首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The whole rock K-Ar ages of basalts from the South China Sea basin vary from 3.8 to 7.9 Ma, which suggest that intra-plate volcanism after the cessation of spreading of the South China Sea (SCS) is comparable to that in adjacent regions around the SCS, i.e., Leiqiong Peninsula, northern margin of the SCS, Indochina block, and so on. Based on detailed petrographic studies, we selected many fresh ba-saltic rocks and measured their major element, trace element, and Sr-Nd-Pb isotope compositions. Geochemical characteristics of major element and trace element show that these basaltic rocks belong to alkali basalt magma series, and are similar to OIB-type basalt. The extent of partial melting of mantle rock in source region is very low, and magma may experience crystallization differentiation and cu-mulation during the ascent to or storing in the high-level magma chamber. Sr-Nd-Pb isotopic data of these basaltic rocks imply an inhomogeneous mantle below the South China Sea. The nature of magma origin has a two end-member mixing model, one is EM2 (Enriched Mantle 2) which may be originated from mantle plume, the other is DMM (Depleted MORB Mantle). Pb isotopic characteristics show the Dupal anomaly in the South China Sea, and combined with newly found Dupal anomaly at Gakkel ridge in Arctic Ocean, this implies that Dupal anomaly is not only limited to South Hemisphere. In variation diagrams among Sr, Nd and Pb, the origin nature of mantle below the SCS is similar to those below Leiqiong peninsula, northern margin of the SCS and Indochina peninsula, and is different from those below north and northeast China. This study provides geochemical constraints on Hainan mantle plume.  相似文献   

2.
Post-glacial tholeiitic basalts from the western Reykjanes Peninsula range from picrite basalts (oldest) to olivine tholeiites to tholeiites (youngest). In this sequence there are large systematic variations in rare earth element (REE) abundances (La/Sm normalized to chondrites ranges from 0.33 in the picrite basalts to 1.25 in the fissure tholeiites) and corresponding variations in 143Nd/144Nd (0.51317 in the picrite basalts to 0.51299 in the fissure tholeiites). The large viaration in 143Nd/144Nd, more than one-third the total range observed in most ocean islands and mid-ocean ridge basalts (MORB), is accompanied by only a small variation in 87Sr/86Sr (0.7031–0.7032). These 87Sr/86Sr ratios are within the range of other Icelandic tholeiites, and distinct from those of MORB.We conclude that the mantle beneath the Reykjanes Peninsula is heterogeneous with respect to relative REE abundances and 143Nd/144Nd ratios. On a time-averaged basis all parts of this mantle show evidence of relative depletion in light REE. Though parts of this mantle have REE abundances and Nd isotope ratios similar to the mantle source of “normal” MORB, 87Sr/86Sr is distinctly higher. Unlike previous studies we find no evidence for chondritic relative REE abundances in the mantle beneath the Reykjanes Peninsula; in fact, the data require significant chemical heterogeneity in the hypothesized mantle plume beneath Iceland, as well as lateral mantle heterogeneity from the Reykjanes Ridge to the Reykjanes Peninsula. The compositional range of the Reykjanes Peninsula basalts is consistent with mixing of magmas produced by different degrees of melting in different parts of the heterogeneous mantle source beneath the Reykjanes Peninsula.  相似文献   

3.
Basement intersected in DSDP holes 525A, 528 and 527 on the Walvis Ridge consists of submarine basalt flows and pillows with minor intercalated sediments. These holes are situated on the crest and mid and lower northwest flank of a NNW-SSE-trending ridge block which would have closely paralleled the paleo mid-ocean ridge [13, 14]. The basalts were erupted approximately 70 m.y. ago, an age equivalent to that of immediately adjacent oceanic crust in the Angola Basin and consistent with formation at the paleo mid-ocean ridge [14]. The basalt types vary from aphyric quartz tholeiites on the ridge crest to highly plagioclase phyric olivine tholeiites on the ridge flank. These show systematic differences in incompatible trace element and isotopic composition. Many element and isotope ratio pairs form systematic trends with the ridge crest basalts at one end and the highly phyric ridge flank basalts at the other.The low 143Nd/144Nd (0.51238), 206Pb/204Pb (17.54), 208Pb/204Pb (15.47), 208Pb/204Pb (38.14) and high87Sr/86Sr (0.70512) ratios of the ridge crest basalts suggest derivation from an old Nd/Sm-, Rb/Sr- and Pb/U-enriched mantle source. This isotopic signature is similar to that of alkaline basalts on Tristan de Cunha but offset to significantly lower Nd and Pb isotopic ratios. The isotopic ratio trends may be extrapolated beyond the ridge flank basalts with higher143Nd/144Nd (0.51270), 206Pb/204Pb (18.32), 207Pb/204Pb (15.52), 208Pb/204Pb (38.77) and lower 87Sr/86Sr (0.70417) ratios in the direction of increasingly Nd/Sm-, Rb/Sr- and Pb/U-depleted source compositions. These isotopic correlations are equally consistent with mixing od depleted and enriched end member melts or partial melting of an inhomogenous, variably enriched mantle source. However, observe ZrBaNbY interelement relationships are inconsistent with any simple two-component model of magma mixing, as might result from the rise of a lower mantle plume through the upper mantle. Incompatible element and Pb isotopic systematics also preclude extensive involvement of depleted (N-type) MORB material or its mantle sources. In our preferred petrogenetic model the Walvis Ridge basalts were derived by partial melting of mantle similar to an enriched (E-type) MORB source which had become heterogeneous on a small scale due to the introduction of small-volume melts and metasomatic fluids.  相似文献   

4.
Primordial neon,helium, and hydrogen in oceanic basalts   总被引:3,自引:0,他引:3  
A primordial neon component in neon from Kilauea Volcano and deep-sea tholeiite glass has been identified by the presence of excess20Ne; relative to atmospheric neon the20Ne enrichments are 5.4% in Kilauea neon and about 2.5% in the basalts. The20Ne anomalies are associated with high3He/4He ratios; the ratio in Kilauea helium is 15 times the atmospheric ratio, while mid-ocean ridge basalts from the Atlantic, Pacific, and Red Sea have uniform ratios about 10 times atmospheric. Mantle neon and helium are quite different in isotopic composition from crustal gases, which are highly enriched in radiogenic21Ne and4He. The21Ne/4He ratios in crustal gases are consistent with calculated values based on G. Wetherill's18O (α,n) reaction; the lack of20Ne enrichment in these gases shows that the mantle20Ne anomalies are not radiogenic.21Ne enrichments in Kilauea neon and “high-3He” Pacific tholeiites are much less than in crustal neon, about 2 ± 2% vs. present atmospheric neon, as expected from the much lower4He/Ne ratios.Neon concentrations in two Atlantic tholeiites were found to be only 1–2% of the values obtained by Dymond and Hogan; helium concentrations are slightly greater and our He/Ne ratios are greater by a factor of 150. The large Ne excess relative to solar wind and meteoritic gases is thus not confirmed. Pacific and Atlantic basalts appear to be quite different in He/Ne ratios however, and He and Ne may be inversely correlated. He concentration variations due to diffusive loss can be distinguished from variations due to two-phase partitioning or mantle heterogeneity by the effects on3He/4He ratios. The He isotopic and concentration measurements on “low-3He” basalts are consistent with diffusive loss and dilution of the 3/4 ratio by in-situ radiogenic4He, and may provide a method for dating basalt glasses.Deuterium/hydrogen ratios in Atlantic and Pacific tholeiite glasses are 77% lower than the ratio in seawater. The inverse correlation between deuterium and water content observed by Friedman in erupting Kilauea basalts is consistent with a Rayleigh separation process in which magmatic water is separated from an initial melt with the same D/H ratio as observed in deep-sea tholeiites. The consistency of the D/H ratios in tholeiites containing primordial He and Ne components indicates that these ratios are probably characteristic of primordial or juvenile hydrogen in the mantle.  相似文献   

5.
A new analysis of the isotope systematics of sulphide common leads can be made on the basis of examining the deriations of the data from a simple single-stage evolution. Δt, the age discrepancy between the single-stage lead model age and the geologic age, increases systematically from 3.8 Ga to the present. This trend appears to reflect an increase in the μ of the primitive mantle due to incorporation of a large portion of the earth's lead into the core, early in the earth's evolution. Leads associated with shale-hosted lead-zinc deposits show a rapid increase in Δt beginning at 2.5 to 2.0 Ga. This deviation of shale-hosted leads from the general trend is interpreted as a response to concentration of uranium in organic-rich shales subsequent to the evolution of an oxidizing atmosphere. Comparison of common leads in alkali feldspars with the volcanogenic sulphide data suggests that they have a similar evolution of Δt with time. Numerical simulations reveal that even substantial increases in real μ over the last 2.0 Ga are not reflected in significant increases in the single-stage model μs.  相似文献   

6.
Measurements of noble gas element abundances in igneous rock samples from the Lesser Antilles island arc (LAIA) show an enrichment of Ne, Kr and Xe relative to Ar, when compared to the atmospheric inert gas composition. The element concentrations vary as a function of time and a cyclic variation appears to occur in the pre-Pliocene stage of arc development. The pattern of elemental abundances closely resembles that of ocean floor basalts, suggesting that, (1) the origin of the inert gases in these samples is related to the subduction of oceanic lithosphere responsible for the formation of the LAIA, and (2) the subduction process does not modify the noble gas patterns of the materials being subducted.There is no evidence of a change in concentration or composition of noble gases occurring at ca. 9 Ma, the time when it has been suggested the LAIA shifted to form the western, younger, volcanic Caribbees. However, a major hiatus in the noble gas evolution is recognised at ca. 16 Ma.  相似文献   

7.
Pb pollution has existed for several millennia and remains relevant today. By using peat cores as environmental archives it is possible to reconstruct this long history on a regional scale. This is a significant contribution to the findings from ice core records, the only other archive recording purely atmospheric additions. Without information that allows linking and comparison between sites regionally, within Europe and elsewhere, our ability to make coherent global models of the natural Pb cycle, and anthropogenic forcing of this cycle, is limited. In this respect, the characteristics of the Pb pre-pollution aerosol (PPA) are important to define globally. We characterize for the first time a PPA in Southern Europe with [Pb] = 0.78 ± 0.86 μg g− 1, net Pb accumulation rates of 0.032 ± 0.030 mg m− 2 y− 1 and a 206Pb / 207Pb signature of 1.25470 ± 0.02575. This PPA Pb isotope signature is more radiogenic than that found thus far in Western and Northern Europe. Spain is a historically important mining site. Using three-isotope plots and a pool of potential Pb isotope signatures, a detailed source appointment of both natural and anthropogenic Pb sources was made. We found evidence of Saharan aridification and its termination ∼4400 BP and/or agricultural signals and strong local control (from rock and soil) of the Pb PPA. Human impact is first recorded at 3210 BP but does not exceed 50% of deposited Pb until 3005 BP. Mines in SE Spain dominate early Pb pollution history at this site. During the rise of Roman rule, contributions come from mines in N, NW and SW Spain with no strong indication of other European mining activities. In Medieval and Industrial times local contributions to the peat bog are reduced.  相似文献   

8.
Basalts from the Marquesas Archipelago display significant variations according to magmatic type in 143Nd/144Nd (0.512710–0.512925) and 87Sr/86Sr (0.70288–0.70561) suggesting heterogeneities at various scales in the mantle source, with respectively the highest and lowest values in tholeiites compared to alkali basalts. This relationship is the reverse from that observed in the Hawaiian islands. Systematic indications of magma mixing are recognized from the relationships between trace element and isotopic ratios. Tholeiites from Ua Pou Island which have unradiogenic Sr (about 0.7028) plot close to basalts from Tubuai and St. Helena, i.e. distinctly below the main mantle trend in the Nd vs. Sr isotopic diagram. It is suggested that the source of these tholeiites is ancient subducted lithosphere which has suffered previous extraction of liquid with island arc tholeiite composition. The trace element and isotopic data of the basalts from the other Marquesas Islands imply the contamination of an equivalent source by an enriched component. This latter has trace element characteristics of the upper crust.  相似文献   

9.
Consideration of geochemical data from basalts formed near major Atlantic and Pacific transform faults reveals two significant sets of observations. First, compared to basalts formed far from the transform, basalts near the ridge/transform intersection have, for the same MgO contents, higher abundances of TiO2 and other incompatible elements, higher La/Sm and La/Yb ratios, and often higher FeO. These enrichments are distinct from and occur in addition to the more variable and fractionated compositions which have been frequently noted [10–13]. Modeling of this “transform fault effect” using data from the Tamayo/EPR intersection suggests the chemical systematics are caused by decreasing extents of melting as the transform is approached.Second, there are chemical discontinuities in the major element, trace element and isotopic chemistry of basalts across many transforms. These “transform discontinuities” occur in normal ocean crust as well as around hot spots.Consideration of the melting zone in the mantle suggests that the transform fault effect is a natural consequence of the ridge/transform plate boundary. The melting zone beneath a ridge segment must terminate across the transform, leading to lower extents of melting at the transform edge. The surface manifestation of the change in the melting zone may be affected by the age of the transform offset, the spreading rate, the transform spacing and the interaction of mantle flow with the local thermal structure; it may be obscured by episodic magma chamber processes and mantle heterogeneity.The significance of transform discontinuities depends on whether they persist with age. If they do not, then temporally variable crust-forming processes may produce changes along a flow line similar to those at zero age across a transform. If, on the other hand, a discontinuity persists with age, then the transform may be related to a fundamental discontinuity in the underlying mantle. Long-lived transform discontinuities would have profound implications for the nature of plate motions, mantle convection and mantle heterogeneity.  相似文献   

10.
We report new Nd, Hf, Sr, and high-precision Pb isotopic data for 44 lava and tephra samples from Erebus volcano. The samples cover the entire compositional range from basanite to phonolite and trachyte, and represent all three phases of the volcanic evolution from 1.3 Ma to the present. Isotopic analyses of 7 samples from Mt. Morning and the Dry Valley Drilling Project (DVDP) are given for comparison. The Erebus volcano samples have radiogenic 206Pb/204Pb, unradiogenic 87Sr/86Sr, and intermediate 143Nd/144Nd and 176Hf/177Hf, and lie along a mixing trajectory between the two end-member mantle components DMM and HIMU. The Erebus time series data show a marked distinction between the early-phase basanites and phonotephrites, whose Nd, Hf, Sr, and Pb isotope compositions are variable (particularly Pb), and the current ‘phase-three’ evolved phonolitic lavas and bombs, whose Nd, Hf, Sr, and Pb isotope compositions are essentially invariant. Magma mixing is inferred to play a fundamental role in establishing the isotopic and compositional uniformity in the evolved phase-three phonolites. In-situ analyses of Pb isotopes in melt inclusions hosted in an anorthoclase crystal from a 1984 Erebus phonolite bomb and in an olivine from a DVDP basanite are uniform and identical to the host lavas within analytical uncertainties. We suggest that, in both cases, the magma was well mixed at the time melt inclusions were incorporated into the different mineral phases.  相似文献   

11.
Rare earth element (REE) abundances determined by activation analysis in rocks, plagioclase and mafic separates from the Fiskenaesset Complex are presented together with data on major and trace elements in the minerals. The REE data for the rocks and plagioclases are distinct from those of many other anorthositic complexes and the abundances are some of the lowest recorded for plagioclase from terrestrial anorthosites. The bulk and trace element compositions of the Fiskenaesset plagioclases show a number of similarities to those of lunar plagioclases. The plagioclases show a positive Eu anomaly of about 10 and a depletion in the heavy REE relative to the light ones. The mafic separates are enriched in the heavy REE relative to the light ones, and show no Eu anomaly except in one sample with a positive anomaly not attributable to plagioclase contamination. It is estimated, from experimental partition coefficient data, that the REE pattern in the magma at an early stage of fractionation was La (17×) to Lu (0.7× chondrites) with a possible positive Eu anomaly. This highly fractionated REE pattern may be attributed to partial melting of a garnet-bearing source.  相似文献   

12.
Abstract   The Lower Sorachi Group of the Sorachi–Yezo Belt in central Hokkaido, Japan is a peculiar accretionary complex characterized by numerous occurrences of greenstones (metabasalts and diabases), which are mostly composed of aphyric basalts. Clinopyroxene-rich phenocryst assemblage in phyric basalts is different from olivine–plagioclase assemblage in mid-oceanic ridge basalts (MORB). The greenstones are geochemically uniform, and show a lower-Ti trend than MORB in an FeO*/MgO-TiO2 diagram, mostly plotting on the island arc tholeiite (IAT) field in a TiO2−10MnO−10P2O5 diagram. In a MORB-normalized spider diagram, the greenstones show a flat pattern from P to Y, which are lower than those of normal mid-oceanic ridge basalt (N-MORB). These indicate that the greenstones were derived by a higher degree of partial melting from a depleted mantle similar to a N-MORB source, and experienced olivine–clinopyroxene fractional crystallization. However, a positive spike of Nb in the spider diagram cannot be explained, and may be attributed to mantle heterogeneity. These characteristics are analogous to those of oceanic plateau basalts (OPB) such as in Ontong Java Plateau, Manihiki Plateau and Nauru Basin, suggesting that the greenstones in the Lower Sorachi Group are of oceanic plateau origin. The present study proposes new field divisions to distinguish OPB from MORB in the conventional FeO*/MgO–TiO2 and TiO2−10MnO−10P2O5 diagrams.  相似文献   

13.
Trace element and Th, Sr and Pb isotope data for young lavas from the Tonga-Kermadec arc in the southwest Pacific suggest that geochemical variations in the lavas along the arc are linked to differences in the material being subducted beneath the arc. Lavas from the southern (Kermadec) segment of the arc have relatively radiogenic Pb isotope compositions, which reflects a contribution from subducted sediment. In contrast, much of the Pb in Tonga lavas is derived from the altered oceanic crust in the subducting Pacific Plate, and lavas from the northernmost Tonga islands of Tafahi and Niuatoputapu contain Pb and Sr derived from the subducted part of the Louisville Seamount Chain. The origin of the Pb in the lavas from these two islands can thus be traced to a point on the subducting slab, and this observation is used to estimate the rate at which trace elements are transported beneath the arc. Our calculations suggest that fluid-soluble elements such as U, Sr and Pb are transported from the subducted slab, across the mantle wedge and back to the surface in lavas over a period of approximately 2–3 Ma, and that magmas are erupted at the surface less than 350 ka after the melts are generated in the mantle wedge.  相似文献   

14.
Most abyssal basalt can be divided into two groups based on major and minor element compositions of the glassy rinds of pillow lavas. Crystal differentiation models cannot relate one group to the other. Instead, depth of partial melting may exert the primary control. The first group (MORB-1) is characterized by low TiO2 and Na2O and higher MgO, and is derived from a primary melt originating from the spinel peridotite facies. The higher TiO2-NaO2 group (MORB-2) appears to have been derived from the lower-pressure (shallower depth) plagioclase peridotite facies. Mössbauer spectra show that MORB-1 is from a mantle source region with lower oxidation states (between the QFM and NNO buffers) than for MORB-2 (around the NNO buffer).  相似文献   

15.
Climatic and environmental conditions play a pivotal role in the evolution of the biosphere, serving as the primary natural factors influencing biological evolution and the development of human civilization. The study of the evolution of Earth’s habitability primarily revolves around the reconstruction of climatic and oceanic conditions in geohistorical periods, shedding light on their dynamic changes. This paper collates classic geological indicators and geochemical proxies associated with pale...  相似文献   

16.
The stability of natural remanent magnetization of three samples of oceanic basalts (DSDP Leg 25) is tested by alternating fields, thermal and pressure demagnetization. The possibility of low-temperature oxidation is examined by means of thermomagnetic curves.The effects of uniaxial compressions on initial susceptibility and induced magnetization are studied for the three samples. These experiments, performed in a field comparable to the geomagnetic field have shown large variations of magnetization. The results of paleomagnetism, as well as the interpretation of anomalies when the effects of the pressure of water and of possible sediments far from the ridge itself are taken into account, are discussed. The results could partly account for the decrease of magnetic anomaly amplitudes with distance from the mid-ocean ridge.  相似文献   

17.
Helium isotope compositions of the mantle xenoliths and megacrysts in the Cenozoic basalts in the eastern China were measured. The samples were collected from Ludao of Heilongjiang, Huinan and Jiaohe of Jilin, Kuandian of Liaoning, Hannuoba of Hebei, Nüshan of Anhui, Dingan of Hainan. The3He/4He ratios of the mantle xenoliths and megacrysts from the most areas were about 1 × 10-5, and were similar to those of the MORB, thus reflecting the characteristics of the MORB-typed depleted mantle. The3He/4He ratios of the mantle xenoliths from Jiaohe were 4.8×10-6 and the3He/4He ratios of xenoliths from Hannuoba vary from 0.15× 10-6 to 7.4 ×10-6, obviously lower than those of the MORB, and even lower than the atmospheric helium isotope ratios, indicating that the continental mantle was strongly replaced in Jiaohe and Hannuoba areas. The helium isotope compositions of the mantle xenoliths and megacrysts in the same region vary in a very wide range. It is inferred that the mantle xenoliths and megacrysts were from different parts of the continental mantle. There were not necessary origin relations between the mantle xenoliths, megacrysts and their host basalts. An extremely high3He/4He ratio of garnet megacryst from Hannuoba, Hebei was found.  相似文献   

18.
19.
Basalts dredged from ridge axes within 70 km of the Indian Ocean triple junction in the western Indian Ocean have many geochemical and petrologic characteristics in common with depleted mid-ocean ridge basalts (MORBs) from the Atlantic and Pacific. For example there is overlap in major and trace element abundances, and in diagnostic ratios such as K/Rb (700–925) and La/Sm (less than chondritic). Also, glass inclusions in calcic plagioclase (An89–90) provide evidence for a primitive high Mg/Fe, low TiO2 melt. In contrast, basalts dredged from 250 to 400 km southwest of the triple junction on the Southwest Indian Ridge are compositionally distinct from depleted MORB. They are nepheline-normative or slightly hypersthene normative and have higher alkali metal and incompatible element abundances than depleted MORBs with similar MgO contents.All of these Indian Ocean basalts have Sr, Nd and Pb isotope ratios which corroborate previous studies showing that relative to depleted Atlantic and Pacific MORB, many Indian Ocean MORBs have low206Pb/204Pb and high87Sr/86Sr. However, individual Indian Ocean ridges have different radiogenic isotope characteristics, and basalts from the vicinity of the triple junction have unusually high87Sr/86Sr (∼ 0.7032) at low206Pb/204Pb ratios (17.3–18.2). Moreover, the shallow axial region of the Central Indian Ridge from ∼ 12°S to the triple junction (26°S) has high87Sr/86Sr (> 0.7030). Apparently, the depleted component of Indian Ocean MORBs has been contaminated by an isotopically unusual component which does not occur in Pacific and Atlantic MORBs, and is not dominant in basalts from many Indian Ocean islands. The degree of this contamination is not uniform in western Indian Ocean MORB; the most contaminated basalts occur from 12°S on the Central Indian Ridge to the triple junction (∼ 26°S) and easterly along the Southeast Indian Ridge to ∼ 72°E.  相似文献   

20.
Pb, Nd and Sr isotope compositions of oceanic basalts have been used to identify recycled components of continent derivation in the mantle. The isotopic compositions of Sr, Nd and Pb, together with U, Pb, Sm, Nd, Rb, and Sr abundances have been determined for back-arc basalt glasses from the Scotia Sea and Parece Vela and West Philippine Basins, in addition to basalts from South Sandwich Islands, Ascension, St. Helena and Tristan da Cunha. Comparisons made between the isotopic compositions of South Sandwich Islands basalts and Atlantic MORB glasses permit the identification of recycled components of continent derivation in the source of the island arc basalts. Recycled Sr of continent derivation is also recognisable in back-arc basalt glasses from the Scotia Sea and Parece Vela and West Philippine Basins. However, contemporary reinjection of material with the isotopic structures similar to those identified as a component of island arc and back-arc regions cannot be the sole or dominant influence on the fine structure observed in MORB glasses from the Atlantic Ocean, nor the isotopic compositions of Tristan da Cunha, St. Helena and Ascension basalts. Recycled materials are likely to have been responsible for the generation of these heterogeneities only if they have been stored in the mantle for periods of time exceeding 109 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号