首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
We investigate the effect of pairing correlations on the computed Gamow–Teller (GT) strength distributions and corresponding β-decay half-lives. The calculations are performed for a total of 47 sd-shell nuclei, for 20 < A < 30, employing the pn-QRPA model. Our calculations use three different values of pairing gaps computed using three different empirical formulae. The GT strength distribution and centroid values change considerably with a change in the pairing gap values. This in turn leads to differences in computed half-lives. The pairing gaps computed using the mass-dependent formula result in the calculated half-lives in better agreement with the measured data.  相似文献   

2.
In this paper, the second in a series of two, we justify two important assumptions on which the result is based that in the course of a galaxy merger, the slingshot ejection of bound stars is sufficiently efficient to allow a supermassive black hole binary (BHB) to merge. A steep cusp with a power-law index of 2.5–3 is required which is as massive as the binary and surrounds the BHs when the binary becomes hard. This cusp is probably formed when both clusters, surrounding each BH, merge and combine with the matter funnelled into the centre. We find this profile to be in agreement with observed post-merger distributions after the cusp has been destroyed. The time dependency we derive for the merger predicts that stalled BHs, if they exist at all, will preferentially be found at less than  ∼0.2 pc  distance. To test this prediction we compute the current semimajor axis of 12 candidates of ongoing mergers. We find all binaries unambiguously to be already in the last phase when they decay due to the emission of gravitational waves. Therefore, in striking contradiction with predictions of a depleted loss-cone, the absence of even a single source in the slingshot phase strongly supports our previous and current results: binaries merge due to the slingshot ejection of stars which have been funnelled into the central regions in the course of a galaxy collision.  相似文献   

3.
The extrasolar planets discovered to date possess unexpected orbital elements. Most orbit their host stars with larger eccentricities and smaller semi-major axes than similarly sized planets in our own Solar System do. It is generally agreed that the interaction between giant planets and circumstellar disks (Type II migration) drives these planets inward to small radii, but the effect of these same disks on orbital eccentricity, ?, is controversial. Several recent analytic calculations suggest that disk-planet interactions can excite eccentricity, while numerical studies generally produce eccentricity damping. This paper addresses this controversy using a quasi-analytic approach, drawing on several preceding analytic studies. This work refines the current treatment of eccentricity evolution by removing several approximations from the calculation of disk torques. We encounter neither uniform damping nor uniform excitation of orbital eccentricity, but rather a function d?/dt that varies in both sign and magnitude depending on eccentricity and other Solar System properties. Most significantly, we find that for every combination of disk and planet properties investigated herein, corotation torques produce negative values of d?/dt for some range in ? within the interval [0.1, 0.5]. If corotation torques are saturated, this region of eccentricity damping disappears, and excitation occurs on a short timescale of less than 0.08 Myr. Thus, our study does not produce eccentricity excitation on a timescale of a few Myr—we obtain either eccentricity excitation on a short time scale, or eccentricity damping on a longer time scale. Finally, we discuss the implications of this result for producing the observed range in extrasolar planet eccentricity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号