relocation results, it is concluded that the nodal plane Ⅱ is the seismogenic fault plane of this earthquake. There are several active faults around the hypocenter of Lincheng earthquake sequence, however, none of the known faults on the current understanding is completely consistent with the seismogenic fault. To determine the seismogenic mechanism, the lucubrated research of the MS7.2 Xingtai earthquake in 1966 could provide a powerful reference. The seismic tectonic characteristics of the 1966 Xingtai earthquake sequence could be summarized as follows:There are tensional fault in the shallow crust and steep dip hidden fault in the middle and lower crust, however, the two faults are not connected but separated by the shear slip surfaces which are widely distributed in the middle crust; the seismic source is located between the hidden fault in the lower crust and the extensional fault in the upper crust; the earthquake began to rupture in the deep dip fault in the mid-lower crust and then ruptured upward to the extensional fault in the shallow crust, and the two fault systems were broken successively. From the earthquake rupture revealed by the seismic sequence location, the Lincheng earthquake also has the semblable feature of rupturing from deep to shallow. However, due to the much smaller magnitude of this event than that of the 1966 earthquake, the accumulated stress was not high enough to tear the fracture of the detachment surface whose existence in Lincheng region was confirmed clearly by the results of Lincheng-Julu deep reflection seismology and reach to the shallower fault. Therefore, by the revelation of the seismogenic mechanism of the 1966 Xingtai earthquake, the seismogenic fault of Lincheng earthquake is presumed to be a concealed fault possessing a potential of both strike-slip and small normal faulting component and located below the detachment surface in Lincheng area. The tectonic significance indicated by this earthquake is that the event was a stress adjustment of the deep fault and did not lead to the rupture of the shallow fault. Therefore, this area still has potential seismic hazard to a certain extent.  相似文献   

5.
2016年1月21日01时13分13.0秒(北京时间),青海省海北州门源县发生MS6.4地震.为了更好地认识这次地震的发震构造,本文利用青海省地震台网和甘肃省地震台网的省级固定地震台站及部分流动地震台站记录到的波形资料,通过重新拾取震相和联合HYPOINVERSE 2000与HypoDD定位方法,对2016年1月21日青海门源地震序列ML≥1.8的189个地震事件进行了重新定位,并采用gCAP方法分别反演了主震的双力偶机制解和全矩张量解. 定位结果显示,主震位置为37.67°N、101.61°E,震源深度为11.98 km;余震序列展布方向为SE和NW两个方向、长度约16 km,震源深度优势分布为4~14 km,断层面倾向为SW方向. 利用gCAP方法得到的矩心深度在8~9 km之间. 结合野外地质调查结果,认为该次地震事件为一次逆冲型事件,其发震断层可能为北西向冷龙岭断裂与北西向民乐—大马营断裂之间的一条盲断层,推测由于印度板块与欧亚板块的碰撞挤压使得青藏高原北缘与阿拉善地块之间的东西向挤压而造成的断层应力失稳,从而形成门源地震.  相似文献   

6.
On August 8, 2017, a strong earthquake of M7.0 occurred in Jiuzhaigou County, Aba Prefecture, northern Sichuan. The earthquake occurred on a branch fault at the southern end of the eastern section of the East Kunlun fault zone. In the northwest of the aftershock area is the Maqu-Maqin seismic gap, which is in a locking state under high stress. Destructive earthquakes are frequent along the southeast direction of the aftershocks area. In Songpan-Pingwu area, only 50~80km away from the Jiuzhaigou earthquake, two M7.2 earthquakes and one M6.7 earthquake occurred from August 16 to 23, 1976. Therefore, the Jiuzhaigou earthquake was an earthquake that occurred at the transition part between the historical earthquake fracture gap and the neotectonic active area. Compared with other M7.0 earthquakes, there are few moderate-strong aftershocks following this Jiuzhaigou earthquake, and the maximum magnitude of aftershocks is much smaller than the main shock. There is no surface rupture zone discovered corresponding to the M7.0 earthquake. In order to understand the feature of source structure and the tectonic environment of the source region, we calculate the parameters of the initial earthquake catalogue by Loc3D based on the digital waveform data recorded by Sichuan seismic network and seismic phase data collected by the China Earthquake Networks Center. Smaller events in the sequence are relocated using double-difference algorithm; source mechanism solutions and centroid depths of 29 earthquakes with ML≥3.4 are obtained by CAP method. Moreover, the source spectrum of 186 earthquakes with 2.0≤ML≤5.5 is restored and the spatial distribution of source stress drop along faults is obtained. According to the relocations and focal mechanism results, the Jiuzhaigou M7.0 earthquake is a high-angle left-lateral strike-slip event. The earthquake sequence mainly extends along the NW-SE direction, with the dominant focal depth of 4~18km. There are few shallow earthquakes and few earthquakes with depth greater than 20km. The relocation results show that the distribution of aftershocks is bounded by the M7.0 main shock, which shows obvious segmental characteristics in space, and the aftershock area is divided into NW segment and SE segment. The NW segment is about 16km long and 12km wide, with scattered and less earthquakes, the dominant focal depth is 4~12km, the source stress drop is large, and the type of focal mechanism is complicated. The SE segment is about 20km long and 8km wide, with concentrated earthquakes, the dominant depth is 4~12km, most moderate-strong earthquakes occurred in the depth between 11~14km. Aftershock activity extends eastward from the start point of the M7.0 main earthquake. The middle-late-stage aftershocks are released intensively on this segment, most of them are strike-slip earthquakes. The stress drop of the aftershock sequence gradually decreases with time. Principal stress axis distribution also shows segmentation characteristics. On the NW segment, the dominant azimuth of P axis is about 91.39°, the average elevation angle is about 20.80°, the dominant azimuth of T axis is NE-SW, and the average elevation angle is about 58.44°. On the SE segment, the dominant azimuth of P axis is about 103.66°, the average elevation angle is about 19.03°, the dominant azimuth of T axis is NNE-SSW, and the average elevation angle is about 15.44°. According to the fault profile inferred from the focal mechanism solution, the main controlling structure in the source area is in NW-SE direction, which may be a concealed fault or the north extension of Huya Fault. The northwest end of the fault is limited to the horsetail structure at the east end of the East Kunlun Fault, and the SE extension requires clear seismic geological evidence. The dip angle of the NW segment of the seismogenic fault is about 65°, which may be a reverse fault striking NNW and dipping NE. According to the basic characteristics of inverse fault ruptures, the rupture often extends short along the strike, the rupture length is often disproportionate to the magnitude of the earthquake, and it is not easy to form a rupture zone on the surface. The dip angle of the SE segment of the seismogenic fault is about 82°, which may be a strike-slip fault that strikes NW and dips SW. The fault plane solution shows significant change on the north and south sides of the main earthquake, and turns gradually from compressional thrust to strike-slip movement, with a certain degree of rotation.  相似文献   

7.
A strong earthquake with magnitude MS6.2 hit Hutubi, Xinjiang at 13:15:03 on December 8th, 2016(Beijing Time). In order to better understand its mechanism, we performed centroid moment tensor inversion using the broadband waveform data recorded at stations from the Xinjiang regional seismic network by employing gCAP method. The best double couple solution of the MS6.2 mainshock on December 8th, 2016 estimated from local and near-regional waveforms is strike:271°, dip:64ånd rake:90° for nodal plane I, and strike:91°, dip:26ånd rake:90°for nodal plane Ⅱ; the centroid depth is about 21km and the moment magnitude(MW)is 5.9. ISO, CLVD and DC, the full moment tensor, of the earthquake accounted for 0.049%, 0.156% and 99.795%, respectively. The share of non-double couple component is merely 0.205%. This indicates that the earthquake is of double-couple fault mode, a typical tectonic earthquake featuring a thrust-type earthquake of squeezing property.The double difference(HypoDD)technique provided good opportunities for a comparative study of spatio-temporal properties and evolution of the aftershock sequences, and the earthquake relocation was done using HypoDD method. 486 aftershocks are relocated accurately and 327 events are obtained, whose residual of the RMS is 0.19, and the standard deviations along the direction of longitude, latitude and depth are 0.57km, 0.6km and 1.07km respectively. The result reveals that the aftershocks sequence is mainly distributed along the southern marginal fault of the Junggar Basin, extending about 35km to the NWW direction as a whole; the focal depths are above 20km for most of earthquakes, while the main shock and the biggest aftershock are deeper than others. The depth profile shows a relatively steep dip angle of the seismogenic fault plane, and the aftershocks dipping northward. Based on the spatial and temporal distribution features of the aftershocks, it is considered that the seismogenic fault plane may be the nodal plane I and the dip angle is about 271°. The structure of the Hutubi earthquake area is extremely complicated. The existing geological structure research results show that the combination zone between the northern Tianshan and the Junggar Basin presents typical intracontinental active tectonic features. There are numerous thrust fold structures, which are characterized by anticlines and reverse faults parallel to the mountains formed during the multi-stage Cenozoic period. The structural deformation shows the deformation characteristics of longitudinal zoning, lateral segmentation and vertical stratification. The ground geological survey and the tectonic interpretation of the seismic data show that the recoil faults are developed near the source area of the Hutubi earthquake, and the recoil faults related to the anticline are all blind thrust faults. The deep reflection seismic profile shows that there are several listric reverse faults dipping southward near the study area, corresponding to the active hidden reverse faults; At the leading edge of the nappe, there are complex fault and fold structures, which, in this area, are the compressional triangular zone, tilted structure and northward bedding backthrust formation. Integrating with geological survey and seismic deep soundings, the seismogenic fault of the MS6.2 earthquake is classified as a typical blind reverse fault with the opposite direction close to the southern marginal fault of the Junggar Basin, which is caused by the fact that the main fault is reversed by a strong push to the front during the process of thrust slip. Moreover, the Manas earthquake in 1906 also occurred near the southern marginal fault in Junggar, and the seismogenic mechanism was a blind fault. This suggests that there are some hidden thrust fault systems in the piedmont area of the northern Tianshan Mountains. These faults are controlled by active faults in the deep and contain multiple sets of active faults.  相似文献   

8.
The 2018,Songyuan,Jilin M_S5. 7 earthquake occurred at the intersection of the FuyuZhaodong fault and the Second Songhua River fault. The moment magnitude of this earthquake is M_W5. 3,the centroid depth by the waveform fitting is 12 km,and it is a strike-slip type event. In this paper,with the seismic phase data provided by the China Earthquake Network, the double-difference location method is used to relocate the earthquake sequence,finally the relocation results of 60 earthquakes are obtained. The results show that the aftershock zone is about 4. 3km long and 3. 1km wide,which is distributed in the NE direction. The depth distribution of the seismic sequence is 9km-10 km. 1-2 days after the main shock,the aftershocks were scattered throughout the aftershock zone,and the largest aftershock occurred in the northeastern part of the aftershock zone. After 3-8 days,the aftershocks mainly occurred in the southwestern part of the aftershock zone. The profile distribution of the earthquake sequence shows that the fault plane dips to the southeast with the dip angle of about 75°. Combined with the regional tectonic setting,focal mechanism solution and intensity distribution,we conclude that the concealed fault of the Fuyu-Zhaodong fault is the seismogenic fault of the Songyuan M_S5. 7 earthquake. This paper also relocates the earthquake sequence of the previous magnitude 5. 0 earthquake in 2017. Combined with the results of the focal mechanism solution,we believe that the two earthquakes have the same seismogenic structure,and the earthquake sequence generally develops to the southwest. The historical seismic activity since 2009 shows that after the magnitude 5. 0 earthquake in 2017,the frequency and intensity of earthquakes in the earthquake zone are obviously enhanced,and attention should be paid to the development of seismic activity in the southwest direction of the earthquake zone.  相似文献   

9.
基于四川区域地震台网记录的波形资料,利用CAP波形反演方法,同时获取了2013年4月20日芦山M7.0级地震序列中88个M≥3.0级地震的震源机制解、震源矩心深度与矩震级,进而利用应变花(strain rosette)和面应变(areal strain)As值,分析了芦山地震序列震源机制和震源区构造运动与变形特征.获得的主要结果有:(1)芦山M7.0级主震破裂面参数为走向219°/倾角43°/滑动角101°,矩震级为MW6.55,震源矩心深度15 km.芦山地震余震区沿龙门山断裂带走向长约37 km、垂直断裂带走向宽约16 km.主震两侧余震呈不对称分布,主震南西侧余震区长约27 km、北东侧长约10 km.余震分布在7~22 km深度区间,优势分布深度为9~14 km,序列平均深度约13 km,多数余震分布在主震上部.粗略估计的芦山地震震源体体积为37 km×16 km×16 km.(2)面应变As值统计显示,芦山地震序列以逆冲型地震占绝对优势,所占比例超过93%.序列主要受倾向NW、倾角约45°的近NE-SW向逆冲断层控制;部分余震发生在与上述主发震断层近乎垂直的倾向SE的反冲断层上;龙门山断裂带前山断裂可能参与了部分余震活动.P轴近水平且优势方位单一,呈NW-SE向,与龙门山断裂带南段所处区域构造应力场方向一致,反映芦山地震震源区主要受区域构造应力场控制,芦山地震是近NE-SW向断层在近水平的NW-SE向主压应力挤压作用下发生逆冲运动的结果.序列中6次非逆冲型地震均发生在主震震中附近,且主震震中附近P轴仰角变化明显,表明主震对其震中附近局部区域存在明显的应力扰动.(3)序列整体及不同震级段的应变花均呈NW向挤压白瓣形态,显示芦山地震震源区深部构造呈逆冲运动、NW向纯挤压变形.各震级段的应变花方位与形状一致,具有震级自相似性特征,揭示震源区深部构造运动和变形模式与震级无关.(4)不同深度的应变花形态以NW-NWW向挤压白瓣为优势,显示震源区构造无论是总体还是分段均以NW-NWW向挤压变形为特征.但应变花方位与形状随深度仍具有较明显的变化,可能反映了震源区构造变形在深度方向上存在分段差异.(5)芦山地震震源体尺度较小,且主震未发生在龙门山断裂带南段主干断裂上,南段长期积累的应变能未能得到充分释放,南段仍存在发生强震的危险.  相似文献   

10.
利用8个流动数字地震台和国家数字地震台站的地震波形记录,测量了2003年4月17日青海德令哈6.7级地震及其主要余震的直达P波、SV波、SH波的初动方向和振幅比,应用Snoke(2003)的测定震源机制解的格点尝试法,测定出德令哈地震序列的48个2.4级以上地震的震源机制解.搜集分析了美国哈佛大学测定的德令哈6.7级主震和2004年二期地震活动中的7个地震的震源机制解.基于余震空间分布特征和对震源机制解特征的分析,讨论了德令哈地震序列的可能断层活动方式和地震的构造含义.结果表明,主震和大部分余震都是沿NWW-SEE走向的逆断层错动,北边的上盘可能沿低角度向北倾的断层面向南仰冲;个别正断层余震可能是震源区挤压变形弧顶区附近发生的局部张性破裂;在二期地震活动中,逆断层和走滑断层都有,走滑断层地震主要发生在震源区东侧.德令哈地震活动是青藏高原东北缘NWW-SEE向延伸的挤压带继续处于隆升活动中的表现,这一继承性新构造运动是德令哈地震序列的可能发震原因.  相似文献   

11.
At GMT time 13:19, August 8, 2017, an Ms7.0 earthquake struck the Jiuzhaigou region in Sichuan Province, China, causing severe damages and casualties. To investigate the source properties, seismogenic structures, and seismic hazards, we systematically analyzed the tectonic environment, crustal velocity structure in the source region, source parameters and rupture process, Coulomb failure stress changes, and 3-D features of the rupture plane of the Jiuzhaigou earthquake. Our results indicate the following: (1) The Jiuzhaigou earthquake occurred on an unmarked fault belonging to the transition zone of the east Kunlun fault system and is located northwest of the Huya fault. (2) Both the mainshock and aftershock rupture zones are located in a region where crustal seismic velocity changes dramatically. Southeast to the source region, shear wave velocity at the middle to lower crust is significantly low, but it rapidly increases northeastward and lies close to the background velocity across the rupture fault. (3) The aftershock zone is narrow and distributes along the northwest-southeast trend, and most aftershocks occur within a depth range of 5–20 km. (4) The focal mechanism of the Jiuzhaigou earthquake indicates a left-lateral strike-slip fault, with strike, dip, and rake angles of 152°, 74° and 8°, respectively. The hypocenter depth measures 20 km, whereas the centroid depth is about 6 km. The co-seismic rupture mainly concentrates at depths of 3–13 km, with a moment magnitude (Mw) of 6.5. (5) The co-seismic rupture also strengthens the Coulomb failure stress at the two ends of the rupture fault and the east segment of the Tazang fault. Aftershocks relocation results together with geological surveys indicate that the causative fault is a near vertical fault with notable spatial variations: dip angle varies within 66°–89° from northwest to southeast and the average dip angle measures ~84°. The results of this work are of fundamental importance for further studies on the source characteristics, tectonic environment, and seismic hazard evaluation of the Jiuzhaigou earthquake.  相似文献   

12.
An interpretation of the type, size, and location of the source of the Aleutian earthquake on April 1, 1946, which was characterized by the highest intensity (I = 4), is proposed. The earthquake source is a subvertical reverse fault striking along the island arc and dipping at an angle of 85° toward the deep-sea trench. The reverse fault is located in the lower part of the island slope, within the eastern termination of the Aleutian terrace. The western end of the reverse fault is located in the area of the Krenitsyn Islands (λ ∼ 165°W), where the pattern of isobaths changes, and an abrupt widening of the shelf part of the Fox Islands takes place. Large (M S ∼ 7) shocks, preceding the 1946 earthquake, occurred here in 1940, 1942, and 1944. Structural inhomogeneities in the island slope in the area of the Sanak Islands (λ ∼ 162°W) determine the eastern edge of the source-reverse fault, whose length within the specified boundaries is about 200 km. The mean magnitude of the earthquake corresponding to such a source is ∼8.3. According to the regular relation between the rupture length and the mean movement, the vertical displacement of the ocean floor in the source region could attain 5–6 m. A significant vertical displacement of the ocean floor over its large length (∼200 km) was responsible for the high tsunamigenic ability of this earthquake. A favorable combination in the source area of the topographic and other conditions necessary for the tsunami formation could additionally contribute to an increase in the intensity of the tsunami. The earthquake of April 1, 1946, in the Fox Islands, as well as the tsunamigenic earthquakes of March 9, 1957, in the Andreanof Islands and February 4, 1965, in the Rat Islands, does not belong to the class of “slow” earthquakes.  相似文献   

13.
The M8.0 Wenchuan earthquake occurred on the Longmenshan fault zone. Based on field investigation of the surface rupture and focal mechanism study of the aftershocks, we discuss the geological relationship of the main, secondary and triggered ruptures. The main rupture is about 200km long and can be divided into the south part and the north part. The south part consists of two parallel fault zones characterized by reverse faulting, with several parallel secondary ruptures on the hanging wall of the main fault, and the north part is a single main fault zone characterized by lateral strike-slip and reverse faulting. Compared to a 300km long aftershock distribution, the surface rupture only occupies 200km, and the remaining 100km on the northeast of the main rupture was triggered by aftershocks. Study on the ruptures of this earthquake will be useful for studying the earthquake risk evolution on the Longmenshan fault system.  相似文献   

14.
Both P- and S-wave arrivals were collected for imaging upper crustal structures in the source region of the April 20, 2013 Lushan earthquake. High-resolution, three-dimensional P and S velocity models were constructed by travel-time tomography. Moreover, more than 3700 aftershocks of the Lushan earthquake were relocated via a grid search method. The P- and S-wave velocity images of the upper crust show largely similar characters, with high and low velocity anomalies, which mark the presence of significant lateral and vertical heterogeneity at the source region of the Lushan earthquake. The characteristics of the velocity anomalies also reflect the associated surface geological tectonics in this region. The distributions of high velocity anomalies of both P- and S-waves to 18 km depth are consistent with the distributions of relocated aftershocks, suggesting that most of the ruptures were localized inside the high velocity region. In contrast, low P and S velocities were found in the surrounding regions without aftershocks, especially in the region to the northeast of the Lushan earthquake. For the relocated aftershocks of the Lushan earthquake from this study, we found that most aftershocks were concentrated in a zone of about 40 km long and 20 km wide, and were located in the hanging wall of Dayi–Mingshan fault. The focal depths of aftershocks increase from the southeast to the northwest region in the direction perpendicular to the fault strike, suggesting that the fault ruptured at an approximate dip angle of 45°. The main depths of the aftershocks in the northwest of the main shock are significantly shallower than expected, revealing the different seismogenic conditions in the source region.  相似文献   

15.
2009年云南姚安6.0级地震震源机制与发震构造的分析研究   总被引:1,自引:0,他引:1  
利用P波、SV波、SH波初动及其振幅比联合反演震源机制解的方法,计算了2009年7月9日发生在云南姚安6.0级地震余震序列的震源机制解,同时结合地震序列的空间分布,对姚安6.0级地震的发震断层性质和震区应力场特征进行综合分析。结果分析表明:(1)姚安6.0级地震发震断层为NWW—SEE向的直立右旋走滑断层,与美国哈佛大学的主震CMT解节面基本一致,也与余震优势方向分布一致,证明结果可靠;(2)震区主压应力场优势方向为NNW—SSE向,与其现今区域构造应力场主压应力NNW—SSE向一致,表明主震应力场主要受到现今区域构造应力场的控制,同时还有一些小的余震与主震应力场不同,表明震区应力场的多样性和复杂性;(3)结合本次地震序列的空间分布、震源机制解特征、震区断裂构造特征综合分析,综合判定姚安6.0级地震的发震构造属于马尾箐断裂。  相似文献   

16.
针对2008年8月30日在四川攀枝花-会理发生的Ms6.1地震序列,本研究基于四川和云南两省数字地震台网的宽频带波形记录,采用CAP方法反演了该序列主震及ML≥4.0余震的震源机制解.结果显示:主震震源机制解的两个主应力轴仰角小于10°,其中,主压力轴方位为140°;节面之一走向185°、西倾83°、滑动角5°,显示左旋走滑略兼逆冲分量的断层作用性质.结合余震、烈度分布以及震区的活动构造,判定该节面代表了主震的发震断层面,相应的发震断层应是穿越震区的近南北向红格断裂(南段).本研究还获得主震震源机制解的最佳拟合误差深度为10 km,与该事件的定位结果相一致.该序列中6次ML≥4.0余震也具有与主震类似的震源机制解.分析初步表明:空间上,2008年攀枝花-会理Ms6.1地震序列的震源机制解与研究区内更早地震的震源机制解具有良好的协调性,反映了该序列是在川滇地块SE-SSE向水平运动的背景下、沿近S-N向红格断裂发生左旋走滑略兼逆冲运动的结果.  相似文献   

17.
Parameters of the focal mechanisms of earthquakes, as well as their relations to the characteristics of seismicity and geological structure are analyzed in the regions of the Komandorskie Islands in the west of the Aleutian arc, the Fox Islands, and the Alaska Peninsula coast in the east of the arc. Different types of ruptures are revealed in the western and eastern parts of the Aleutian arc. The leading type of ruptures at the southern slope of the Komandorskie Islands is steep reverse faults crossing the arc at azimuths from submeridional to northeastern. A similar type of rupture occurs in abundance on the Rat Islands and is predominant on the Near Islands. Steep strike-slips with small components of the normal or reverse fault manifest themselves at the northern side of the block uplift of the Komandorskie Islands. Seismogenic ruptures in the region of the Komandorskie Islands do not contradict geological data on the rupture tectonics on Medny and Bering islands. At the southern slope of the Fox Islands, as well as in the Andreanof Islands, steep reverse faults striking longitudinally (along the arc) with the dip toward the deep-sea trench are the predominant type of seismogenic ruptures. This type of seismogenic ruptures is the leading type for the structures of island arcs with present-day volcanism; an example is the Kurile-Kamchatka island. Different types of predominant seismogenic ruptures in the western and eastern parts of the Aleutian island arc probably reflect different stages of the tectonic development of these regions of the arc. Possible positions and sizes of sources of the largest historical earthquakes in the eastern part of the Aleutian island arc are considered  相似文献   

18.
On January 21, 2016, a M6.4 earthquake occurred in Menyuan county, Qinghai Province. Its epicenter is located in the Qilian-Hexi Zoulang tectonic zone, which records several moderate-large historical earthquakes. Previous studies on this event are based on geology, remote sensing data and focal mechanism solutions, lacking analysis on its seismogenic structure. In order to study seismogenic fault plane and seismoteconic style of the earthquake, this work uses data of seismic intensity, aftershocks, and geology to address this issue. Furthermore, we calculate Coulomb stress changes imposed by the 1927 Gulang M8 and 1986 Menyuan M6.4 earthquake on the fault plane of the 2016 Menyuan M6.4 earthquake. The results indicate the early two events have posed distinct impacts on two nodal planes:loading or triggering on nodal plane Ⅰ, and unloading or delay on Ⅱ. In some cases such triggering stress is approaching or up to the threshold value of 0.01 MPa. Combining isoseismals, aftershock distribution, geological structure and different Coulomb stress changes aforementioned, the nodal plane Ⅱ of the source model is considered the seismogenic feature. In conjunction with geophysical data, we establish the seismogenic model of the Menyuan earthquake, which is a positive flower structure in a profile, gentle in the upper and steep in the lower, characterized by thrusting in a strike slipping fault system. This is a possible model for thrusting earthquakes generated by strike-slip faults in a compressional tectonic regime.  相似文献   

19.
2003年青海德令哈M6.6地震序列的活动特征   总被引:1,自引:0,他引:1  
分析了2003年4月17日青海省德令哈6.6级地震序列活动的空间和时间变化特征及其发震构造,得到以下结果:①主震发生在地震活跃区与相对平静区的分界带上;②主震后半个多月内余震快速衰减,初期余震持续到7月底,以后平静了4个多月,接着震源区东部又发生第2期余震活动,连续发生5次5.0级以上地震,最大余震震级5.9;③震源区...  相似文献   

20.
玉树MS7.1级地震部分余震重新定位及发震构造分析   总被引:4,自引:0,他引:4       下载免费PDF全文
综合利用玉树震区应急流动台站观测数据和青海地震台网固定台站观测数据,依据最新的人工地震宽角反射/折射剖面的速度模型,采用Hypo2000地震定位法,对2010年4月18日至4月29日期间玉树震区发生的部分余震进行了重新定位.重新定位后,震源位置的水平和垂直方向平均误差分别为1.35 km和4.68 km,走时残差为0.49 s.震源深度分布范围为1.48~19.85 km,平均震源深度为10.28 km.定位研究结果表明:玉树地震余震沿北西-南东向的甘孜-玉树断裂带的北支,即玉树-隆宝断裂分布,长约97 km.余震分布特征在主震(微观震中)两侧存在差异,可能反映了两侧构造特征存在差异.截止到4月29日,主震东南仍是应力的主要释放区域,余震强度大且活动密集的区域位于主震东南距主震约5 km、横向范围约20 km.主震破裂区的大部分应力在主震过程中得以释放,主震时应力未释放的区域成为主要的余震分布区.余震的连续发生可能已造成主震破裂区相互连通,且破裂范围向西北方向扩展.玉树主震及余震的发震构造为甘孜-玉树断裂的北支,即玉树-隆宝断裂段,断层性质为北东倾向的高角度左旋走滑断层.发震断层的倾角和宽度在帮洞两侧有所不同,帮洞以东发震断层宽度约为12 km,倾角约为83°;而帮洞以西发震断层宽度约为6.5 km,断层倾角约减缓为63°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号