首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the recent years,the Red Sea coast of Yemen has been severely affected by intensive anthropogenic activities.The current study constitutes a thorough inquiry to evaluate the extent of heavy metals pollution in Yemen's Red Sea coast sediment and identifies the possible sources of pollution.The concentrations of five metals(copper(Cu),zinc(Zn),cadmium(Cd),lead(Pb),and nickel(Ni))collected from nine sites along the Red Sea coast of Yemen were assessed using an atomic absorption spectrophotometer(ASS).Sediment quality indices,such as the sediment quality guidelines(SQGs),potential ecological risk(RI),contamination factor(CF),pollution load index(PLI),geoaccumulation index(Igeo),and modified degree of contamination(mCd)were computed.In addition,multivariate statistical techniques(principal component analysis(PCA),hierarchical cluster analysis,and Pearson's correlation analysis)were applied to identify the potential sources of metals.The mean concentrations of Cu,Zn,Cd,Pb,and Ni were 51.3,61.9,4.02,9.9,and 33.4 mg/kg dry wt,respectively.The spatial distribution revealed that the metals concentrations were high at the middle zone and low southward of Hodeida city.According to the SQGs,the adverse biological effects of metals were occasionally associated with Cu and Cd,frequently associated with Ni,and not expected to occur with Zn and Pb.The RI indicated that the sediment of the studied sites pose low(RI<50)to considerable(100≤RI<200)ecological risk.The mean effect range-median quotient(M-ERM-Q)indicated that the combination of the studied metals had the toxicity probability of 21%at all studied sites.Igeo and CF indicated that the metals concentrations were in the descending order of:Zn>Ni>Pb>Cd>Cu,whereas the PLI and mCd indicated that Ras Isa(Site 5)and Urj village(Site 6)were the most polluted sites.PCA,cluster analysis,and correlation analysis found that Cd,Pb,and Ni mostly originated from anthropogenic sources while Cu and Zn were mainly derived from natural sources.Thus,it is evident that the intensive anthropogenic activities had negative influence on metals accumulation in the sediment of the Red Sea coast of Yemen leading to detrimental effects to the whole ecosystem.These comprehensive findings provide valuable information and data for future monitoring studies regarding heavy metals pollution and sediment quality at the Red Sea coast of Yemen.  相似文献   

2.
《国际泥沙研究》2016,(2):164-172
The ecological risk assessment for Al,Zn,Cu,Ni,V,Pb,Cd,and Hg in surface sediment collected from the Egyptian Red Sea coast was evaluated using the Geo-accumulation Index(I_(geo)).Sediment Enrichment Factor(SEF) and Potential Ecological Risk Index(PERI) methods.The predominant heavy metal,aluminum,showed high concentrations along both of Aqaba Gulf(4378.8 ± 2554.1 μg/g) and southern part of the Red Sea(2972.8 + 1527.5 μg/g).while it recorded the lowest concentration in Suez Gulf(829.7 ± 398.2 μg/g).The determined heavy metal concentrations had the order of Al Zn -Ni V Pb Cu Cd Hg.The statistical analyses showed some correlations among the heavy metals contents.Several international sediment quality guidelines were used to estimate the quality of the collected sediments.Interestingly,the recorded average heavy metals concentrations were lower than those of the permissible contents for sediment quality guidelines.The Geo-accumulation index calculations(I_(geo)) proved that the investigated region could be classified as an unpolluted area.Sediment Enrichment Factor(K_(SEF)) study showed high values in Suez Gulf region.The single pollution index analysis of heavy metals in the sediments(C~i_f) indicated that Al,Zn,V,and Pb were of natural origin,while Ni,Cd and Hg were seriously affected by human activities.Interestingly,amongst,all the determined heavy metals,Cd and Hg gave moderate ecological risk indicators.  相似文献   

3.
In the heavily industrialized Masan Bay of southern coast, Korea, the potential harmful effects of heavy metals (Cd, Co, Cu, Ni, Pb, Sn, Zn, and Hg) were evaluated in terms of the pollution load index (PLI) and ecological risk assessment index (ERI) methods, and the results obtained were considered alongside the health of the macrobenthic fauna communities. The results revealed that the bay sediments, especially in the inner bay and the outfall area of a sewage treatment plant, are exposed to moderate to serious levels of metal pollution. Hg and Cd contributed the most to the potential toxicity response indices in sediments recently deposited in the bay. The potential ecological risk assessment of heavy metals in the bay was highlighted by the use of the benthic biological pollution index (BPI), suggesting that the ERI is a useful toxicity response index, which can quantify the overall ecological risk level to a target environment.  相似文献   

4.
《Marine pollution bulletin》2013,77(1-2):383-388
Metals and biogenic elements were analyzed from surface sediments collected from Zhelin Bay in the South China Sea in December 2008. The high concentrations of TOC, TN and BSi indicate the high nutrient level and diatom productivity in Zhelin Bay. The concentrations of metals were generally far lower than the effects-range-low (ERL) values that define pollutant levels. Enrichment factors (EF) and geoaccumulation indices (Igeo) suggest there are pollution levels of Cd, Cu and Zn at some stations. As, Cu, and Pb are potentially biotoxic in some stations. Correlation and principal component analyses indicate that most of the metals primarily originate from natural sources, and from maricultural activities as well. Mariculture contributes considerable Cd and Cu contamination. As and Pb comes primarily from combustion of gasoline and diesel fuel by ships.  相似文献   

5.
《Marine pollution bulletin》2014,85(1-2):373-378
The surficial coastal sediments in Kendari Bay are sampled in the field to determine the concentration and pollution level of three heavy metals (Pb, Cd and Cr). Twenty-five sampling points ranging from the inner (Wanggu River) to the outer area of the bay have been chosen. The physicochemical properties, such as temperature, pH, salinity and TDS of the overlying water, as well as the sediment type and TOC of the surficial sediments, are also measured. The total concentrations of the Pb, Cd and Cr in the sediment samples are quantified using inductively-coupled plasma mass spectrometry (ICP-MS). The concentrations of the heavy metals (Pb, Cd and Cr) ranged from 0.84 to 17.02 μg/g, 0.02 to 0.17 μg/g and 1.92 to 40.11 μg/g (dry weight), respectively, following the Cr > Pb > Cd sequence. To assess the degree of contamination, a geoaccumulation index (Igeo) is measured. Kendari Bay is not a contaminated area regarding Pb, Cd and Cr.  相似文献   

6.
In this paper, the spatial distribution and source of the PCBs in surface sediments of the Southern Yellow Sea (SYS) and influencing factors, such as the sediment characteristics (components, relative proportions and total organic carbon contents), and hydrodynamic conditions were analyzed. PCB concentrations in the surface sediments ranged from 518-5848 pg/g, with average values of 1715 pg/g decreasing sharply compared to last year. In the study area, the PCB pollution level in the middle area was the highest, followed by that of the east coast and the west coast, respectively. Although the PCB level in the coastal areas was lower than that in the middle areas, it was proven in our study that the Yellow Sea obtained PCBs by virtue of river inputs. There was a positive and pertinent correlation between the clay proportion and PCB concentrations, and the increase of the PCB concentrations was directly proportional to the increase of TOC contents, with r=0.61, but it was contrary to the sediment grain size. Consequently, the factors controlling PCB distribution had direct or indirect relationships with sediment grain size; moreover, the hydrodynamic conditions determined the sediment components and grain size. In conclusion, hydrodynamic conditions of the Yellow Sea were the most important influencing factors effecting the distribution of PCBs in the surface sediments of the SYS.  相似文献   

7.
We investigated the spatial distribution and composition of microbenthos in the seafloor sediments from 48 stations in the Yellow Sea using epifluorescence microscopy and quantitative protargol staining techniques. The bacterial abundance ranged from 2.4×108 to 1.9×109 cells cm−3 in the wet sediment, about three orders of magnitude higher than that of phototrophic (PNFs, from 6.4×105 to 8.8×106 cells cm−3) and heterotrophic nanoflagellates (HNFs, from 5.8×104 to 5.9×106 cells cm−3) and four orders of magnitude higher than that of cyanobacteria (from 2.3×104 to 2.3×106 cells cm−3) in the upper 5 cm of sediments. The abundance of diatoms varied greatly, from 3-1.1×105 cells cm−3 in the upper 8 cm of sediments, whereas those of heterotrophic microflagellates (HMFs, 1-182 cells cm−3) and ciliates (1-221 cells cm−3) were less varied and lower. The biomass partitioning indicates the primary importance of benthic bacteria (50.3 μg C cm−3 on average), followed by PNFs (40.7 μg C cm−3), HNFs (19.3 μg C cm−3), and finally by cyanobacteria (8.8 μg C cm−3). Benthic diatoms (0.8 μg C cm−3), ciliates (0.15 μg C cm−3), and HMFs (0.03 μg C cm−3) contribute relatively small fractions to the total biomass of the microbenthos. About 95% of diatoms, 77% of ciliates, and 56% of HMFs were distributed in the upper 2 cm of sediments, whereas no distinct vertical distributions were observed for bacteria, cyanobacteria, PNFs, and HNFs. The microbenthos are quantitatively important in the shallow seafloor, wherein their main components have an average abundance three orders of magnitude higher than the corresponding planktonic organisms in the same sea area. Our estimates indicate that pico-sized phytobenthos might contribute a large proportion to the primary production. Benthic ciliates and heterotrophic flagellates contribute about 90% to the estimated combined metabolic rate of micro- and meiobenthic consumers in the whole sea area, with nanoheterotrophs accounting for the majority. The data suggest the potential for the rapid primary and secondary production of microbenthos and detrital utilization in the shallow seafloor sediments of the Yellow Sea.  相似文献   

8.
This study aimed to evaluate the spatial and temporal distribution of heavy metals (Cd, Cr, Cu, Co, Fe, Pb, Ni, V, and Zn) in the sediments of Bayan Lepas Free Industrial Zone of Penang, Malaysia. Ten sampling stations were selected and sediment samples were collected during low tide (2012 ? 2013). Metals were analyzed and the spatial distribution of metals were evaluated based on GIS mapping. According to interim sediment quality guidelines (ISQG), metal contents ranged from below low level to above high level at different stations. Based on the geoaccumulation index (Igeo) of sediment, sampling stations were categorized from unpolluted to strongly polluted. The enrichment factor (EF) of metals in the sediment varied between no enrichment to extremely high enrichment. The potential ecological risk index (RI) indicated Bayan Lepas FIZ was at low risk.  相似文献   

9.
洞庭湖沉积物中重金属污染特征与评价   总被引:29,自引:2,他引:29  
于2003-2004年在洞庭湖湖区采集沉积物样品700个,测定了沉积物中As、Cd、Cr、Cu、Hg、Ni、Pb、Zn的含量,并用地积累指数方法和主成分分析法对沉积物中的重金属污染状况进行了评价和分析.结果显示,洞庭湖各子湖区沉积物中Cd、Cr、Cu、Pb、zn的平均含量都属于国家土壤二级标准,AB、Hg、Ni属于国家土壤一级至二级土壤标准;在南洞庭湖与东洞庭湖人湖河流的三角洲的前缘是沉积物重金属积累最高的地点,而在西洞庭湖入湖河流三角洲的后缘沉积物重金属含量比前缘高.采用综合地积累指数法对洞庭湖各子湖区沉积物进行评价,结果表明:南洞庭湖(重污染)>东洞庭湖(偏重污染)>西洞庭湖(中度污染)>大通湖(中度污染)>城陵矶(轻度污染).采用主成分分析法对洞庭湖各子湖区沉积物进行分析,结果表明:南洞庭湖与东洞庭溯第一主成分贡献率分别为55.22%、56.86%,主要支配AS、Cd、Hg、Pb、zn的载荷,而第二主成分贡献率分别为30.04%、33.11%主要支配Cu、Cr、Ni的载荷:西洞庭湖、大通湖和城陵矶因沉积物重金属来源不同,主成分分析结果相差较大.  相似文献   

10.
巢湖沉积物重金属富集特征与人为污染评价   总被引:9,自引:6,他引:9  
本文分析了巢湖主要入湖河流河口区表层沉积物及西部湖心区沉积岩芯中Al、Fe、Ni、Cr、Cu、Zn、Pb、Li、V等金属元素变化特征,采用地球化学方法对金属元素变化的"粒度效应"进行矫正,并以Li、V为参照元素对矫正结果进行检验;参考历史沉积物,对河口区及西部湖心区沉积物重金属人为污染特征进行分析;结合沉积岩芯210Pb年代结果,估算西部湖心区近150a来Ni、Cr、Cu、Zn、Pb等重金属元素的人为污染贡献量.结果表明,河口表层沉积物重金属污染具有显著的空间差异,南淝河河口重金属人为污染最重,其中Ni、Cr、Cu、Zn、Pb的人为污染贡献量分别为12.2、32.2、25.3、479.9和76.0 mg/kg,分别占总含量的35%、37%、64%、92%和77%;其次是柘皋河河口,主要重金属污染元素为Cu、Zn和Pb,人为污染贡献量达57.6、57.0和19.5 mg/kg,分别占总含量的73%、47%和36%;而派河、白石山河、杭埠河等河口表层沉积物中重金属元素人为污染程度较弱.巢湖西部湖心区主要污染元素为Cu、Zn、Pb,人为污染开始于1950s,1980年以来其人为污染贡献量显著增加,平均为16.2、245.6、47.8 mg/(m2.a),分别占各元素沉积通量的23%、61%和37%;Ni人为污染开始于1980s初期,人为污染贡献量平均为12.6 mg/(m2.a),占其沉积通量的13%左右;Cr基本未受人为污染影响.西部湖心区沉积岩芯及南淝河河口表层沉积物中重金属污染程度均表现为Zn>Pb>Cu,而且南淝河河口沉积物重金属污染程度显著高于西部湖心区.结合主要入湖河流径流量与河口沉积物重金属污染特征,认为巢湖西部湖心区重金属污染主要通过南淝河输入,来自合肥等城市的废水是主要的污染源.  相似文献   

11.
Samples of surface sediment and vibrocore were collected in the near-shore area of north Jiangsu Province for grain size, elements, 210Pbexcess and 137Cs analyses. In our study area, the diversity of metal concentration was controlled not by the grain size, but by the source. The element content of the old Yellow River Delta was used as baseline for our study area. Geoaccumulation indexes indicate that no station was polluted by Cu, Pb, Zn and As, but the Igeo values of As were close to zero in some stations. Slight pollution caused by Cd was observed in some stations. Correlation and enrichment factors suggest that Cu, Pb and Zn are lithogenic in origin, while As and Cd are mixed in origin. Especially, in some polluted stations Cd was obviously anthropogenic in origin.  相似文献   

12.
Surface sediments collected from 2001 to 2011 were analyzed for total petroleum hydrocarbons (TPH) and five heavy metals. The sediment concentration ranges of TPH, Zn, Cu, Pb, Cd and Hg were 6.3–535 μg/g, 58–332 μg/g, 7.2–63 μg/g, 4.3–138 μg/g, 0–0.98 μg/g, and 0.10–0.68 μg/g, respectively. These results met the highest marine sediment quality standards in China, indicating that the sediment was fairly clean. However, based on the effects range-median (ERM) quotient method, the calculated values for all of the sampling sites were higher than 0.10, suggesting that there was a potential adverse biological risk in Bohai Bay. According to the calculated results, the biological risk decreased from 2001 to 2007 and increased afterwards. High-risk sites were mainly distributed along the coast. This study suggests that anthropogenic influences might be responsible for the potential risk of adverse biological effects from TPH and heavy metals in Bohai Bay.  相似文献   

13.
The importance of heavy metal bioavailability on the bioconcentration in aquatic biota is examined. To this purpose, mono- and multivariate statistical techniques are applied to develop correlations between heavy metal bioconcentration factor and sediment characteristics, that are expected to affect bioavailability, using a database of heavy metal concentrations in biota and sediment along with the available physicochemical characteristics. The statistical analysis shows that satisfactory correlations are obtained only when factors that affect bioavailability, such as metal oxides concentration and organic carbon content in the sediment, are taken into account.  相似文献   

14.
Current study presents the application of chemometric techniques to comprehend the interrelations among sediment variables whilst identifying the possible pollution source at Langat River,Malaysia.Surface sediment samples(0-10 cm)were collected at 22 sampling stations and analyzed for total metals(~(48)Cd,~(29)Cu,~(30)Zn,~(82)Pb),pH,redox potential(Eh),salinity,electrical conductivity(EC),loss on ignition(LOI)and cation exchange capacity(CEC).The principal component analysis(PCA)scrutinized the origin of environmental pollution by various anthropogenic and natural activities:four principal components were obtained with 86.34%(5 cm)and88.34%(10 cm).Standard,forward and backward stepwise discriminant analysis effectively discriminate 2variables(84.06%)indicating high variation of heavy metals accumulation at both depth.The cluster analysis accounted for high input of Zn and Pb at LA8,LA 10,LA 11 and LA 12 that mergers three(5 cm)and four(10cm)into clusters.This is consistent with the contamination factor(C_1)that shows high Cd(LA 1)and Pb(LA 7,LA 8,LA 10,LA 11 and LA 12)contaminations at 5cm.These indicate that Pb and Zn are the most bioavailable metals in the sediment with significant positive linear relationship at both sediment depths.Therefore,this approach is a good indication of environmental pollution status that transfers new findings on the assessment of heavy metals by interpreting large complex datasets and predicting the fate of heavy metals in the sediment.  相似文献   

15.
《Marine pollution bulletin》2014,83(1-2):194-200
Concentrations of heavy metals in river water and sediment were investigated in nine estuaries along the coast of Bohai Bay, Northern China. Multivariate statistical techniques such as principal component analysis and cluster analysis, in combination with metal concentration analysis and correlation analysis, were used to identify the possible sources of the metals and the pollution pattern in nine estuaries along the coast of Bohai Bay. The environmental risks of metals, evaluated by sediment quality guidelines and background values, revealed Hg contamination in the estuaries. However, levels of Cd in estuarine sediments were low, and they were less than those levels in river sediments, partly due to the high mobility and dilution of river or seawater. Cd did not contribute to sediment deposits in estuaries. High organic matter from effluents from large municipal sewage treatment plants was predominantly responsible for restricting Hg mobility from the river to Bohai Bay.  相似文献   

16.
The heavy metal inventory and the ecological risk of the tidal flat sediments in Haizhou Bay were investigated. Results show that the average concentrations of heavy metals in the surface sediments exceeded the environment background values of Jiangsu Province coastal soil, suggesting that the surface sediments were mainly polluted by heavy metals (Cd, Cr, Cu, Mn, Pb and Zn). In addition, the profiles of heavy metals fluxes can reflect the socio-economic development of Lianyungang City, and heavy metals inputs were attributed to anthropogenic activities. Cr, Cu, Pb and Zn were mainly present in the non-bioavailable residual form in surface sediments, whereas Cd and Mn were predominantly in the highly mobile acid soluble and reducible fractions. The ecological risk of the polluted sediments stemmed mainly from Cd and Pb. According to the Sediment quality guidelines (SQGs), however, the adverse biological effects caused by the heavy metals occasionally occurred in tidal flat.  相似文献   

17.
This study determines the pollution, fractionation, and ecological risks of sediment-bound heavy metals from coastal ecosystems off the Equatorial Atlantic Ocean. Contamination Factor(CF), pollution load index(PLI), and geoaccumulation index(Igeo) were used to assess the extent of the heavy metal pollution, while the potential ecological risk was evaluated using the risks assessment code(RAC) and Hkanson potential ecological risk. The analysis revealed concentrations(mg/g, dw) of the cadmium(Cd),chromium(Cr), copper(Cu), nickel(Ni), and lead(Pb) in sediments for wet and dry seasons vary from 4.40-5.08, 14.80-21.09. 35.03-44.8, 2.14-2.28, and 172.24-196.39, respectively. The results also showed that the metal fractionation percentages in the residual, oxidizable, and reducible fractions are the most significant, while the exchangeable and carbonate bound trace metals are relatively low. The RAC values indicate no risk for Cd and Ni and low risk for other metals at all the studied sites during both seasons.Potential ecological risk analysis of the heavy metal concentrations indicates that Cd had high individual potential ecological risk, while the other metals have low risk at all investigated sites. The multi-elemental potential ecological risk indices(R_1) indicate high ecological risk in all the ecosystems.  相似文献   

18.
The effects of a giant offshore dyke, Saemangeum, have been of special interest on both scientific and environmental aspects. Without any rival worldwide with regard to the ample scale and estuarine setting, the Saemangeum dyke and its vicinity (Saemangeum Area) should be an unprecedented experimental site for monitoring the consequence of the estuarine developments with dykes. In order to unravel geologic changes caused by the Saemangeum dyke, we collected a number of surface sediment samples and bathymetric profiles from a full coverage of the Saemangeum Area, and compared topography and sediment phase on the inter-annual (2002–2006, post-construction) and decadal (1982–2002, between pre- and post-construction) timescales.  相似文献   

19.
Liu W  Chen J  Hu J  Ling X  Tao S 《Marine pollution bulletin》2008,56(6):1091-1103
Concentrations of all studied organic pollutants, except for DDTs, were greatest at sites in Dalian Bay, where surface sediment concentrations of PHCs, PAHs, PCBs and DDTs exceeded the corresponding ERL values. The sum concentration of DDTs was greatest in Haizhou Bay exceeding the related ERM value. In terms of compositions of PAHs and PAEs, the predominant components were the MMW and HMW compounds, DBP and DEHP, respectively. The main degradation product of p,p'-DDT was p,p'-DDD at most sampling sites. The principal sources of PAHs and DDTs involved various pyrolytic processes (i.e., combustion of biomass and vehicle exhaust), and application of technical DDT (in the form of impurity or raw material), and a mixture of technical DDT and technical dicofol. Moreover, the coastal site with greatest potential ecological risk from total PAHs was located in Dalian Bay, while the littoral areas of Dalian Bay, two harbor cities (Yantai-Weihai), Jiaozhou Bay, and Haizhou Bay, had relatively high potential risk from DDTs, especially in Haizhou Bay.  相似文献   

20.
According to tie records of seismic station networks of China's continent and Korea Peninsula and the historical data,the complete seismicity pattern was obtained for the first time.The seismic zoning was conducted by means of the cluster analysis method.The map's spatial distribution of seismicity from 1960 to 1994 shows that there are three strong seismic zones:the first one strikes in the NE direction,from the Jiangsu plain in China to the central Korean Peninsula; the second strikes in the NW direction,from the Bohai Sea,China to the southern Korean Peninsula; the third strikes in the NW direction,from the western Liaoning Province to Pyongyang.Most of earthquakes are located along these three zones,the seismic intensity is lower than that in the mainland,and exhibited the feature of fractured crust of a marginal sea basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号