首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Coastal Engineering》2004,51(7):581-607
A state-of-the-art process-based model is applied to hindcast the morphological development of a shoreface nourishment along the barrier island of Terschelling, The Netherlands. The applied morphodynamic model is Delft3D for fully three-dimensional flow and sediment transport in coastal environments. Owing to a complex geomorphological setting of the study area, the curvi-linear model includes adjacent tidal inlets and covers 40×70 km with an increasing grid size resolution towards the nourishment site in the center of the island. In 1993, a total of 2 Mm3 of sand was supplied to the nearshore bar zone off Terschelling, filling up the trough between the middle and outer bar. By spring 1994, most of the nourished sediment had been redistributed onshore and welded onto the middle bar where it remained in the following years. The morphodynamic model is applied to the prediction of this rapid nearshore profile behaviour. The calibration of the model against an extensive set of full-scale hydrodynamic data at several locations throughout the nearshore bar zone shows a good representation of the measured hydrodynamics. Morphodynamic results show a dependency on spatial scale: on the scale of precise bed level evolution with respect to bar migration and growth, model predictions are poor as the nearshore bars are predicted to flatten out. Resorting to bulk volumes integrated over larger spatial scales, the model clearly has skill in predicting the overall effects of the nourishment. The lack of phase shift between sediment transport and bathymetry is identified as the key controlling factor for the poor sandbar predictions.  相似文献   

2.
We observed the onshore migration (3.5 m/day) of a nearshore sandbar at Tairua Beach, New Zealand during 4 days of low-energy wave conditions. The morphological observations, together with concurrent measurements of waves and suspended sediment concentrations, were used to test a coupled, wave-averaged, cross-shore model. Because of the coarse bed material and the relatively low-energy conditions, the contribution of the suspended transport to the total transport was predicted and observed to be negligible. The model predicted the bar to move onshore because of the feedback between near-bed wave skewness, bedload, and the sandbar under weakly to non-breaking conditions at high tide. The predicted bathymetric evolution contrasts, however, with the observations that the bar migrated onshore predominantly at low tide. Also, the model flattened the bar, while in the observations the sandbar retained its steep landward-facing flank. A comparison between available observations and numerical simulations suggests that onshore propagating surf zone bores in very shallow water (< 0.25 m) may have been responsible for most of the observed bar behaviour. These processes are missing from the applied model and, given that the observed conditions can be considered typical of very shallow sandbars, highlight a priority for further field study and model development. The possibility that the excess water transported by the bores across the bar was channelled alongshore to near-by rip-channels further implies that traditional cross-shore measures to judge the applicability of a cross-shore morphodynamic model may be misleading.  相似文献   

3.
Entrance morphologies and sediment characteristics were studied at Westport Harbour, a river mouth port located on the Buller River, New Zealand. The most frequent morphology found was that in which two submarine bars were present off the river mouth. When present, these bars were separated by a transverse channel running east from Carters Beach and terminating in the principal inlet channel. Sediment samples were collected and analysed for grain size, reliability (grain shape), and, in a few instances, mineralogy. The data collected suggested that longshore sediment transport is predominantly west to east and that river derived sediment is deflected to the east. The inner bar is predominantly a littoral drift related event whereas the outer bar, which is composed mainly of littoral drifted sediment, forms as a submarine extension of Carters Beach. Both bars can be modified by floods in the river, although modification of the outer bar is much less frequent because of the very high river flows required. Sediment can bypass directly across the river mouth only when the inner bar is present. On other occasions bypassing can only occur by transport through the transverse channel or over the outer bar, into the river channel and then onshore.  相似文献   

4.
《Coastal Engineering》2006,53(10):817-824
The 25-m onshore migration of a nearshore sandbar observed over a 5-day period near Duck, NC, is simulated with a simplified, computationally efficient, wave-resolving single-phase model. The modeled sediment transport is assumed to occur close to the seabed and to be in phase with the bottom stress. Neglected intergranular stresses and fluid–granular interactions, likely important in concentrated flow, are compensated for with an elevated (relative to that appropriate for a clear fluid) model roughness height that gives the best fit to the observed bar migration. Model results suggest that when mean-current-induced transport is small, wave-induced transport leads to the observed onshore bar migration. Based on the results from the simplified phase-resolving model, a wave-averaged, energetics-type model (e.g., only moments of the near-bottom velocity field are required) with different friction factors for oscillatory and mean flows is developed that also predicts the observed bar migration. Although the assumptions underlying the models differ, the similarity of model results precludes determination of the dominant mechanisms of sediment transport during onshore bar migration.  相似文献   

5.
The response to a shoreface nourishment of the two-bar system at Noordwijk (the Netherlands) is analyzed based on a daily data set of time-exposure video images collected during about 6 years, complemented with topographic and bathymetric surveys. The 1.7 Mm3 nourishment, implemented as a 3 km alongshore bump seaward of the outer bar, migrated more than 300 m onshore in 4 years before losing its integrity. Furthermore, the nourishment interrupted the autonomous seaward migration of both bars for the entire duration of the study period and, allaying earlier fears, did not intensify the three-dimensional patterns in the bars, such as the crescentic plan-shape and rip channels. The nourishment did result in clear head effects on both flanks, with the bar becoming discontinuous and the flank section decaying or becoming attached to an offshore-located bar, while the section of bar landward of the nourishment became attached to a landward-located bar. This sequence of morphologies is known as bar switching. Each switching episode took almost one year to complete and can therefore not be ascribed to individual wave events. We suspect that shoreface nourishments enhance the possibility of bar switching by creating alongshore variability in the position and depth of the outer bar and in its cross-shore migration rate and direction. The Noordwijk nourishment did not influence the shoreline position as its trend did not undergo distinctive variations after 1998. Differences in the response of the Noordwijk sandbars to the shoreface nourishment compared with other Dutch nourishments are attributed to the location and size (volume per unit length) of the nourishment with respect to the sandbars and to the median grain size of the nourished material.  相似文献   

6.
This study focuses on barred beach shoreface nourishments physically simulated in a wave flume. The attack of a schematic storm on three different nourishments is analysed. The apex and waning storm phases lead respectively to offshore and onshore sediment transports. Nourishments in the trough and on the outer bar feed the bar and increase wave dissipation offshore. The bar acts as a wave filter and reduces shore erosion (lee effect). In contrast, nourishment on the beach face leads mostly to shore feeding and reconstruction (feeder effect). With successive nourishments, the beach face clearly becomes steeper and onshore sediment transport is reduced during moderate wave climates. The surface grain size analysis reveals marked variations. Coarser sediments are sorted on the bar and the upper beach face. These locations correspond to large wave dissipation zones during the storm apex.  相似文献   

7.
A four-year investigation of surf zone sedimentation at Presque Isle, Pennsylvania, was undertaken in preparation for the design of a segmented breakwater system. Sediment transport calculations were based on hind-cast annual wave power statistics and “calibrated” by known accretion rates at the downdrift spit terminus. 30,000 m3 of sediment reaches the peninsula annually from updrift beaches. The transport volume increases downdrift due to shoreface erosion and retreat of the peninsular neck. At the most exposed point on Presque Isle (the lighthouse) the annual transport is 209,000 m3. East of the lighthouse is a zone of net shoreface accretion as the longshore transport rate progressively decreases.

The downdrift variation in sediment supply, combined with increasing refraction and attenuation of the dominant westerly storm waves produce a systematic change in prevailing surf zone morphology. Storms produce a major longshore bar and trough along the exposed peninsular neck. The wave energy during non-storm periods is too low to significantly alter the bar which consequently becomes a permanent feature. The broad shoreface and reduced wave energy level east of the lighthouse produce a morphology characterized by large crescentic outer bars, transverse bars, and megacusps along the beach. At the sheltered and rapidly prograding eastern spit terminus the prevalent beach morphology is that of a ridge and runnel system in front of a megacuspate shore.

The morphodynamic surf zone model developed for oceanic beaches in Australia is used as a basis for interpretation of shoreface morphologic variability at Presque Isle. In spite of interference by major shoreline stabilization structures, and differences between oceanic and lake wave spectra, the nearshore bar field at Presque Isle does closely correspond to the Australian model.  相似文献   


8.
《Coastal Engineering》2002,47(1):53-75
The mechanism responsible for the ubiquitous presence of convex beach profiles and shoreward migration of linear bars is examined using numerical circulation and sediment transport models. The models are validated against laboratory measurements and observed natural beach cross-sections. While not discounting the importance of infragravity and advective horizontal circulation or bed-return flow mechanisms, a robust diffusive process explains the convex profile shape and bar formation. In the presence of concentration gradients across the surf zone, a diffusive sediment flux from high to low concentration results in the transfer of sediment outwards from the breakpoint, both onshore and offshore, and the subsequent formation of a “diffusion bar” and “diffusion profile”. The profiles are characterised by single- and double-convex dome-like shapes, developing during shoreward migration of the bars by the diffusion mechanism. The mechanism explains several phenomena observed on natural beaches, including (i) convex beach profiles; (ii) shoreward migration of the bar with concomitant beach accretion under narrow-band swell; (iii) reduced propensity for bar formation on low-gradient, fine-sand beaches or under wide-band wave spectra (even though multiple bars are common on some low-gradient beaches) and (iv) offshore migration of the bar during periods of increasing wave height. The diffusion mechanism can be dependent on orbital motion alone and, as such, requires no frequency selection or strong correlation between multiple processes for bar formation.  相似文献   

9.
C. D. Storlazzi  M. E. Field   《Marine Geology》2000,170(3-4):289-316
Field measurements of beach morphology and sedimentology were made along the Monterey Peninsula and Carmel Bay, California, in the spring and summer of 1997. These data were combined with low-altitude aerial imagery, high-resolution bathymetry, and local geology to understand how coastal geomorphology, lithology, and tectonics influence the distribution and transport of littoral sediment in the nearshore and inner shelf along a rocky shoreline over the course of decades. Three primary modes of sediment distribution in the nearshore and on the inner shelf off the Monterey Peninsula and in Carmel Bay were observed. Along stretches of the study area that were exposed to the dominant wave direction, sediment has accumulated in shore-normal bathymetric lows interpreted to be paleo-stream channels. Where the coastline is oriented parallel to the dominant wave direction and streams channels trend perpendicular to the coast, sediment-filled paleo-stream channels occur in the nearshore as well, but here they are connected to one another by shore-parallel ribbons of sediment at depths between 2 and 6 m. Where the coastline is oriented parallel to the dominant wave direction and onshore stream channels are not present, only shore-parallel patches of sediment at depths greater than 15 m are present. We interpret the distribution and interaction or transport of littoral sediment between pocket beaches along this coastline to be primarily controlled by the northwest-trending structure of the region and the dominant oceanographic regime. Because of the structural barriers to littoral transport, peaks in wave energy appear to be the dominant factor controlling the timing and magnitude of sediment transport between pocket beaches, more so than along long linear coasts. Accordingly, the magnitude and timing of sediment transport is dictated by the episodic nature of storm activity.  相似文献   

10.
11.
12.
The newly developed nearshore circulation model, SHORECIRC, using a hybrid finite-difference finite-volume TVD-type scheme, is coupled with the wave model SWAN in the Nearshore Community Model (NearCoM) system. The new modeling system is named NearCoM-TVD and the purpose of this study is to report the capability and limitation of NearCoM-TVD for several coastal applications. For tidal inlet applications, the model is verified with the semi-analytical solution of Keulegan (1967) for an idealized inlet-bay system. To further evaluate the model performance in predicting nearshore circulation under intense wave–current interaction over complex bathymetry, modeled circulation patterns are validated with measured data during RCEX field experiment (MacMahan et al., 2010). For sediment transport applications, two sediment transport models are applied to predict three sandbar migration events at Duck, NC, during August to October 1994 (Gallagher et al., 1998). The model of Kobayashi et al. (2008) incorporates wave-induced onshore sediment transport rate as a function of the standard deviation of wave-induced horizontal velocities. The modeled beach profile evolution for two offshore events and one onshore event agrees well with the measured data. The second model investigated here combines two published sediment transport models, namely, the total load model driven by currents under the effect of wave stirring (Soulsby, 1997) and the wave-driven sediment transport model due to wave asymmetry/skewness (van Rijn et al., 2011). The model study with limited field data suggests that the parameterization of wave stirring is appropriate during energetic wave conditions. However, during low energy wave conditions, the effect of wave stirring needs to be re-calibrated.  相似文献   

13.
海南岛南渡江三角洲海岸演变的波浪作用分析   总被引:1,自引:0,他引:1  
本文应用白沙门1984年波浪统计资料,通过对南渡江三角洲北部近岸海底泥沙活动特性与东部废弃海岸泥沙沿岸输移方式及其岸外沙坝、堡岛响应波浪动力而具有的形状进行分析,揭示了波浪在南渡江三角洲北部沿岸演变中的重要作用。  相似文献   

14.
A new numerical model was developed to simulate regional sediment transport and shoreline response in the vicinity of tidal inlets based on the one-line theory combined with the reservoir analogy approach for volumetric evolution of inlet shoals. Sand bypassing onshore and sheltering effects on wave action from the inlet bar and shoals were taken into account. The model was applied to unique field data from the south coast of Long Island, United States, including inlet opening and closure. The simulation area extended from Montauk Point to Fire Island Inlet, including Shinnecock and Moriches Inlets. A 20-year long time series of hindcast wave data at three stations along the coast were used as input data to the model. The capacity of the inlet shoals and bars to store sand was estimated based on measured cross-sectional areas of the inlets as well as on comprehensive bathymetric surveys of the areas around the inlet. Several types of sediment sources and sinks were represented, including beach fills, groin systems, jetty blocking, inlet bypassing, and flood shoal and ebb shoal feeding. The model simulations were validated against annual net longshore transport rates reported in the literature, measured shorelines, and recorded sediment volumes in the flood and ebb shoal complexes. Overall, the model simulations were in good agreement with the measured data.  相似文献   

15.
A study of the East Frisian Islands has shown that the plan form of these islands can be explained by processes of inlet sediment bypassing. This island chain is located on a high wave energy, high tide range shoreline where the average deep-water significant wave height exceeds 1.0 m and the spring tidal range varies from 2.7 m at Juist to 2.9 m at Wangerooge. An abundant sediment supply and a strong eastward component of wave power (4.4 × 103 W m−1) have caused a persistent eastward growth of the barrier islands. The eastward extension of the barriers has been accommodated more by inlet narrowing, than by inlet migration.

It is estimated from morphological evidence that a minimum of 2.7 × 105 m3 of sand is delivered to the inlets each year via the easterly longshore transport system. Much of this sand ultimately bypasses the inlets in the form of large, migrating swash bars. The location where the swash bars attach to the beach is controlled by the amount of overlap of the ebb-tidal delta along the downdrift inlet shoreline. The configuration of the ebbtidal delta, in turn, is a function of inlet size and position of the main ebb channel. The swash bar welding process has caused preferential beach nourishment and historical shoreline progradation. Along the East Frisian Islands this process has produced barrier islands with humpbacked, bulbous updrift and bulbous downdrift shapes. The model of barrier island development presented in this paper not only explains well the configuration of the German barriers but also the morphology of barriers along many other mixed energy coasts.  相似文献   


16.
Hydrodynamics and sediment transport in the nearshore zone were modeled numerically taking into account turbulent unsteady flow. The flow field was computed using the Reynolds Averaged Navier–Stokes equations with a kε turbulence closure model, while the free surface was tracked using the Volume-Of-Fluid technique. This hydrodynamical model was supplemented with a cross-shore sediment transport formula to calculate profile changes and sediment transport in the surf and swash zones. Based on the numerical solutions, flow characteristics and the effects of breaking waves on sediment transport were studied. The main characteristic of breaking waves, i.e. the instantaneous sediment transport rate, was investigated numerically, as was the spatial distribution of time-averaged sediment transport rates for different grain sizes. The analysis included an evaluation of different values of the wave friction factor and an empirical constant characterizing the uprush and backwash. It was found that the uprush induces a larger instantaneous transport rate than the backwash, indicating that the uprush is more important for sediment transport than the backwash. The results of the present model are in reasonable agreement with other numerical and physical models of nearshore hydrodynamics. The model was found to predict well cross-shore sediment transport and thus it provides a tool for predicting beach morphology change.  相似文献   

17.
The present study aims to analyze the effects of different submerged bars nourishment strategies using a 2DV process-based morphodynamical model. A two-barred beach profile typical of the French Mediterranean micro-tidal storm-dominated coastline is chosen as a reference profile. Two different kinds of modified beach profiles are considered. (i) Only the outer bar is nourished, the inner bar being unchanged (ii) both bars are nourished. Three typical wave forcing regimes are considered. The behavior of the natural profile is first investigated under the 3 wave forcing regimes. Then the behavior of the various nourished profiles is analyzed in terms of wave dynamics and bars behavior. On the basis of the model results, the outer bar only nourishment strategy appears to be preferable.  相似文献   

18.
岬湾相间的琼州海峡南岸在海岸动力条件作用下,岸滩发生侵蚀或堆积,特别是南岸中部的南渡江三角洲沿岸岸滩演变剧烈。该文从海岸动力地貌的角度,对琼州海峡南岸的海岸动力特征、泥沙运动以及岸滩演变进行分析。根据海峡南部三维潮流场数值模拟结果,结合经验公式初步分析潮流引起的泥沙运移速率和方向,得到岸外水域总的泥沙运移趋势为从西向东。根据波浪动力计算分析沿岸泥沙运移,探讨沙质岸滩的动态与地貌演变之间的关系,得出海峡南岸海岸地貌演变与盛行的NE和NNE向风浪有密切关系,岸滩的演变过程主要受制于这两个方向的风浪及其引起的泥沙沿岸运移。  相似文献   

19.
A shore-normal array of seven, bi-directional electromagnetic flowmeters and nine surface piercing, continuous resistance wave staffs were deployed across a multiple barred nearshore at Wendake Beach, Georgian Bay, Canada, and monitored for a complete storm cycle. Time-integrated estimates of total (ITVF) and net (INVF) sediment volume flux together with bed elevation changes were determined using depth-of-activity rods.

The three bars, ranging in height from 0.10 to 0.40 m accreted during the storm (0.03 m), and the troughs were scoured (0.05 m). Sediment reactivation depths reached 0.14 m and 12% of the nearshore control volume was mobilized. However, the INVF value for the storm was less than 1% of the control volume revealing a near balance in sediment volume in the bar system. Landward migration of the inner, crescentic and second, sinuous bars occurred in association with an alongshore migration of the bar form itself; the outermost, straight, shore-parallel bar remained fixed in location.

The surf zone was highly dissipative throughout the storm (ε = 3.8 × 102–192 × 102) and the wave spectrum was dominated by energy at the incident frequency. Spectral peaks at frequencies of the first harmonic and at one quarter that of the incident wave were associated with secondary wave generation just prior to breaking and a standing edge wave, respectively. The former spectral peak was within the 95% confidence band for the spectrum while the latter contributed not more than 10% to the total energy in the surface elevation spectrum even near the shoreline.

During the storm wave height exceeded 2 m (Hs) and periods reached 5 s (Tp k): orbital velocities exceeded 0.5 m s−1 (urm s) and were above the threshold of motion for the medium-to-fine sands throughout the storm. Shore-parallel flows in excess of 0.4 m s−1 were recorded with maxima in the troughs and minima just landward of the bar crest.

The rate and direction of sediment flux is best explained by the interaction of antecedent bed slopes with spatial gradients in the mean and asymmetry of the shore-normal velocity field. These hydrodynamic parameters represent “steady” flows superimposed on the dominantly oscillatory motion and assumed a characteristic spatial pattern from the storm peak through the decay period. Increases spatially in the magnitudes of both the mean flows and flow asymmetries cause an increasing net transport potential (erosion); decreases in these values spatially cause a decreasing net transport potential and thus deposition. These transport potentials are increased or decreased through the gravity potential induced by the local bed slope. Shore-parallel flow was important in explaining sediment flux and morphological change where orbital velocities, mean flows and flow asymmetries were at a minimum.  相似文献   


20.
废黄河三角洲是南黄海内陆架的重要物源。为深入探索废黄河口海域沉积物输运机制,利用2015~2016年夏季与冬季在废黄河口外海域10个站位获取的现场沉积动力数据,计算潮不对称参数、余流、悬沙输运量等。分析结果表明,废黄河口海域沉积物输运模式存在显著的空间差异,大部分海域悬沙沿等深线向南输运,仅在近岸侧局部悬沙向岸或向北输运、离岸最远处站位向北输运但输运率较小;近岸浅水海域以平流输沙为主,其他离岸区域以再悬浮作用为主。由于流速和悬沙浓度之间的相位差,导致余流(净水输运)方向与净悬沙输运方向存在差异。研究沉降速度与悬沙输运涨落潮不对称的关系,发现沉降速度越大,悬沙输运的不对称性就越显著;沉降速度是造成近底部流速与悬沙浓度相位差的主要原因,导致废黄河口外净悬沙输运存在显著的垂向差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号