首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several studies suggest that the $1.4 billion in government subsidies are encouraging the ethanol program without substantial benefits to the U.S. economy. Large ethanol industries and a few U.S. government agencies, such as the USDA, support the production of ethanol. Corn-farmers receive minimal profits. In the U.S. ethanol system, considerably more energy, including high-grade fossil fuel, is required to produce ethanol than is available in the energy-ethanol output. Specifically about 29% more energy is used to produce a gallon of ethanol than the energy in a gallon of ethanol. Fossil energy powers corn production and the fermentation/distillation processes. Increasing subsidized ethanol production will take more feed from livestock production, and is estimated to currently cost consumers an additional $1 billion per year. Ethanol production increases environmental degradation. Corn production causes more total soil erosion than any other crop. Also, corn production uses more insecticides, herbicides, and nitrogen fertilizers than any other crop. All these factors degrade the agricultural and natural environment and contribute to water pollution and air pollution. Increasing the cost of food and diverting human food resources to the costly inefficient production of ethanol fuel raise major ethical questions. These occur at a time when more than half of the world's population is malnourished. The ethical priority for corn and other food crops should be for food and feed. Subsidized ethanol produced from U.S. corn is not a renewable energy source.  相似文献   

2.
For a thorough and up-to-date evaluation of all the fossil energy costs of ethanol production from sugarcane in both the U.S. and Brazil, every energy input in the biomass production and ultimate conversion process must be included. In this study, more than 12 energy inputs in average U.S. and Brazilian sugarcane production are evaluated. Then in the fermentation/distillation operation, nine more fossil fuel inputs are identified and included. Some energy and economic credits are given for the bagasse to reduce the energy inputs required for steam and electricity. Based on all the fossil energy inputs in U.S. sugarcane conversion process, a total of 1.12 kcal of ethanol is produced per 1 kcal of fossil energy expended. In Brazil a total of 1.38 kcal of ethanol is produced per 1 kcal of fossil energy expended. Some pro-ethanol investigators have overlooked various energy inputs in U.S. and Brazilian sugarcane production, including farm labor, farm machinery, processing machinery, and others. In other studies, unrealistic low energy costs were attributed to such energy inputs, as nitrogen fertilizer, insecticides, and herbicides. Both the U.S. and Brazil heavily subsidize ethanol production. Thus billions of dollars are invested in subsidies and this significantly increases the costs to the consumers. The environmental costs associated with producing ethanol in the U.S. and Brazil are significant but have been generally overlooked. The negative environmental impacts on the availability of cropland and freshwater, as well as on air pollution and public health, have yet to be carefully assessed. These environmental costs in terms of energy and economics should be calculated and included in future ethanol analyses so that sound assessments can be made. In addition, the production of ethanol in the U.S. and Brazil further confirms that the mission of converting biomass into ethanol will not replace oil. This mission is impossible. General concern has been expressed about taking food crops to produce ethanol for burning in automobiles instead of using these crops as food for the many malnourished people in the world. The World Health Organization reports that more than 3.7 billion humans are currently malnourished in the world—the largest number of malnourished ever in history.  相似文献   

3.
Anthropogenic global warming caused by CO2 emissions is strongly and fundamentally linked to future energy production. The Special Report on Emission Scenarios (SRES) from 2000 contains 40 scenarios for future fossil fuel production and is used by the IPCC to assess future climate change. Previous scenarios were withdrawn after exaggerating one or several trends. This study investigates underlying assumptions on resource availability and future production expectations to determine whether exaggerations can be found in the present set of emission scenarios as well. It is found that the SRES unnecessarily takes an overoptimistic stance and that future production expectations are leaning toward spectacular increases from present output levels. In summary, we can only encourage the IPCC to involve more resource experts and natural science in future emission scenarios. The current set, SRES, is biased toward exaggerated resource availability and unrealistic expectations on future production outputs from fossil fuels.  相似文献   

4.
The Thai government has been promoting renewable energy as well as stimulating the consumption of its products. Replacing transport fuels with bioethanol will require substantial amounts of water and enhance water competition locally. This study shows that the water footprint (WF) of molasses-based ethanol is less than that of cassava-based ethanol. The WF of molasses-based ethanol is estimated to be in the range of 1,510–1,990 L water/L ethanol, while that of cassava-based ethanol is estimated at 2,300–2,820 L water/L ethanol. Approximately 99% of the water in each of these WFs is used to cultivate crops. Ethanol production requires not only substantial amounts of water but also government interventions because it is not cost competitive. In Thailand, the government has exploited several strategies to lower ethanol prices such as oil tax exemptions for consumers, cost compensation for ethanol producers, and crop price assurances for farmers. For the renewable energy policy to succeed in the long run, the government may want to consider promoting molasses-based ethanol production as well as irrigation system improvements and sugarcane yield-enhancing practices, since molasses-based ethanol is more favorable than cassava-based ethanol in terms of its water consumption, chemical fertilizer use, and production costs.  相似文献   

5.
This paper analyzes energy efficiency of the industrial corn-ethanol cycle. In particular, it critically evaluates earlier publications by DOE, USDA, and UC Berkeley Energy Resources Group. It is demonstrated that most of the current First Law net-energy models of the industrial corn-ethanol cycle are based on nonphysical assumptions and should be viewed with caution. In particular, these models do not (i) define the system boundaries, (ii) conserve mass, and (iii) conserve energy. The energy cost of producing and refining carbon fuels in real time, for example, corn and ethanol, is high relative to that of fossil fuels deposited and concentrated over geological time. Proper mass and energy balances of corn fields and ethanol refineries that account for the photosynthetic energy, part of the environment restoration work, and the coproduct energy have been formulated. These balances show that energetically production of ethanol from corn is 2–4 times less favorable than production of gasoline from petroleum. From thermodynamics it also follows that ecological damage wrought by industrial biofuel production must be severe. With the DDGS coproduct energy credit, 3.9 gallons of ethanol displace on average the energy in 1 gallon of gasoline. Without the DDGS energy credit, this average number is 6.2 gallons of ethanol. Equivalent CO2 emissions from corn ethanol are some 50% higher than those from gasoline, and become 100% higher if methane emissions from cows fed with DDGS are accounted for. From the mass balance of soil it follows that ethanol coproducts should be returned to the fields.
Tad W. PatzekEmail:
  相似文献   

6.
The Intergovernmental Panel on Climate Change (IPCC) commissioned a special report on emissions scenarios in 2000 so as to forecast global carbon dioxide (CO2) emissions for a variety of assumptions. These scenarios have been subjected to a multitude of criticisms, alleging overoptimistic predictions for fossil fuel production rates. Intrigued by this controversy, this paper employs the Hubbert linearization technique to solve for ultimately recoverable resources (URR) of fossil fuels for six significant IPCC scenarios. The predictions are substantially higher than geological URR estimates found in recent literature, ranging from 19 to over 200% higher for oil, 16 to over 500% for coal, and 171 to over 500% for natural gas, depending on the scenario. Subsequently, the atmospheric CO2 concentrations resulting from full consumption of URR related to IPCC data, as well as literature-based URR, are determined with a simple model. The former concentrations range from 640 to over 1,300 ppm. In comparison, the peak-based URR in the literature yield 463–577 ppm. All of these figures are higher than the 450 ppm ‘threshold’ which some see as critical. Therefore, despite peaking fossil fuels, concern over climate change is still warranted. At the same time, the fossil fuel production inputs to the IPCC’s CO2 emissions models appear predominantly overoptimistic, which calls into question the accuracy of the climate change assessment outputs. Moving forward, the IPCC is encouraged to re-assess its fossil fuel forecasts, incorporating more reasonable scenarios for peak production of fossil fuels.  相似文献   

7.
苏打盐渍土壤微咸水淋洗改良技术研究   总被引:12,自引:4,他引:12  
研究了土壤粘土特性与土壤碱化的关系和淋洗水的矿化度对土壤渗透性的影响,提出了微咸水改良苏打盐渍土的技术思路。探讨了淋洗用微咸水的水质标准、作物耐盐碱标准、作物需水量及灌溉淋洗定额等参数及其确定方法,通过田间试验,证明了该技术对苏打盐渍土具有明显的改良效果。  相似文献   

8.
王明新  朱颖一  王迪 《地理科学》2019,39(5):857-864
采用基于非期望产出的非径向、非角度的数据包络分析模型测算了2006~2016年中国20个省份玉米生产效率并分析了其时空变化特征和影响因素。结果表明,东北区、黄淮海区和蒙新区玉米生产效率较高,但山东和辽宁效率值低于0.90,区内省际间差异较小;长江中下游区、西南区和西北区效率较低,但安徽、重庆、山西和甘肃效率值高于0.90,区内省际间差异较大。玉米生产效率总体上呈降低趋势,两极分化呈先缩小后扩大趋势,低效率地区数量显著增加。近3 a四川和贵州用工投入可缩减比例超过15%,辽宁化肥投入可缩减比例超过10%,吉林和黑龙江资本投入可缩减比例超过5%。总氮和总磷排放强度过高是各省份玉米生产效率降低的普遍原因,湖北、广西、贵州、云南和四川总氮可缩减比例达60%以上,宁夏、陕西和湖北总磷可缩减比例达50%以上。应通过水肥管理减少农田尺度肥料损失,通过布局调整和结构优化控制区域尺度肥料流失。东北区和黄淮海区应重点控制灌溉引起的磷肥排水损失和氮肥淋溶损失,西南区和长江中下游区重点控制暴雨径流引起的氮磷流失,西北区和蒙新区重点通过节水灌溉减少肥料流失。  相似文献   

9.
Destruction of forests and the considerable burning of fossil fuels is directly causing the level of carbon dioxide and other greenhouse gases including methane, carbon monoxide, and nitrous oxide in the atmosphere to rise. Population growth in the US and the world indirectly contributes to this global warming. This has led the majority of scientists interested in weather and climate to predict that the planet's temperature will increase from 1.5 to 4.5 degrees Celsius by 2050. These forecasted climactic changes will most likely strongly affect crop production. Specifically these scientists expect the potential changes in temperature, moisture, carbon dioxide, and pests to decrease food production in North America. The degree of changes hinges on each crop and its environmental needs. If farmers begin using improved agricultural technology, the fall in crop yields can be somewhat counterbalanced. Even without global warming, however, agriculture in North America must embrace sensible ecological resource management practices such as conserving soil, water, energy, and biological resources. These sustainable agricultural practices would serve agriculture, farmers, the environment, and society. Agriculturalists, farmers, and society are already interested in sustainable agriculture. Still scientists must conduct more research on the multiple effects of potential global climate change on many different crops under various environmental conditions and on new technologies that farmers might use in agricultural production. We must cut down our consumption of fossil fuel, reduce deforestation, erase poverty, and protect our soil, water, and biological resources. The most important action we need to take, however, is to check population growth.  相似文献   

10.
The role, function, and importance of large woody debris (LWD) in rivers depend strongly on environmental context and land use history. The coastal watersheds of central and northern Maine, northeastern U.S., are characterized by low gradients, moderate topography, and minimal influence of mass wasting processes, along with a history of intensive commercial timber harvest. In spite of the ecological importance of these rivers, which contain the last wild populations of Atlantic salmon (Salmo salar) in the U.S., we know little about LWD distribution, dynamics, and function in these systems. We conducted a cross-basin analysis in seven coastal Maine watersheds, documenting the size, frequency, volume, position, and orientation of LWD, as well as the association between LWD, pool formation, and sediment storage. In conjunction with these LWD surveys, we conducted extensive riparian vegetation surveys. We observed very low LWD frequencies and volumes across the 60 km of rivers surveyed. Frequency of LWD ≥ 20 cm diameter ranged from 15–50 pieces km− 1 and wood volumes were commonly < 10–20 m3 km− 1. Moreover, most of this wood was located in the immediate low-flow channel zone, was oriented parallel to flow, and failed to span the stream channel. As a result, pool formation associated with LWD is generally lacking and < 20% of the wood was associated with sediment storage. Low LWD volumes are consistent with the relatively young riparian stands we observed, with the large majority of trees < 20 cm DBH. These results strongly reflect the legacy of intensive timber harvest and land clearing and suggest that the frequency and distribution of LWD may be considerably less than presettlement and/or future desired conditions.  相似文献   

11.
Limnological surveys show that fossil pigment concentration is an accurate predictor of algal production. However, experimental and mass flux studies indicate that >90% of pigment is degraded to colourless compounds before permanent burial. To reconcile these views, this paper reviews current literature on pigment degradation and proposes a hierarchical control model for pigment deposition and fossil abundance. Over the widest range of production, pigment deposition and fossil concentration are proportional to algal standing crop. However, within a narrower range, the actual concentration of pigment in sediments is regulated by photo- and chemical oxidation. Three phases of loss exist: rapid oxidation in the water column (T1/2=days); slower post-depositional loss in surface sediments (T1/2=years); and very slow loss of double bonds in deep sediments (T1/2=centuries). Despite losses during deposition, fossil and algal abundance remain correlated through time, so long as there is no change in basin morphometry, light penetration, stratification or deepwater oxygen content. At the finest scale, food-web processes can increase the preservation of pigments from edible algae by incorporating pigments into feces that sink rapidly and bypass water column losses. As a consequence of selective loss during deposition and initial burial, carotenoid relative abundance is an unreliable measure of phytoplankton community composition. Instead, absolute concentration — scaled to the historical maximum — should be used for fossil interpretations.  相似文献   

12.
This study was conducted on a naturally growing population in Al-Khor mangrove swamps in Qatar during the years 1993–1995.Avicennia marinais the only mangrove species growing in Qatar and the Arabian Gulf region. The survivorship curve showed that early reproductive stages, starting from flower buds to seedlings, are at-risk relative to juvenile and adult individuals. The survival of adult plants is age-dependent. The phenological cycle indicated that the reproductive period extends from April to October, while vegetative activity occurs throughout the year with minimum growth during late autumn and early winter. Productivity estimated from litter fall showed considerable differences between seasons. Litter fall is bimodal, with the first peak prior to the start of the reproductive cycle and the second peak before the end of summer or early autumn. Total litter fall decreased from a maximum of 188 g m−2month−1to a minimum of 80 g m−2month−1. Litter decomposition was lower in winter than in the summer months. Calorific content of the decomposing litter was consistent with over 90% of litter energy lost over a 1-year period. The calorific content of buried leaves decreased from 6.0585 kcal g−1dry weight to 0.0532 kcal g−1dry weight after 1 year. Major human impacts on mangrove ecosystems in the region include oil pollution, solid and liquid waste disposal, coastal development, marine dredging, recreation activities, overgrazing, wood harvest, diversion of fresh water runoff and pest control.  相似文献   

13.
The Angkor basin of Cambodia, the site of the great Angkor temple complex, has experienced explosive tourism growth since the 1993 onset of national political stability and renewed international investment, which in turn has driven increasing demand for water, wood, and biomass fuel, and rapid and extensive land-use and land-cover change. We use multi-temporal Landsat imagery (1989–2005) to describe the rate and extent of land-cover change throughout the Angkor basin. While 50% of the landscape remained in rice agriculture it is notable that a larger proportion of the area was deforested (23.4%) than experienced forest regrowth (4.9%). Most forest loss occurred between the Angkor temple complex and Phnom Kulen National Park, and was due in part to charcoal production to serve the tourist industry, and also conversion to permanent agriculture. The small area of forest increase was concentrated along the eastern boundary of the main Angkor complex. The interplay among global (tourism, climate), regional (national policies, large-river management), and local (construction and agriculture, energy and water sources to support the tourism industry) factors drives a distinctive but complex pattern of land-use and land-cover change.  相似文献   

14.
Effects of sediment mixing and benthic algal production on fossil pigment profiles were quantified by fine-interval analysis of cores in a transect across the basin of Paul Lake, MI. Annually resolved profiles (1957–1986) of carotenoids and chlorophyll a from varved sediments at deepwater (15 m) sites were compared to fine-interval (2.5–3.5 mm) stratigraphies from sites with increasing sediment mixing and benthic algal production (4 m>7 m>9 m). The degree of sediment mixing was also modelled using running means of pigment concentrations in varved sediments and compared to disturbed profiles. Effects of sediment mixing included reduction of peak pigment concentrations, broadening of peaks and migration of maxima deeper into deposits. Sedimentary signal strength was defined as the ratio of peak concentrations to baseline levels. Short-lived or weak signals ( 1.5 x baseline) were resolved only in the least disturbed deposits, while strong signals (5 x baseline) withstood sediment homogenization to depths greater than 1 cm (>5 year accumulation). Comparison of core-wide mean pigment concentrations suggested that cores recovered from within the photic zone are influenced by benthic algal production and will not represent either historical or current ecological dynamics in the water column. We conclude that: moderate levels of mixing do not destroy fossil pigment profiles; disturbed stratigraphies can remain ecologically interpretable; and fine-interval analyses are warranted in lakes with undisturbed 137Cs profiles and where sediment porosity <90%.  相似文献   

15.
The minimum sieve mesh size for fossil chironomid analysis is usually set at 100 μm, to ensure adequate recovery of small species. Yet taking into account the labor intensity of sorting and identifying fossil chironomid remains, the large numbers of samples requiring processing in paleoclimate studies with high temporal resolution, and the increasing need to engage non-specialist analysts in this work, it seems appealing to sieve samples through a larger mesh size that would mainly retain easier-to-see, easier-to-extract and easier-to-identify fossil specimens. In this study we evaluated the influence of sieve mesh size on chironomid-based quantitative paleoenvironmental reconstructions in African lakes. We developed two chironomid-salinity calibration data sets based on either the >100 μm or >150 μm size fractions of surface-sediment fossil assemblages, and compared the performance of salinity-inference models derived from them. We find that, despite ∼35% additional fossil loss, restriction to >150 μm data did not appreciably affect individual taxon optima or tolerances, and resulted in only a modest reduction of mean taxon richness per lake. Parameters of statistical model performance were as good, or better than those of models based on the >100 μm data, albeit only after excluding two atypically dilute (<100 μS/cm) lakes from the calibration. Application of inference models based on >150 μm or >100 μm data to a 200-year fossil record from Lake Abiyata, Ethiopia, produced very similar trends, amplitudes and uncertainty ranges of inferred past salinity change. Restriction to >150 μm data reduced the mean fossil yield of core samples by ∼20% on average, i.e. fossil loss was markedly lower than in surface-sediment samples. Using the larger mesh size reduced sample processing time by up to 50%, partly by removing a significant proportion of visually obstructive organic debris, and partly by allowing a greater fraction of chironomid fossils to be identified directly in the sorting tray. The fraction of 1st instar group taxa in surface-sediment samples was reduced from 13% to 3%, increasing the mean taxonomic resolution of fossil assemblages, and thus their ecological specificity.  相似文献   

16.
Desertification in the Arab Region: analysis of current status and trends   总被引:2,自引:0,他引:2  
The total area of the Arab Region is about 14·2 million km2, 90% of it lies within arid, semi-arid and dry sub-humid areas. The area is characterized by harsh environment, fragile ecosystems and limited water resources and arable lands. Throughout its long history these lands were the main source of grain and animal production.By the end of this century and in spite of the national, regional and international efforts to combat desertification and mitigate the effect of drought and desiccation, desertification is still one of the major environmental problems in the Arab Region. The rapid increase in population by some 3% annually, considered among the highest worldwide, along with the changing of consumption patterns and life styles, resulting in increasing food demand, have hastened land degradation in this arid environment.Land degradation in the Arab Region due to misuse is widespread and is proceeding at accelerating rates. Failures of resource management policies are aggravated by overgrazing, overexploitation of water and land resources, overcultivation of marginal lands, deforestation, and the use of inappropriate technologies.This paper attempts to provide:
• A synthesis and analysis of the status of desertification in the Arab Region.
• Identification of the major causes and trends of land degradation.
• Highlighting the limitations and constraints on combating desertification in the Arab Region.
Keywords: desertification; matrix of desertification; population growth and urbanization; water demand; cost; future outlook  相似文献   

17.
Pastoral production around artificial watering points in semi-arid environments affects the density and composition of plant communities. In the Kalahari desert of southwestern Africa, bush encroachment is often regarded as the major form of land degradation resulting from pastoral production around watering points. We investigated the OvaHerero pastoralists’ perceptions of the extent of vegetation change since the establishment of artificial watering points in the northern Kalahari desert of Namibia, and related this to ecological data on vegetation change. We determined the utility of woody vegetation to pastoralists’ livelihoods in terms of provision of construction material, fuel wood and browse. We quantified local knowledge of cattle browse consumption and correlated this with field data. We also assessed the purposes for which major livestock types were used. Our results showed that: (1) pastoral knowledge of bush encroachment and browse consumption was consistent with concurrently collected field data, (2) the current level of bush encroachment was perceived to be beneficial for pastoral production, and (3) cattle played an important role in the production of milk and milk by-products for domestic use, and served as a source of cash income, while sheep and goats were primarily kept for meat consumption. This result contrasts with historical studies that mainly portray cattle as a symbol of social status among OvaHerero pastoralists.  相似文献   

18.
The production and burning of fossil fuels is the primary contributor to CO2 emissions for the U.S. We assess the impact of producing coal, crude oil, and natural gas on the environment and economic well-being by analyzing state-level data from 2001 to 2015. Our findings show that coal production has led to more CO2 emissions and no significant benefit to economic well-being. Crude oil production has a non-significant impact on CO2 emissions but is related to a lower poverty rate, a higher median household income, and a higher employment rate. Natural gas withdrawals have a positive impact on median household income. We discuss these findings in the context of current U.S. energy policies and then provide directions for future research.  相似文献   

19.
本文运用生态足迹的理论和方法,以2009年开封市3个不同收入居民消费水平生活小区为例,采用居民生物资源和能源消费调查问卷数据,定量分析了2009年开封市不同收入水平小区居民的生活消费生态足迹。根据板桥小区、康平小区、龙成花园3 个小区的调查资料,分别计算了3个小区的生物资源消费和能源消费的生态足迹。结果表明:① 从3个小区人均生态足迹来看,总体上能源消耗的生态足迹较大;② 从3个小区居民生物消费的生态足迹来看,猪肉的人均生态足迹最大,奶制品次之,肉类食品和奶制品的生产需要较多的土地面积;③ 通过分析3个小区不同类型的人均生态足迹,板桥小区化石燃料用地和建筑用地所占的比重最大,其次是耕地和草地;收入消费水平越高的居民,生态足迹越大,收入消费水平越低的居民,生态足迹越小。证实了高收入水平居民对生态以及资源的占用程度要远远大于低收入水平居民,造成居民生态占用以及碳排放的不公。最后,提出了有针对性的对策建议。  相似文献   

20.
The temperature reconstruction obtained from chironomids preserved in the sediment of Egelsee, Switzerland, was partially flawed by the low percentages of fossil taxa represented in the Swiss calibration set (Larocque-Tobler et al. 2009a). Transfer functions (TFs) from other regions, which allow a good representation of the fossil taxa (>80%), could be applied to the fossil assemblages of Egelsee. First, the validity of using two (a Swedish and a North American (NA)) TFs was tested by comparing the chironomid-inferred temperatures with instrumental data. Since good relationships (r Pearson = 0.71 and 0.61, p = 0.001 for the NA and Swedish TFs, respectively) were obtained, these two models were used to reconstruct the Late Glacial and early Holocene periods at Egelsee. Reconstructions using both models showed clear cold periods during the Younger Dryas and the so-called 8,200 calibrated years BP event. However, the amplitude of changes during these periods was higher when the NA transfer function was used, probably due to the fact that 37% of the taxa in the core had temperature optima colder in the NA than in the Swedish and Swiss models. The results indicate that TFs from other regions can be applied when they are based on samples with good modern analogues, however, caution should be taken when the amplitude of temperature changes is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号