首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Probability maps of landslide reactivation are presented for the Pra Bellon landslide located in the southern French Alps based on results obtained with dendrogeomorphic analysis. Spatiotemporal patterns of past landslide activity was derived from tree-ring series of 403 disturbed mountain pine trees growing in the landslide body. In total, 704 growth disturbances were identified in the samples indicating 22 reactivation phases of the landslide body between 1910 and 2011. The mean return period was 4.5 years. Given the spatiotemporal completeness of the reconstruction, probabilities of landslide reactivation were computed and illustrated using a Poisson distribution model and for 5, 20, 50, and 100 years. Probability of landslide reactivation is highest in the central part of the landslide body and increases from 0.13 for a 5-year period to 0.94 for a 100-year period. Conversely, probabilities of reactivation are lower at its margins. The proposed method differs from conventional approaches based on statistical analyses or physical modeling that have demonstrated to have limitations in the prediction of spatiotemporal reactivation of landslides. Our approach is, in contrast, based on extensive data on past landslides and therefore allowed determination of quantitative probability maps of reactivation derived directly from the frequency of past events. This approach is considered a valuable tool for land managers in charge of protecting and forecasting people and their assets from the negative effects of landslides as well as for those responsible for land use planning and management. It demonstrates the reliability of dendrogeomorphic mapping that should be used systematically in forested shallow landslides.  相似文献   

2.
Large historical earthquakes in Italy define a prominent gap in the Pollino region of the southern Apennines. Geomorphic and palaeoseismological investigations in this region show that the Castrovillari fault (CF) is a major seismogenic source that could potentially fill the southern part of this gap. The surface expression of the CF is a complex, 10–13 km long set of prominent scarps. Trenches across one scarp indicate that at least four surface-faulting earthquakes have occurred along the CF since Late Pleistocene time, each producing at least 1 m of vertical displacement. The length of the fault and the slip per event suggest M =6.5-7.0 for the palaeoearthquakes. Preliminary radiocarbon dating coupled with historical considerations imply that the most recent of these earthquakes occurred between 380 BC and 1200 AD, and probably soon after 760 AD; no evidence for this event has been found in the historical record. We estimate a minimum recurrence interval of 1170 years and a vertical slip rate of 0.2-0.5 mm yr-1 for the CF, which indicates that the seismic behaviour of this fault is comparable to other major seismogenic faults of the central-southern Apennines. The lack of mention or the mislocation of the most recent event in the historical seismic memory of the Pollino region clearly shows that even in Italy, which has one of the longest historical records of seismicity, a seismic hazard assessment based solely on the historical record may not be completely reliable, and shows that geological investigations are critical for filling possible information gaps.  相似文献   

3.
This paper proposes a statistical decision-tree model to analyze landslide susceptibility in a wide area of the Akaishi Mountains, Japan. The objectives of this study were to validate the decision-tree model by comparing landslide susceptibility and actual landslide occurrence, and to reveal the relationships among landslide occurrence, topography, and geology. Landslide susceptibility was examined through ensemble learning with a decision tree. Decision trees are advantageous in that estimation processes and order of important explanatory variables are explicitly represented by the tree structures. Topographic characteristics (elevation, slope angle, profile curvature, plan curvature, and dissection and undissection height) and geological data were used as the explanatory variables. These topographic characteristics were calculated from digital elevation models (DEMs). The objective variables were landslide occurrence and reactivation data between 1992 and 2002 that were depicted by satellite image analysis. Landslide susceptibility was validated by comparing actual data on landslides that occurred and reactivated after the model was constructed (between 2002 and 2004).This study revealed that, from 2002 to 2004, landslides tended to occur and reactivate in catchments with high landslide susceptibility. The landslide susceptibility map thus depicts the actual landslide occurrence and reactivation in the Akaishi Mountains. This result indicates that the decision-tree model has appropriate accuracy for estimating the probabilities of future landslides. The tree structure indicates that landslides occurred and reactivated frequently in the catchments that had an average slope angle exceeding ca. 29° and a mode of slope angle exceeding 33°, which agree well with previous studies. A decision tree also quantitatively expresses important explanatory variables at the higher order of the tree structure.  相似文献   

4.
理解地貌过程以及认识过去灾害发生的频率,是自然灾害风险评价的重要任务。树木年轮由于其具有定年准确、连续性强、分辨率高和易于复本等特点,近年来被用到恢复过去灾害发生的时间。随着滑坡、泥石流等山地地质灾害性事件发生频率的增加,地质灾害风险管理和评价受到了越来越多的关注。在样品量足够的前提下,树木年轮方法可以精确地确定滑坡事件发生的年份。以甘肃南部武都区外纳乡的九房山滑坡为研究对象,利用树木年轮分析方法对该滑坡的灾害事件发生的时间进行了初步的研究。结果显示:1.树木年轮样品在1980—1982年,1984—1987年以及1991-1993年都出现了年轮宽度迅速减小或者迅速增加的现象。本研究将1980—1982年,1984—1987年以及1991—1993年定为滑坡活动年份,其中1992年和1993年的滑坡与当地记载的滑坡年份一致。强降水,地震影响以及不合理的灌溉活动都可能导致滑坡的复活,但降雨仍是导致九房山滑坡复活的重要因素。2.树木年轮样品中出现的偏心木和伪轮现象也是对滑坡灾害发生的佐证,说明受到滑坡灾害的影响,树木的生长环境发生了改变。  相似文献   

5.
The Tessina landslide is a large, seasonally active slope failure located on the southern slopes of Mt. Teverone, in the Alpago valley of NE Italy, consisting of a complex system that has developed in Tertiary Flysch deposits. The landslide, which first became active in 1960, threatens two villages and is hence subject to detailed monitoring, with high quality data being collected using piezometers, inclinometers, extensometers, and through the use of a highly innovative, automated Electronic Distance Measurement (EDM) system, which surveys the location of a large number of reflector targets once every 6 h. These systems form the basis of a warning system that protects the villages, but they also provide a very valuable insight into the patterns of movement of the landslide.In this paper, analysis is presented of the movement of the landslide, concentrating on the EDM dataset, which provides a remarkable record of surface displacement patterns. It is proposed that four distinct movement patterns can be established, which correspond closely to independently defined morphological assessments of the landslide complex. Any given block of material transitions through the four phases of movement as it progresses down the landslide, with the style of movement being controlled primarily by the groundwater conditions. The analysis is augmented with modelling of the landslide, undertaken using the Itasca FLAC code. The modelling suggests that different landslide patterns are observed for different parts of the landslide, primarily as a result of variations in the groundwater conditions. The model suggests that when a movement event occurs, displacements occur initially at the toe of the landslide, then retrogress upslope.  相似文献   

6.
A basin‐scale, integrated approach, including sedimentological, geomorphological and soil data, enables the reliable reconstruction of the infilling history of the southern Apenninic foredeep, with its subsequent inclusion in the wedge‐top of the foreland basin system. An example is shown from the Molise‐Apulian Apennines (Southern Italy), between Trigno and Fortore rivers, where the Pleistocene tectono‐sedimentary evolution of the basin is framed into a sequence‐stratigraphic scheme. Specifically, within the traditional subdivision into Quaternary marine (Qm) and Quaternary continental (Qc) depositional cycles, five third‐order depositional sequences (Qm1, Qm2, Qc1, Qc2 and Qc3) are identified based on recognition of four major stratigraphic discontinuities. The lower sequence boundaries are represented by angular unconformities or abrupt facies shifts and are generally associated with distinctive pedological and geomorphological features. Three paleosols, observed at top of depositional sequences Qm2, Qc1 and Qc2, represent pedostratigraphic markers that can be tracked basinwide. The geomorphological response to major tectono‐sedimentary events is marked by a series of paleosurfaces with erosional, depositional and complex characteristics. Detailed investigation of the relationships between stratigraphic architecture and development of unconformities, paleosols and paleosurfaces suggests that the four sequence boundaries were formed in response to four geomorphological phases/tectonic events which affected the basin during the Quaternary. The first three tectonic events (Lower‐Middle Pleistocene), marking the lower boundaries of sequences Qm2, Qc1 and Qc2, respectively, are interpreted to be related to the tectonic regime that characterized the last phase of thrusting recorded in the Southern Apennines. In contrast, sequence Qc3 does not display evidence of thrust tectonics and accumulated as a result of a phase of regional uplift starting with the Middle Pleistocene.  相似文献   

7.
Probabilistic landslide hazard assessment at the basin scale   总被引:32,自引:9,他引:32  
We propose a probabilistic model to determine landslide hazard at the basin scale. The model predicts where landslides will occur, how frequently they will occur, and how large they will be. We test the model in the Staffora River basin, in the northern Apennines, Italy. For the study area, we prepare a multi-temporal inventory map through the interpretation of multiple sets of aerial photographs taken between 1955 and 1999. We partition the basin into 2243 geo-morpho-hydrological units, and obtain the probability of spatial occurrence of landslides by discriminant analysis of thematic variables, including morphological, lithological, structural and land use. For each mapping unit, we obtain the landslide recurrence by dividing the total number of landslide events inventoried in the unit by the time span of the investigated period. Assuming that landslide recurrence will remain the same in the future, and adopting a Poisson probability model, we determine the exceedance probability of having one or more landslides in each mapping unit, for different periods. We obtain the probability of landslide size by analysing the frequency–area statistics of landslides, obtained from the multi-temporal inventory map. Assuming independence, we obtain a quantitative estimate of landslide hazard for each mapping unit as the joint probability of landslide size, of landslide temporal occurrence and of landslide spatial occurrence.  相似文献   

8.
Relationships between tectonic framework and gravity-driven phenomena have been investigated in an area of the Central Apennines (Italy) characterised by high relief. The north–south, half-dome shaped Maiella anticline lies in the easternmost part of the Apennine fold-and-thrust belt. Its backlimb is bordered by the Caramanico Fault, a normal fault with a maximum downthrown of about 3.5 km that separates the western slope of the Maiella Massif from the Caramanico Valley. The southwestern Maiella area is affected by deep-seated gravitational slope deformation indicated by major double crest lines, down-hill and up-hill facing scarps, a pattern of crossing trenches, bulging at the base of slopes and the presence of different types of landslide and talus slope deposits.The onset and development of deep-seated gravitational slope deformations and the location of Quaternary, massive rockslope failures have been strongly influenced by the structural framework and tectonic pattern of the anticline. Deep-seated gravitational slope deformation at Mt. Macellaro–Mt. Amaro ridge has developed along the Maiella western, reverse slope in correspondence with the anticline axial culmination; it is bordered at the rear by a NNW–SSE oriented, dextral, strike-slip fault zone and has an E–W direction of rock mass deformation. Closer to the southern plunging area of the anticline, gravity-driven phenomena show instead a N–S and NW–SE direction, influenced by bedding attitude.3D topographic models illustrate the relationship between deep-seated gravitational slope deformation and massive rockslope failures. The Campo di Giove rock avalanche, a huge Quaternary failure event, was the result of an instantaneous collapse on a mountaine slope affected by a long-term gravity-driven deformation.  相似文献   

9.
This research deals with the Fadalto landslide (Lapisina Valley, Venetian Prealps), which took place in the Lateglacial and has continued its activity until today. Our aim is to recognize how the landslide failed, the causes of such failure and the activity of this landslide. The study of this landslide is important not only to understand the geomorphological history of this alpine area, and why the Piave River modified its course in the Late Pleistocene, but also the links with human activities, and specifically with the road and rail network.The geomorphological study, carried out by the interpretation of aerial photos and by a detailed field survey, has been integrated with a geological survey, geophysical investigations and a morphometric analysis (DTM). The Fadalto landslide is considered to be a rockslide reactivated in various phases, with different dimensions and with different characters (slides, slumps and flows). The landslides have been provoked by natural causes, both external and internal; the fundamental external causes are the retreat of the Würmian glacier and tectonic activity; the internal factors that decrease the shear resistance are the bedding planes and joints of the bedrock, the attitude of the rocks dipping towards the valley bottom and, as regards more recent failures, the presence of glacial deposits underlying the landslide debris. Besides, in recent times, we must also consider human activity as a cause of slope instability.As to the activity, the Fadalto landslide is defined “dormant”. This means that in this area there is a geomorphological risk connected with the important road and rail network of the Lapisina Valley.  相似文献   

10.
The Emme Delta is a small glacilacustrine delta, which developed on the southern flank of the Wesergebirge Mountains in NW Germany. Shallow shear‐wave seismic surveys allow a detailed assessment of the structural style of the delta body. Two different fault systems are developed within the delta, both showing syn‐sedimentary activity. The faults have planar to slightly listric geometries and show vertical offsets in a range of 2–15 m. They form small graben and half‐graben systems, which locally show roll‐over structures. The fill of the half‐grabens has a wedge‐shaped geometry, with the greatest sediment thickness close to the fault. The fault system in the upper portion of the Emme Delta is restricted to the delta body and probably gravity induced. In the lower portion of the delta, normal faults occur that originate in the underlying Jurassic basement rocks and penetrate into the delta deposits. The grid of seismic lines shows that the normal faults are trending E–W. This fits to a late Triassic–early Jurassic deformation phase in the Central European Basin System. We hypothese that these faults were reactivated during the Pleistocene by the advancing ice‐sheet, water and sediment loading. Based on the seismic data set, an overall model for the reactivation of the basement fault was developed. The advancing ice‐sheet caused far field extension, which might have reactivated pre‐existing normal faults. Later, the fault activity was enhanced due to sediment and water loading. In addition, high pore pressure due to lake formation might have supported the slip processes along the faults. After glacial unloading and lake drainage, the fault activity stopped.  相似文献   

11.
The Benevento region is part of the southern Apennines seismogenic belt, which experienced large destructive seismic events both in historical and in recent times. The study area lies at the northern end of the Irpinia fault, which ruptured in 1980 with a Ms = 6.9 normal faulting event, which caused about 3000 casualties. The aims of this paper are to image lateral heterogeneities in the upper crust of the Benevento region, and to try to identify the fault segments that are expected to generate such large earthquakes. This work is motivated by the recognition that lithological heterogeneities along major fault zones, inferred from velocity anomalies, reflect the presence of fault patches that behave differently during large rupture episodes. In this paper, we define the crustal structure of the Benevento region by using the background seismicity recorded during 1991 and 1992 by a local seismic array. These data offer a unique opportunity to investigate the presence of structural discontinuities of a major seismogenic zone before the occurrence of the next large earthquake. The main result that we obtained is the delineation of two NW-trending high-velocity zones (HVZs) in the upper crust beneath the Matese limestone massif. These high velocities are interpreted as high-strength regions that extend for 30-40 km down to at least 12 km depth. The correspondence of these HVZs with the maximum intensity regions of historical earthquakes (1688 AD, 1805 AD) suggests that these anomalies delineate the extent of two fault segments of the southern Apenninic belt capable of generating M = 6.5−7 earthquakes. The lateral offset observed between the two segments from tomographic results and isoseismal areas is possibly related to transverse right-lateral faults.  相似文献   

12.
In recent years, contrasting seismic tomographic images have given rise to an extensive debate about the occurrence and implications of migrating slab detachment beneath southern Italy. One of the most pertinent aspects of this process is the concentration of the slab pull force, and particularly its surface expression in terms of vertical motions and related basin subsidence/uplift. In this study we focused on shallow‐water to continental, Pliocene‐Quaternary basins that formed on top of the Apennine allochthonous wedge after its emplacement onto a large foreland carbonate platform domain (Apulian Platform). Due to the thick‐skinned style of deformation controlling the Pliocene‐Pleistocene stages of continental shortening, a high degree of coupling with the downgoing plate appears to characterize the late tectonic evolution of the southern Apennines. Therefore, the wedge‐top basins analysed in this study, although occurring on the deformed edge of the overriding plate, are capable of recording deep geodynamic processes affecting the slab. Detailed stratigraphic work on these wedge‐top basins points to a progressive SE‐ward migration of basin subsidence from c. 4 to c. 2.8 Ma over a distance of about 140 km along the strike of the Apennine belt. Such a migration is consistent with a redistribution of slab‐pull forces associated with the progressive lateral migration at a mean rate in the range of 12–14 cm y–1 of a slab tear within the down‐going Adriatic lithosphere. These results yield fundamental information on the rates of first‐order geodynamic processes affecting the slab, and on related surface response.  相似文献   

13.
Numerous methods have been proposed for landslide probability zonation of the landscape by means of a Geographic Information System (GIS). Among the multivariate methods, i.e. those methods which simultaneously take into account all the factors contributing to instability, the Conditional Analysis method applied to a subdivision of the territory into Unique Condition Units is particularly straightforward from a conceptual point of view and particularly suited to the use of a GIS. In fact, working on the principle that future landslides are more likely to occur under those conditions which led to past instability, landslide susceptibility is defined by computing the landslide density in correspondence with different combinations of instability factors. The conceptual simplicity of this method, however, does not necessarily imply that it is simple to implement, especially as it requires rather complex operations and a high number of GIS commands. Moreover, there is the possibility that, in order to achieve satisfactory results, the procedure has to be repeated a few times changing the factors or modifying the class subdivision. To solve this problem, we created a shell program which, by combining the shell commands, the GIS Geographical Research Analysis Support System (GRASS) commands and the gawk language commands, carries out the whole procedure automatically. This makes the construction of a Landslide Susceptibility Map easy and fast for large areas too, and even when a high spatial resolution is adopted, as shown by application of the procedure to the Parma River basin, in the Italian Northern Apennines.  相似文献   

14.
The Corvara landslide is an active slow moving rotational earth slide - earth flow, located uphill of the village of Corvara in Badia, one of the main tourist centres in the Alta Badia valley in the Dolomites (Province of Bolzano, Italy). Present-day movements of the Corvara landslide cause National Road 244 and other infrastructures to be damaged on a yearly basis. The movements also give rise to more serious risk scenarios for some buildings located in front the toe of the landslide. For these reasons, the landslide has been under observation since 1997 with various field devices that enable slope movements to be monitored for hazard assessment purposes. Differential GPS measurements on a network of 47 benchmarks has shown that horizontal movements at the surface of the landslide have ranged from a few centimetres to more than 1 m between September 2001 and September 2002. Over the same period, vertical movements ranged from a few centimetres to about 10 cm, with the maximum displacement rate being recorded in the track zone and in the uppermost part of the accumulation lobe of the landslide. Borehole systems, such as inclinometers and TDR cables, have recorded similar rates of movement, with the depths of the major active shear surfaces ranging from 48 m to about 10 m. From these data, it is estimated that the active component of the landslide has a volume of about 50 million m3. In this paper the monitoring data collected so far are presented and discussed in detail to prove that the hazard for the Corvara landslide, considered as the product of yearly probability of occurrence and magnitude of the phenomenon, can be regarded has as medium or high if the velocity or alternatively the volume involved is considered. Finally, it is also concluded that the monitoring results obtained provide a sound basis on which to develop and validate numerical models, manage hazard and support the identification of viable passive and active mitigation measures.  相似文献   

15.
The Calabrian-Peloritan Arc (southern Italy) represents a fragment of the European margin, thrusted onto the Apennines and Maghrebides during the Europe-Apulia collision in the late Early Miocene. A reconstruction of the pre-Middle Miocene tectono-sedimentary evolution of the southern part of the Calabrian-Peloritan Arc (CPA) is presented, based on a detailed analysis of the Stilo-Capo ?Orlando Formation (SCO Fm). Deposition of the SCO Fm occurred in a series of mixed-mode piggy-back basins. Basin evolution was controlled by two intersecting fault systems. A NW-SE oriented system delimited a series of sub-basins and fixed the position of feeder channels and submarine canyons, whereas a NE-SW oriented system controlled the axial dispersal of coarse-grained sediments within each of the sub-basins. From base to top, sedimentary environments change from terrestrial and lagoonal to upper bathyal over a timespan of approximately 12 Myr (late Early Oligocene-late Early Miocene). During this interval, extensional tectonic activity alternated with oblique backthrusting events, related to dextral transpression along the NW-SE oriented faults. This produced a characteristic pulsating pattern of basin evolution. Oligocene-Early Miocene evolution of the W. Mediterranean basin was dominated by ‘roll back’ of the Neotethyan oceanic lithosphere. Considerable extension in the overriding European Plate gave rise to the formation of a back arc-thrust system. The initial stages of Calabrian Basin evolution are remarkably similar to the evolution of rift basins in the back arc (Sardinia). The Calabrian basins, which are inferred to have originated as thin-skinned pull-apart basins, were subsequently incorporated into the Apennines-Maghrebides accretionary wedge by out-of-sequence thrusting, and became decoupled from the back arc. Periodic restabilization of the accretionary wedge, resulting in an alternation of backthrusting and listric normal faulting, provides an explanation for the structural evolution of these mixed-mode basins. The basins of the southern part of the CPA may be termed ‘spanner’ or ‘looper’ basins, in view of their characteristic pulsating structural evolution, superimposed upon their migration toward the foreland. This new term adequately accounts for the occurrence of tectonic inversions in long-lived piggy-back basins, as expected in the light of the dynamics of accretionary wedges.  相似文献   

16.
地形对黄土高原滑坡的影响   总被引:4,自引:0,他引:4  
高分辨率地形与影像数据的缺乏已成为研究地表现象、特征与过程的重要瓶颈。低成本无人机设备和摄影测量技术的发展,打开了地学领域获取高分辨率数据的大门,大大提高了地质灾害野外调查与灾害编目的精度与效率。本文通过无人机野外调查和遥感室内目视解译,构建了一个包含307个黄土滑坡属性的数据库。在此基础上,通过数字地形分析和数理统计等方法,总结归纳了黄土滑坡样本数据的分布规律,探讨了地形对黄土滑坡分布的影响,阐述了地形相对高差对最长滑动距离、滑坡周长、滑坡面积的影响,提出了基于传统经验公式拟合的滑坡规模快速预测公式。结果表明:① 滑坡规模—频率分布具有明显的规律性,不同最大长度、最大宽度和周长的黄土滑坡数量分布均呈现正偏态分布,而不同面积的滑坡数量分布则服从幂函数分布;② 地形对黄土滑坡发育控制作用明显,不同地形高差、平均坡度、坡形的斜坡单元滑坡发育数量差异较大;③ 地形相对高差与滑坡的最长滑距、周长和面积的拟合曲线很好地符合幂律分布规律,但不同地形区的拟合效果有所差异,黄土丘陵区拟合效果最好,黄土高原全区次之,黄土台塬区最差;④ 本文建立的黄土滑坡规模快速预测模型,为黄土滑坡灾害调查提供了经验公式支撑。  相似文献   

17.
To determine for how long a landslide affects sediment discharge, the sediment yields of 15 check-dam basins were compared with the time series of landslide distributions in a mountain basin in the Tanzawa region, central Japan. The distribution of sediment yield was quantitatively estimated from deposition in the sediment pools of check dams. The relationship between the landslide history and sediment discharge in the Nakagawa River basin was examined for an approximately 80-year period. Two major landslide events occurred during this period: the 1923 Kanto Earthquake and the 1972 disaster caused by heavy rainfall. The resulting trend in sediment discharge of the whole basin, estimated using reservoir sedimentation in the Miho Dam at its base, was nearly constant, with high sediment discharge (2897 m3 km− 2 yr− 1) in the intervening quarter-century, despite the recovery of vegetation on landslide areas in this period. Comparisons of the landslide distributions resulting from the two disasters, the sediment yields of check-dam basins, and the sediment discharge of the whole basin indicate that recent sediment discharge contains landslide debris that was originated by the Kanto Earthquake that occurred over 80 years ago. Thus, to understand high sediment discharge, it is essential to investigate not only the current basin condition and recent events, but also the landslide history of the basin for at least the previous 100 years.  相似文献   

18.
Comparing landslide inventory maps   总被引:10,自引:1,他引:9  
Landslide inventory maps are effective and easily understandable products for both experts, such as geomorphologists, and for non experts, including decision-makers, planners, and civil defense managers. Landslide inventories are essential to understand the evolution of landscapes, and to ascertain landslide susceptibility and hazard. Despite landslide maps being compiled every year in the word at different scales, limited efforts are made to critically compare landslide maps prepared using different techniques or by different investigators. Based on the experience gained in 20 years of landslide mapping in Italy, and on the limited literature on landslide inventory assessment, we propose a general framework for the quantitative comparison of landslide inventory maps. To test the proposed framework we exploit three inventory maps. The first map is a reconnaissance landslide inventory prepared for the Umbria region, in central Italy. The second map is a detailed geomorphological landslide map, also prepared for the Umbria region. The third map is a multi-temporal landslide inventory compiled for the Collazzone area, in central Umbria. Results of the experiment allow for establishing how well the individual inventories describe the location, type and abundance of landslides, to what extent the landslide maps can be used to determine the frequency-area statistics of the slope failures, and the significance of the inventory maps as predictors of landslide susceptibility. We further use the results obtained in the Collazzone area to estimate the quality and completeness of the two regional landslide inventory maps, and to outline general advantages and limitations of the techniques used to complete the inventories.  相似文献   

19.
This paper is focused primarily on how to represent landslide scarp areas, how to analyze results achieved by the application of specific strategies of representation and how to compare the outcomes derived by different tests, within a general framework related to landslide susceptibility assessment. These topics are analyzed taking into account the scale of data survey (1:10,000) and the role of a landslide susceptibility map into projects targeted toward the definition of prediction, prevention, and mitigation measures, in a wider context of civil protection planning. These aims are achieved by using ArcSDM (Arc Spatial Data Modeler), a software extension to ArcView GIS useful for developing spatial prediction models using regional datasets. This extension requires a representation by points of the investigated problems (landslide susceptibility, aquifer vulnerability, detection of mineral deposits, identification of natural habitats of animals, and plants, etc.). Maps of spatial evidence from regional geological and geomorphological datasets were used to generate maps showing susceptibility to slope failures in two different study areas, located in the northern Apennines and in the central Alps (Italy), respectively. The final susceptibility maps for both study areas were derived by the application of the weights-of-evidence (WofE) modeling technique. By this method a series of subjective decisions were required, strongly dependent on an understanding of the natural processes under study, supported by statistical analysis of the spatial associations between known landslides and evidential themes. Except for maps of attitude, permeability, and structure, that were not available for both study areas, the other data were the same and comprised geological, land use, slope, and internal relief maps. The paper illustrates how different representations of scarp areas by points (in terms of different number of points) did not greatly influence the final response map, considering the scale of this work. On the contrary, some differences were observed in the capability of the model to describe the relations between predictor variables and landslides. In effect, a representation of the scarp areas using one point every 50 m led to a more efficient model able to better define relationships of this type. It avoided both problems of redundancy of information, deriving by the use of too many points, and problems related to a random positioning of the centroid. Moreover, it permitted to minimize the uncertainty related with identification and mapping of landslides.  相似文献   

20.
The objective of this work is twofold: (i) automatically setting up a landslide inventory using a state-of-the art semantic engine based on data mining on online news and (ii) evaluating if the automatically generated inventory can be used to validate a regional scale landslide warning system based on rainfall-thresholds.The semantic engine scanned internet news in real time in a 50 months test period. At the end of the process, an inventory of approximately 900 landslides was automatically set up for the Tuscany region (23,000 km2, Italy). Using a completely automated procedure, the inventory was compared with the outputs of the regional landslide early warning system and a good correspondence was found, e.g. 84% of the events reported in the news is correctly identified by the warning system.On the basis of the obtained results, we conclude that automatic validation of landslide models using geolocalized landslide events feedback is possible. The source of data for validation can be obtained directly from the Internet channel using an appropriate semantic engine dedicated to perform a monitoring of the Google News aggregator.Moreover, validation statistics can be used to evaluate the effectiveness of the predictive model and, if deemed necessary, an update of the rainfall thresholds could be performed to obtain an improvement of the forecasting effectiveness of the warning system.In the near future, the proposed procedure could operate in continuous time and could allow for a periodic update of landslide hazard models and landslide early warning systems with minimum or none human intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号