首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Algorithms are derived for constructing five dimensional Kaluza-Klein cosmological space-times in the presence of a perfect fluid source in the framework of f(R,T) gravity theory proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). Starting from the solution of Reddy et al. (Int. J. Theor. Phys 51:3222-3227, 2012b) some classes of new solutions are generated which correspond to accelerating models of the Universe. The physical and kinematical behaviors of the models are studied.  相似文献   

2.
Bifurcation behavior of nonlinear dust ion acoustic travelling waves in a magnetized quantum dusty plasma has been studied. Applying the reductive perturbation technique (RPT), we have derived a Kadomtsev-Petviashili (KP) equation for dust ion acoustic waves (DIAWs) in a magnetized quantum dusty plasma. By using the bifurcation theory of planar dynamical systems to the KP equation, we have proved that our model has solitary wave solutions and periodic travelling wave solutions. We have derived two exact explicit solutions of the above travelling waves depending on different parameters.  相似文献   

3.
A model for an anisotropic Bianchi type VI universe in a Scale Covariant theory of gravitation (Canuto et al. in Phys. Rev. D 16:6, 1977a; Phys. Rev. Lett. 39:8, 1977b) is analyzed. Exact solutions to the corresponding field equations are found under some specific assumptions. A finite singularity is found in the model at the initial time t=0. All the physical parameters are studied and thoroughly discussed. The model behaves like a big bang singular model o f the universe.  相似文献   

4.
Dust-acoustic (DA) solitary waves are investigated in a magnetized dusty plasma comprising cold dust fluid and kappa-distributed ions and/or electrons. The influence of suprathermal particles, obliqueness, and ion temperature on the DA solitary waves is investigated. We find that only negative DA solitary waves will be excited in this model. Also it is shown that the amplitude of the DA solitary wave decreases with deviation of electrons or ions from Maxwellian distribution via decrease of κ e or κ i . The effect of the temperature of the ion decreases with the amplitude and steepness of the solitary wave front.  相似文献   

5.
A rigorous theoretical investigation has been made on the obliquely propagating dust-acoustic (DA) waves in a magnetized dusty plasmas consisting of distinct temperature q-distributed electrons with distinct strength of nonextensivities, nonthermal ions and negatively charged mobile dust grains, and analyzed by deriving the Zakharov-Kuznetsov equation. It is found that the characteristics and the properties of the DA solitary waves (DASWs) are significantly modified by the external magnetic field, relative temperature ratio of ions, relative number densities of electrons as well as ions, the nonextensivity of electrons, nonthermality of ions and the obliqueness of the system. The possible implications of the results obtained from this analysis in space and laboratory dusty plasmas are briefly addressed.  相似文献   

6.
Here I discuss possible relations between free precession of neutron stars, Tkachenko waves inside them and glitches. I note that the proposed precession period of the isolated neutron star RX J0720.4-3125 (Haberl et al. 2006) is consistent with the period of Tkachenko waves for the spin period 8.4 s. Based on a possible observation of a glitch in RX J0720.4-3125 (van Kerkwijk et al. 2007), I propose a simple model, in which long period precession is powered by Tkachenko waves generated by a glitch. The period of free precession, determined by a NS oblateness, should be equal to the standing Tkachenko wave period for effective energy transfer from the standing wave to the precession motion. A similar scenario can be applicable also in the case of the PSR B1828-11.  相似文献   

7.
Spherically symmetric kink space-time is considered in the framework of f(R,T) gravity proposed by Harko et al. (Phys. Rev. D 84:024020, 2011) in the presence of a cloud of massive strings with perfect fluid. Solving the field equations of this modified theory of gravity, we observe that cosmic strings and perfect fluid do not survive in this theory of gravitation and in this particular space-time. Hence a vacuum kink model, which is asymptotically flat, is presented.  相似文献   

8.
We study accelerating dynamics from Born-Infeld-f(R) gravity in a simplified conformal approach without matter. In Makarenko et al. (arXiv:1404.2850 [gr-qc], 2011b) it was derived eventually any Dark Energy cosmology from above theory. In this Letter we apply the technique of Makarenko et al. (arXiv:1404.2850 [gr-qc], 2011b) to show that Born-Infeld-f(R) gravity may describe very realistic universe admitting the unification of early-time inflation with late-time acceleration. Specifically, the evolution with periodic as well as non-periodic behavior is considered with possibility to cross the phantom-divide at early or late-times.  相似文献   

9.
Nonlinear propagation of dust-acoustic (DA) waves in a magnetized dusty plasma, consisting of negatively charged mobile dust, Maxwellian ions and two distinct temperature nonextensive electrons (following nonextensive q-distribution each), has been studied and analyzed by deriving and solving the Korteweg-de-Vries (K-dV) equation. According to the outcomes of the investigation, the basic characteristics of the DA solitary profiles are found to be strongly modified by the external magnetic field, nonextensivity of the electrons and the respective number densities of the two species of electrons. The results of this investigation can be applied in both laboratory and astrophysical plasma scenarios for understanding the basic features of the localized electrostatic dust-acoustic solitary waves (DASWs).  相似文献   

10.
Long-term variations of solar differential rotation and sunspot activity are investigated through re-analyzing the data on parameters of the differential-rotation law obtained by Makarov, Tlatov, and Callebaut (Solar Phys. 170, 373, 1997), Javaraiah, Bertello, and Ulrich (Astrophys. J. 626, 579, 2005a; Solar Phys. 232, 25, 2005b), and Javaraiah et al. (Solar Phys. 257, 61, 2009). Our results indicate that the solar-surface-rotation rate at the Equator (indicated by the A-parameter of the standard solar-rotation law) shows a secular decrease since Cycle 12 onwards, given by about 1?–?1.5×10?3 (deg?day?1?year?1). The B-parameter of the standard differential-rotation law seems to also show a secular decrease since Cycle 12 onwards, but of weak statistical significance. The rotation rate averaged over latitudes 0°?–?40° does not show a secular trend of statistical significance. Moreover, the average sunspot area shows a secular increase of statistical significance since Cycle 12 onwards, while a negative correlation is found between the level of sunspot activity (indicated by the average sunspot area) and the solar equatorial rotation on long-term scales.  相似文献   

11.
The dust-acoustic shock waves have been theoretically investigated using reductive perturbation technique. An unmagnetized four-component dusty plasma system consisting of nonextensive q-distributed electrons, Boltzmann distributed ions, and negatively as well as positively charged dust particles has been considered. The solution of Burgers equation in planar geometry is numerically analyzed. It has been observed that the nonextensive q-distribution of electrons has a significant role in the formation of shock waves. The relevance of our results to astrophysics as well as laboratory plasmas are briefly discussed.  相似文献   

12.
The nonlinear propagation and interaction of dust acoustic multi-soliton in a four component dusty plasma which consists of negatively and positively charged cold dust fluids, q-nonextensive velocity distributed electrons and ions, have been studied. Applying reductive perturbation technique (RPT), we have derived Korteweged-de Vries (KdV) equation for our model. By using Hirota bilinear method, we have obtained two-soliton and three-soliton solutions of the obtained KdV equation. Phase shifts of two-soliton and three-soliton have been presented. It has been observed that the parameters α 1, α 2, nonextensive parameter q, temperature ratio of ion to electron (σ), and μ play a crucial role in the formation of two-soliton and three-soliton. The implications of our results in understanding the localized nonlinear electrostatic perturbations observed in double-plasma machines, Cometary tails, Jupiter’s magnetosphere etc., where population of q-nonextensive velocity distributed electrons and ions can significantly dominate the wave dynamics, are also briefly discussed.  相似文献   

13.
A rigorous theoretical investigation has been made on multi-dimensional instability of obliquely propagating electrostatic dust-ion-acoustic (DIA) solitary structures in a magnetized dusty electronegative plasma which consists of Boltzmann electrons, nonthermal negative ions, cold mobile positive ions, and arbitrarily charged stationary dust. The Zakharov-Kuznetsov (ZK) equation is derived by the reductive perturbation method, and its solitary wave solution is analyzed for the study of the DIA solitary structures, which are found to exist in such a dusty plasma. The multi-dimensional instability of these solitary structures is also studied by the small-k (long wave-length plane wave) perturbation expansion technique. The combined effects of the external magnetic field, obliqueness, and nonthermal distribution of negative ions, which are found to significantly modify the basic properties of small but finite-amplitude DIA solitary waves, are examined. The external magnetic field and the propagation directions of both the nonlinear waves and their perturbation modes are found to play a very important role in changing the instability criterion and the growth rate of the unstable DIA solitary waves. The basic features (viz. speed, amplitude, width, instability, etc.) and the underlying physics of the DIA solitary waves, which are relevant to many astrophysical situations (especially, auroral plasma, Saturn’s E-ring and F-ring, Halley’s comet, etc.) and laboratory dusty plasma situations, are briefly discussed.  相似文献   

14.
Propagation of the dust-acoustic shock waves (DASWs) in a dusty plasma containing arbitrarily charged dust, positive and negative ions following nonthermal (Cairn’s) distribution, and electrons following q-(nonextensive) distribution, has been investigated. The reductive perturbation technique is used to derive the Burgers equation for dust’s fluid dynamics. The basic features (viz. polarity, amplitude, speed, etc.) of DASWs are found to be significantly modified due to the effects of arbitrarily charged dust, number density and temperatures of heavier/lighter ions, nonextensive electrons, and dust kinematic viscosity. The present investigation can be very effective for understanding the nonlinear characteristics of the DASWs in space and laboratory dusty plasmas.  相似文献   

15.
A spatially homogeneous and anisotropic Bianchi type-III space-time is considered in the presence of bulk viscous fluid containing one dimensional cosmic strings in the frame work of f(R,T) gravity proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). To get a determinate solution of the field equations of this theory, we have used (i) a barotropic equation of state for the pressure and density and (ii) the bulk viscous pressure is proportional to the energy density. It is interesting to observe that, in this case, Bianchi type-III bulk viscous string cosmological model does not exist and degenerates into vacuum model of general relativity.  相似文献   

16.
Where spatial gradients in the amplitude of an Alfvén wave are non-zero, a nonlinear magnetic-pressure gradient acts upon the medium (commonly referred to as the ponderomotive force). We investigate the nature of such a force in inhomogeneous 2.5D MHD plasmas by analysing source terms in the nonlinear wave equations for the general case of inhomogeneous B and ρ, and consider supporting nonlinear numerical simulations. Our equations indicate that there are two distinct classes of ponderomotive effect induced by Alfvén waves in general 2.5D MHD, each with both a longitudinal and transverse manifestation. i) Geometric effects: Gradients in the pulse geometry relative to the background magnetic field cause the wave to sustain cospatial disturbances, the longitudinal and transverse daughter disturbances – where we report on the transverse disturbance for the first time. ii) ?(c A) effects: Where a pulse propagates through an inhomogeneous region (where the gradients in the Alfvén-speed profile c A are non-zero), the nonlinear magnetic-pressure gradient acts to accelerate the plasma. Transverse gradients (phase mixing regions) excite independently propagating fast magnetoacoustic waves (generalising the result of Nakariakov, Roberts, and Murawski (Solar Phys. 175, 93, 1997)) and longitudinal gradients (longitudinally dispersive regions) perturb along the field (thus creating static disturbances in β=0, and slow waves in β≠0). We additionally demonstrate that mode conversion due the nonlinear Lorentz force is a one-way process, and does not act as a mechanism to nonlinearly generate Alfvén waves due to propagating magnetoacoustic waves. We conclude that these ponderomotive effects are induced by an Alfvén wave propagating in any MHD medium, and have the potential to have significant consequences on the dynamics of energy transport and aspects of dissipation provided the system is sufficiently nonlinear and inhomogeneous.  相似文献   

17.
Nonlinear dynamics of electron acoustic waves (EAWs) in a plasma consisting of stationary ions, cool inertial electrons and hot electrons having a nonextensive distribution is studied. Under transverse perturbations, the nonlinear wave can be described by the general form of the Davey-Stewartson (DS) equations. The reductive perturbation technique is employed to derive Davey-Stewartson equations. From the solutions of these equations, amplitude modulation properties and stability regions of EAWs are studied in two-dimensional plasma. Further, the influence of nonextensivity of hot electrons (via q) on the characteristics of EAWs has been analysed.  相似文献   

18.
We combined the (K s , J?K s ) data in Laney et al. (Mon. Not. R. Astron. Soc. 419:1637, 2012) with the V apparent magnitudes and trigonometric parallaxes taken from the Hipparcos catalogue and used them to fit the $M_{K_{s}}$ absolute magnitude to a linear polynomial in terms of V?K s colour. The mean and standard deviation of the absolute magnitude residuals, ?0.001 and 0.195 mag, respectively, estimated for 224 red clump stars in Laney et al. (2012) are (absolutely) smaller than the corresponding ones estimated by the procedure which adopts a mean $M_{K_{s}}=-1.613~\mbox{mag}$ absolute magnitude for all red clump stars, ?0.053 and 0.218 mag, respectively. The statistics estimated by applying the linear equation to the data of 282 red clump stars in Alves (Astrophys. J. 539:732, 2000) are larger, $\Delta M_{K_{s}}=0.209$ and σ=0.524 mag, which can be explained by a different absolute magnitude trend, i.e. condensation along a horizontal distribution.  相似文献   

19.
Nonlinear propagation of dust-acoustic waves in an unmagnetized dusty plasma consisting of negatively charged mobile dust, nonextensive ions following nonextensive q-distribution and two distinct temperature superthermal electrons following superthermal kappa distribution each, is investigated by employing lower and higher order nonlinear equations, namely the Korteweg-de-Vries (K-dV), the modified Korteweg-de-Vries (mK-dV) and the Gardner equations. The characteristic features of the hump (positive potential) and dip (negative potential) shaped dust-acoustic (DA) Gardner solitons are found to exist beyond the K-dV limit. The effects of two superthermal temperature electrons and ions nonextensivity on the basic characteristics of DA K-dV, mK-dV and Gardner solitons have also been investigated. It has been found that the DA Gardner solitons exhibit either negative or positive potential solitons only for q<q c where, q c is the critical value of the nonextensive parameter q. The possible applications of our results in understanding the localized nonlinear electrostatic structures existing in solar atmosphere, Saturn’s magnetosphere etc. (where the tails of the high energetic particles at different temperatures follow power-law like distribution) are also briefly discussed.  相似文献   

20.
Arbitrary amplitude electron acoustic (EA) solitary waves in a magnetized nonextensive plasma comprising of cool fluid electrons, hot nonextensive electrons, and immobile ions are investigated. The linear dispersion properties of EA waves are discussed. We find that the electron nonextensivity reduces the phase velocities of both modes in the linear regime: similarly the nonextensive electron population leads to decrease of the EA wave frequency. The Sagdeev pseudopotential analysis shows that an energy-like equation describes the nonlinear evolution of EA solitary waves in the present model. The effects of the obliqueness, electron nonextensivity, hot electron temperature, and electron population are incorporated in the study of the existence domain of solitary waves and the soliton characteristics. It is shown that the boundary values of the permitted Mach number decreases with the nonextensive electron population, as well as with the electron nonextensivity index, q. It is also found that an increase in the electron nonextensivity index results in an increase of the soliton amplitude. A comparison with the Vikong Satellite observations in the dayside auroral zone is also taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号