首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with eruptions, seismicity, and deformation on Klyuchevskoi Volcano during the summit eruptions of 2012–2013, with the condition of the central crater during the eruptions, and with the effect that is exerted by the height of the lava in the crater on the start of the eruptions. The recurrence of eruptions in the North Volcanic Cluster (NVC), Kamchatka showed that all the four volcanoes in the cluster (Klyuchevskoi, Tolbachik, Shiveluch, and Bezymyannyi) become active during definite phases that were identified in the 18.6-year lunar cycle. This relationship of the NVC eruptions to the active phases in the 18.6-year lunar cycle, as well as the relationship to the 11-year solar activity, showed that eruptions can be predicted, yielding long-term estimates of activity for the NVC volcanoes. The short-term prediction of volcanic eruptions requires knowledge of seismicity and deformation that occur during the precursory period and during the occurrence of eruptions. Seismic activity during the summit eruptions of 2003–2013 took place in the depth range 20–25 km during repose periods of the volcano and at depths of 0–5 km in the volcanic edifice during the eruption. One notes an almost complete absence of any earthquakes at great depths during the summit eruptions. Volcanic tremor (VT) was recorded from the time that the eruptions began and continued to occur until the end. Geodetic measurements showed that the center of the magma pressure beneath the volcano during the parasitic and summit eruptions of 1979–1989 moved in the 4–17 km depth range, while during the summit eruptions of 2003–2013 the center moved in the 15–20 km range. These changes in the depth of the center of magma pressure may have been related to evacuation from shallow magma chambers.  相似文献   

2.
A geochemical and isotopic study of lavas from Pichincha, Antisana and Sumaco volcanoes in the Northern Volcanic Zone (NVZ) in Ecuador shows their magma genesis to be strongly influenced by slab melts. Pichincha lavas (in fore arc position) display all the characteristics of adakites (or slab melts) and were found in association with magnesian andesites. In the main arc, adakite-like lavas from Antisana volcano could be produced by the destabilization of pargasite in a garnet-rich mantle. In the back arc, high-niobium basalts found at Sumaco volcano could be produced in a phlogopite-rich mantle. The strikingly homogeneous isotopic signatures of all the lavas suggest that continental crust assimilation is limited and confirm that magmas from the three volcanic centers are closely related. The following magma genesis model is proposed in the NVZ in Ecuador: in fore arc position beneath Pichincha volcano, oceanic crust is able to melt and produces adakites. En route to the surface, part of these magmas metasomatize the mantle wedge inducing the crystallization of pargasite, phlogopite and garnet. In counterpart, they are enriched in magnesium and are placed at the surface as magnesian andesites. Dragged down by convection, the modified mantle undergoes a first partial melting event by the destabilization of pargasite and produces the adakite-like lavas from Antisana volcano. Lastly, dragged down deeper beneath the Sumaco volcano, the mantle melts a second time by the destabilization of phlogopite and produces high-niobium basalts. The obvious variation in spatial distribution (and geochemical characteristics) of the volcanism in the NVZ between Colombia and Ecuador clearly indicates that the subduction of the Carnegie Ridge beneath the Ecuadorian margin strongly influences the subduction-related volcanism. It is proposed that the flattening of the subducted slab induced by the recent subduction (<5 Ma?) of the Carnegie Ridge has permitted the progressive warming of the oceanic crust and its partial melting since ca. 1.5 Ma. Since then, the production of adakites in fore arc position has deeply transformed the magma genesis in the overall arc changing from ‘typical’ calc-alkaline magmatism induced by hydrous fluid metasomatism, to the space- and time-associated lithology adakite/high-Mg andesite/adakite-like andesite/high-Nb basalts characteristic of slab melt metasomatism.  相似文献   

3.
A new version of COMAGMAT-3.5 model designed for computer simulations of equilibrium and fractional crystallization of basaltic magmas at low to high pressures is presented. The most important modifications of COMAGMAT include an ability to calculate more accurately the crystallization of magnetite and ilmenite, allowing the user to study numerically the effect of oxygen fugacity on basalt magma fractionation trends. Methodological principles of the use of COMAGMAT were discussed based on its thermodynamical and empirical basis, including specific details of the model calibration. Using COMAGMAT-3.5 a set of phase equilibria calculations (called Geochemical Thermometry) has been conducted for six cumulative rocks from the Marginal Border Series of the Skaergaard intrusion. As a result, initial magma temperature (1165±10°C) and trapped melt composition proposed to be parental magma to the Skaergaard intrusion were determined. Computer simulations of perfect fractionation of this composition as well as another proposed parent produced petrochemical trends opposite to those followed from natural observations. This is interpreted as evidence for an initial Skaergaard magma containing a large amount of olivine and plagioclase crystals (about 40–45%), so that the proposed and calculated parents are related through the melt trapped in the crystal–liquid mixture. This promotes the conclusion that the Skaergaard magma fractionation process was intermediate between equilibrium and fractional crystallization. In this case the classic Wager's trend should be considered an exception rather than a rule for the differentiation of ferro-basaltic magmas. A polybaric version of COMAGMAT has been applied for the genetic interpretation of a volcanic suite from the Klyuchevskoi volcano, Kamchatka, Russia. To identify petrological processes responsible for the observed suite ranging from high-magnesia to high-alumina basalts, we used the model to simulate the Klyuchevskoi suite assuming isobaric crystallization of a parental HMB magma at a variety of pressures and a separate set of simulations assuming fractionation during continuous magma ascent from a depth of 60 km. These results indicate that the Klyuchevskoi trend can be produced by 40% fractionation of Ol–Aug–Sp±Opx assemblages during ascent of the parental HMB magma over the pressure range 19–7 kbar with the rate of decompression being 0.33 kbar/% crystallized (at 1350–1110°C), with 2 wt.% of H2O in the initial melt and 3 wt.% of H2O in the resultant high-Al basalt.  相似文献   

4.
The olivine basalts of the Karymskii Volcanic Center (KVC) can be traced during the history of the area from the Lower Pleistocene until recently (the 1996 events); they are typical low-and moderate-potassium tholeiite basalts of the geochemical island-arc type. We have investigated the compositions of phenocryst minerals represented by plagioclase, olivine, clinopyroxene, as well as solid-phase inclusions of spinel in olivine, and more rarely in anorthite. The evolutionary trends of the rock-forming minerals provide evidence of the comagmaticity of these basalts, and thus of a long-lived intermediate magma chamber in the interior of the structure. The activity of this chamber is related to periodic transport of high temperature basalt melts to the surface. The geochemistry of the basalts is controlled by their origin at the same depleted magma source close to N-MORB, by successive crystallization of the primary melt, and by restricted mixing with magma components that are crystallizing at different depths. It is hypothesized that the solid-phase inclusions of high alumina spinel (hercynite?) found in olivine (and anorthite) of the basalts in the KVC north sector are of relict origin.  相似文献   

5.
The southern part of the southeastern Carpathians represents the site of the most recent volcanic eruptions of the entire Carpathian-Pannonian region. The products of these eruptions range from 42 to 10?Ka radiocarbon ages in the South Harghita Mountains (high K calc-alkaline rocks with adakite-like features), and at 1.2–0.6?Ma?K–Ar ages in the Per?ani Mountains (alkali basalts). They were emplaced in a post-collisional regime. Ciomadul volcano is located at the southernmost part of the NW–SE oriented C?limani-Gurghiu-Harghita range crossing the inner part of the southeastern Carpathians and in the rough proximity of the Vrancea seismic zone (at ca. 60?km toward NW). Its magma generation is attributed to geodynamic events closely related to the seismogenic area. A number of particular geophysical and geochemical features located in the study region, including (1) the abrupt attenuation of the seismic waves originating from the Vrancea intermediate-depth foci, (2) the most intense heat-flow anomaly in Romania, (3) the most prominent 3He/4He anomaly measured in natural “postvolcanic” gas emanations, are all in favor of the hypothesis of a still existing hot local magma chamber. Data acquired during recent seismic monitoring of the Vrancea zone and its neighborhoods suggest an enhancement of the local seismicity beneath the southern edge of the South Harghita Mts., both at crustal and subcrustal levels. At the same time, recent tomography images obtained using local earthquake data correlate well with the presence of a vertically extended low-velocity zone coming from the upper mantle to the assumed magmatic chambers located in the crust. The present data, supporting the presence of an active crustal magma chamber beneath Ciomadul, allow us to consider that future volcanic activity at this volcano cannot be discarded.  相似文献   

6.
The Katla volcano in Iceland is characterized by subglacial explosive eruptions of Fe–Ti basalt composition. Although the nature and products of historical Katla eruptions (i.e. over the last 1,100 years) at the volcano is well-documented, the long term evolution of Katla’s volcanic activity and magma production is less well known. A study of the tephra stratigraphy from a composite soil section to the east of the volcano has been undertaken with emphasis on the prehistoric deposits. The section records ∼8,400 years of explosive activity at Katla volcano and includes 208 tephra layers of which 126 samples were analysed for major-element composition. The age of individual Katla layers was calculated using soil accumulation rates (SAR) derived from soil thicknesses between 14C-dated marker tephra layers. Temporal variations in major-element compositions of the basaltic tephra divide the ∼8,400-year record into eight intervals with durations of 510–1,750 years. Concentrations of incompatible elements (e.g. K2O) in individual intervals reveal changes that are characterized as constant, irregular, and increasing. These variations in incompatible elements correlate with changes in other major-element concentrations and suggest that the magmatic evolution of the basalts beneath Katla is primarily controlled by fractional crystallisation. In addition, binary mixing between a basaltic component and a silicic melt is inferred for several tephra layers of intermediate composition. Small to moderate eruptions of silicic tephra (SILK) occur throughout the Holocene. However, these events do not appear to exhibit strong influence on the magmatic evolution of the basalts. Nevertheless, peaks in the frequency of basaltic and silicic eruptions are contemporaneous. The observed pattern of change in tephra composition within individual time intervals suggests different conditions in the plumbing system beneath Katla volcano. At present, the cause of change of the magma plumbing system is not clear, but might be related to eruptions of eight known Holocene lavas around the volcano. Two cycles are observed throughout the Holocene, each involving three stages of plumbing system evolution. A cycle begins with an interval characterized by simple plumbing system, as indicated by uniform major element compositions. This is followed by an interval of sill and dyke system, as depicted by irregular temporal variations in major element compositions. This stage eventually leads to a formation of a magma chamber, represented by an interval with increasing concentrations of incompatible elements with time. The eruption frequency within the cycle increases from the stage of a simple plumbing system to the sill and dyke complex stage and then drops again during magma chamber stage. In accordance with this model, Katla volcano is at present in the first interval (i.e. simple plumbing system) of the third cycle because the activity in historical time has been characterized by uniform magma composition and relatively low eruption frequency.  相似文献   

7.
Rocks from Hakone volcano and the adjacent Hata and Aziro areas were studied to clarify the anomalous partition coefficient of Ce between olivine and groundmass in the basalts of Hakone. In addition, the most primitive basalt is more enriched in REE than the other basalts from this volcano.The REE features are well explained by a mechanical mixing model. The basaltic rocks from the volcano are mixtures of basic andesite magma and fragments of gabbroic rock. Most of minerals of phenocrystic size and glomeroporphyritic crystal aggregates in the basaltic rocks are xenocrysts and were derived from a gabbroic body lying beneath the volcano. This conclusion is consistent with major element, mineralogical and petrographical data.  相似文献   

8.
Shirouma-Oike volcano, a Quaternary composite volcano in central Japan, consists mostly of calc-alkaline andesitic lavas and pyroclastic rocks. Products of the earlier stage of the volcano (older group) are augite-hypersthene andesite. Hornblende crystallized during the later stage of this older group, whereas biotite and quartz crystallized in the younger group.Assemblages of phenocrysts in disequilibrium, such as magnesian olivine(Fo30)/quartz, iron-rich hypersthene(En55)/iron-poor augite(Wo43.5, En42.5, Fs14.0), and two different types of zoning on the rim of clinopyroxene are found in a number of rocks. Detailed microprobe analyses of coexisting minerals reveal that phenocrysts belong to two distinctly different groups; one group includes magnesian olivine + augite which crystallized from a relatively high-temperature (above 1000°C) basaltic magma; the second group, which crystallized from relatively low temperature (about 800°C) dacitic to andesitic magma, includes hypersthene + hornblende + biotite + quartz + plagioclase + titanomagnetite ± ilmenite (in the younger group) and hypersthene + augite + plagioclase + titanomagnetite ± hornblende (in the older group). The temperature difference between the two magmas is clarified by Mg/Fe partition between clinopyroxene and olivine, and Fe-Ti oxides geothermometer. The compositional zoning of minerals, such as normal zoning of olivine and magnesian clinopyroxene, and reverse zoning of orthopyroxene, indicate that the basaltic and dacitic-andesitic magmas were probably mixed in a magma reservoir immediately before eruption. It is suggested that the basaltic magma was supplied intermittently from a deeper part to the shallower magma reservoir, in in which dacitic-andesitic magma had been fractionating.  相似文献   

9.
The 1995–1996 eruption of Mt. Ruapehu has provided a number of insights into the geochemical processes operating within the magmatic-hydrothermal system of this volcano. Both pre-eruption degassing of the rising magma and its eventual intrusion into the convective zone of the hydrothermal system beneath the lake were clearly reflected in lake water compositions. The eruptions of September–October 1995 expelled the lake, and provided the first-ever opportunity to characterise gas discharges from this volcano. The fumarolic discharges revealed compositions typical of andesite volcanoes and strong interaction with the enclosing meteoric and hydrothermal system fluids. Some 1.1 MT of SO2 gas was released from the volcano between September 1995 and December 1996, whereas ca. twice this amount (2.2 MT equivalent SO2) was erupted as soluble (i.e. leachable) oxyanions of sulphur. Significantly more sulphur was released from the volcano over this period than can be accounted for from the magma volume actually erupted. The evidence suggests that a sizable component of the evolved sulphur was remobilised from the long-lived hydrothermal system within the volcano during the 1995–1996 activity.  相似文献   

10.
A microprobe study of olivine found in allivalite nodules from lavas discharged by Malyi Semyachik Volcano and of olivine phenocrysts from basalts discharged by Klyuchevskoi Volcano revealed the presence of rhonite as a daughter mineral, for the first time ever. Rhonite was found in small (10–50 μm) grains that are xenomorphic in intergrowths with other minerals and have regular crystallographic outlines in contact with glass. We also found high-alumina clinopyroxene, chromium-free spinel, and hornblende. Residual glass is distinguished by its higher concentrations of SiO2, Al2O3, alkalies, and by lower concentrations of FeO, MgO, and CaO. The chemical composition of the rhonite we studied is characterized by limited variations of the major components and fits the formula (Si,Al)6(Ti,Al,Fe+3,Fe+2,Mn,Mg)6(Ca,Na)2O20 well. The data points in the composition of the rhonites we have studied lie in the overall field of much more variable compositions to be found in the field. Unlike the previous findings in alkaline and subalkaline rocks, the rhonite we describe in the present report was found in rocks of the tholeiitic and calc-alkaline series.  相似文献   

11.
This study is concerned with the petrographic, mineralogic, and geochemical features in the K-high basaltic trachyandesites that were discharged by the 2012–2013 parasitic eruption on Ploskii Tolbachik Volcano. These K-high basaltic trachyandesites exhibit some obvious characteristics that testify to their suprasubduction origin. They are deeply differentiated rocks with strongly fractionated plagioclase. A study of the Sr, Nd, and Pb radiogenic isotope ratios in the K-high basaltic trachyandesites provided evidence of their mantle origin and of the fact that the crust has exerted no influence on their compositions. We performed a comparative analysis of the ratios of the concentrations for some incoherent elements in the K-high basaltic trachyandesites, as well as in intraplate, riftogenic, and island-arc moderate potassium basalts and basaltic andesites in relation to the concentrations of these elements in the primitive mantle. The geochemical features of these K-high basaltic trachyandesites classify them as belonging to the suprasubduction subalkaline formation of the potassium series.  相似文献   

12.
During ten days of phreatomagmatic activity in early April 1977, two maars formed 13 km behind the Aleutian arc near Peulik volcano on the Alaska Peninsula. They have been named “Ukinrek Maars”, meaning “two holes in the ground” in Yupik Eskimo. The western maar formed at the northwestern end of a low ridge within the first three days and is up to 170 m in diameter and 35 m in depth. The eastern maar formed during the next seven days 600 m east of West Maar at a lower elevation in a shallow saddle on the same ridge and is more circular, up to 300 m in diameter and 70 m in depth. The maars formed in terrain that was heavily glaciated in Pleistocene times. The groundwater contained in the underlying till and silicic volcanics from nearby Peulik volcano controlled the dominantly phreatomagmatic course of the eruption.During the eruptions, steam and ash clouds reached maximum heights of about 6 km and a thin blanket of fine ash was deposited north and east of the vents up to a distance of at least 160 km. Magma started to pool on the floor of East Maar after four days of intense phreatomagmatic activity.The new melt is a weakly undersaturated alkali olivine basalt (Ne = 1.2%) showing some transitional character toward high-alumina basalts. The chemistry, an anomaly in the tholeitic basalt-andesite-dominated Aleutian arc, suggests that the new melt is primitive, generated at a depth of 80 km or greater by a low degree of partial melting of garnet peridotite mantle with little subsequent fractionization during transport.The Pacific plate subduction zone lies at a depth of 150 km beneath the maars. Their position appears to be tectonically controlled by a major regional fault, the Bruin Bay fault, and its intersection with cross-arc structural features. We favor a model for the emplacement of the Ukinrek Maars that does not link the Ukinrek conduit to the plumbing system of nearby Peulik volcano. The Ukinrek eruptions probably represent a genetically distinct magma pulse originating at asthenospheric depths beneath the continental lithosphere.  相似文献   

13.
Melting relations of a glassy magnesian olivine tholeiite from the FAMOUS area have been studied within the pressure range 1 atm to 15 kbar. From 1 atm to 10 kbar, olivine is the liquidus phase, followed by plagioclase and Ca-rich clinopyroxene. Above 10 kbar, Ca-rich clinopyroxene appears on the liquidus, followed by orthopyroxene and spinel. Near 10 kbar, olivine, orthopyroxene, clinopyroxene, spinel and plagioclase crystallize within 10°C of the liquidus. This indicates that a liquid of this magnesian olivine tholeiite composition could coexist with mantle peridotite at about 10 kbar. This result is in agreement with the geochemistry of Ni; the Ni concentration of the studied sample corresponds to the theoretical concentration in a primary magma [14,15].These data suggest that at least some magnesian mid-oceanic ridge basalts (MORBs) could be primary melts segregated from the mantle at depths near the transition zone between plagioclase lherzolite and spinel lherzolite (about 10 kbar). Based on this model, the residual mantle after extraction of MORBs should be lherzolite, not harzburgite.High-pressure (7–10 kbar) fractionation models involving olivine, plagioclase and clinopyroxene, which have been proposed by several workers (e.g. [36]) to explain the varieties of MORBs, were re-emphasized based on this melting study. The rare occurrence of clinopyroxene as a phenocryst phase in MORBs is explained by precipitation in a magma chamber at high pressure, or by dissolution of clinopyroxene formed earlier at high pressure.  相似文献   

14.
Origin of calc-alkalic andesite in the Japanese Islands is reviewed on the basis of the recent trace element data and new experimental results. It is suggested that calc-alkalic andesites in the Japanese Islands have at least four different origins; (1) fractional crystallization with separation of magnetite of high-alumina basalt magma, (2) partial melting of hydrous upper mantle peridotite (for magnesian andesite), (3) fractional crystallization with separation of olivine and/or orthopyroxene of magnesian andesite magma and (4) mixing of dacitic and basaltic magmas. Emphasis is placed on the possible generation of primary magnesian calc-alkalic andesite magmas by direct partial melting of the upper mantle peridotite under hydrous conditions at depths between 40 and 60 km.  相似文献   

15.
A 3D velocity model of the Earth’s crust beneath the Klyuchevskoy volcanic group has been constructed using the seismic tomography method. Anomalies of the velocity parameters related to the zones of magma supply to active volcanoes have been distinguished. Petrological data on the composition, temperature, and pressure of generation and crystallization of parental melts of Klyuchevskoy volcano magnesian basalts have been obtained. The parental melt corresponds to picrite (MgO = 13–14 wt %) with an ultimate saturation of SiO2 (49–50 wt %), a high H2O content (2.2–2.9%), and incompatible elements (Sr, Rb, Ba). This melt is formed at pressures of 15–20 kbar and temperatures of 1280–1320°C. Its further crystallization proceeds in intermediate magma chambers at two discrete pressure levels (i.e., greater than 6, and 1–2 kbar). The results of the petrological studies are in good agreement with the seismotomographic model.  相似文献   

16.
The regional variation of physical and geochemical characteristics of Central American volcanoes occurs in two fundamentally different patterns. The first pattern is symmetrical about Nicaragua. Crustal thickness, silica contents of mafic lavas and volcanic edifice heights are lowest in Nicaragua and increase smoothly toward Costa Rica to the south and Guatemala to the north. Magma density is maximum in Nicaragua and decreases smoothly outward. The regional variation in crustal thickness is just enough so that magma densities, calculated at appropriate Moho pressures, are the same at the base of the crust throughout the region. This is consistent with magma ponding at the base of the crust. The bulk compositions of Central American basalts show the same symmetrical variation. Suites of Nicaraguan basalts plotted in pseudo-ternary CMAS projections indicate large olivine and plagioclase primary-phase volumes. Toward Costa Rica and Guatemala the olivine and plagioclase fields inferred from suites of basaltic lavas are smaller, which is consistent with fractionation at increasing depth.The second pattern is the segmentation of the volcanic front and the plate margin in general. The segmentation strongly affects the spacing and size of volcanic centers. At segment boundaries volcanic centers are generally small and unusually widely spaced. Toward segment interiors volcano spacing and size increase systematically. The LIL element contents of lavas strongly reflect this pattern. For lavas with similar silica contents the larger the volcano, the higher the LIL element contents. The relationships between segmentation, volcano spacing and volcano size are compatible with diapiric rise of magma accumulated in narrow ribbons near the upper surface of the underthrust slab. The relationship between volcano volume and LIL element content is qualitatively in agreement with an open-system fractionation model.  相似文献   

17.
This paper addresses formation of felsic magmas in an intra‐oceanic magmatic arc. New bathymetric, petrologic, geochemical, and isotopic data for Zealandia Bank and two related volcanoes in the south‐central Mariana arc is presented and interpreted. These three volcanoes are remnants of an older andesitic volcano that evolved for some time and became dormant long enough for a carbonate platform to grow on its summit before reawakening as a rhyodacitic volcano. Zealandia lavas are transitional between low‐ and medium‐K and tholeiitic and calc‐alkaline suites. They define a bimodal suite with a gap of 56–58 wt% SiO2; this suggests that mafic and felsic magmas have different origins. The magmatic system is powered by mantle‐derived basalts having low Zr/Y and flat rare earth element patterns. Two‐pyroxene thermometry yields equilibration temperatures of 1000–1100 °C for andesites and 900–1000 °C for dacites. Porphyritic basalts and andesites show textures expected for fractionating magmas but mostly fine‐grained felsic lavas do not. All lavas show trace element signatures expected for mantle and crustal sources that were strongly melt‐depleted and enriched by subduction‐related fluids and sediment melts. Sr and Nd isotopic compositions fall in the normal range of Mariana arc lavas. Felsic lavas show petrographic evidence of mixing with mafic magma. Zealandia Bank felsic magmatism supports the idea that a large mid‐ to lower‐crustal felsic magma body exists beneath the south‐central Mariana arc, indicating that MASH (mixing, assimilation, storage, and homogenization) zones can form beneath intra‐oceanic as well as continental arcs.  相似文献   

18.
 The size, shape and orientation of plagioclase crystals have been quantified in a tuff and series of andesite lavas from the active Egmont volcano (Mt. Taranaki), New Zealand. Linear crystal size distributions (CSDs) show that if the magma had several components, then only one provided the crystals. The slope of the CSD indicates that the earliest lavas measured had a residence time of ∼50 years in the magma chamber for a growth rate of 10–11 cm/s. Subsequent lavas had slightly longer residence times (50–75 years), but the following series returned to 50-year residence times. The youngest magmas, from both Egmont summit and the parasitic Fantham's Peak, have the shortest residence times of ∼30 years. Variations in residence time may reflect changes in the magma chamber shape or depth, or the temperature of the surrounding rocks. Crystal shapes and zonation suggest that crystallization occurred in a bottle-shape magma chamber, and not in a narrow conduit. If future eruptions use the same magma chamber as the most recent eruptions, then a delay of approximately 30 years can be expected between refilling and eruption. Received: 25 October 1995 / Accepted: 19 April 1996  相似文献   

19.
Systematic analyses of the major-element chemistry of products of several eruptions during syn-and post-caldera stages of Izu-Oshima volcano were compiled. Comparisons of the products of large-scale eruptions in 1338?, 1421? and 1777–1778, of intermediate-scale eruptions in 1950–1951 and 1986, and of small-scale eruptions in 1954, 1964 and 1974 clearly show the existence of two types of magmas. One is “plagioclase-controlled” and the other is “differentiated” magma (multimineral-controlled); i.e. the bulk chemistry of the first magma type is controlled by plagioclase addition or removal, while that of the second type is controlled by fractionation of plagioclase, orthopyroxene, clinopyroxene, and titanomagnetite. Eruptions of Izu-Oshima volcano have occurred at the summit and along the flanks. Summit eruptions tap only plagioclase-controlled magmas, while flank eruptions supply both magma types. It is considered unlikely that both magma types would coexist in the same magma chamber based on the petrology. In the case of the 1986 eruption, the flank magma was isolated sometime in the past from the summit magma chamber or central conduit, and formed small magma pockets, where further differentiation occurred due to relatively rapid cooling. In a period of quiescence prior to the 1986 eruption, new magma was supplied to the summit magma chamber, and the summit eruption began. The dike intrusion or fracturing around the small magma pockets triggered the flank eruption of the differentiated magma. This model can be applied to the large-scale flank eruption in 1338(?) which erupted differentiated magmas. In 1421(?), the flank eruption tapped plagioclase-controlled magma. In this case, the isolated magmas from the summit magma chamber directly penetrated the flank without differentiation.  相似文献   

20.
Basalts, diorites, and gabbros dredged from the side of King's Trough — a mid-plate fracture on the northeast Atlantic sea floor — are alkaline in character based on major- and trace-element chemistry and mineralogy. The variation in bulk chemical composition and in mineral paragenesis and composition suggest differentiation in a large magma chamber beneath a seamount volcano. Fractional crystallization took place in a hydrous magma and is characterized by early formation of a Ti-rich biotite as rims on olivine. Thus, pyroxene compositions are unusual in having relatively low molar Ti/Al ratios, and increasing differentiation is marked by progressively decreasing ratios of K to Na.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号