首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The frequency of oil spills in tropical seas may threaten coral reef survival and some of the past research has indicated that oil alone as well as oil dispersed with chemical dispersants is toxic to corals. These experiments were probably realistic of intertidal reef zones and sheltered shallow reef areas. However, few experiments have incorporated analytical chemistry necessary to relate reported biological effects to actual oil spill concentrations and exposure times. This paper outlines some new results with emphasis on a 3 year programme carried out in Bermuda using a flow-through laboratory dosing system, comparative laboratory and field experiments, real time measurements of oil concentrations, and non-destructive bioassays to allow repetitive data collection from the same specimens. Suggestions for future research programmes are given in light of these results. In addition to research on the effects of oil and chemically dispersed oil on other coral species and associated organisms in the coral reef, the relative sensitivity of the various ecosystems comprising the tropical coastal zone (mangroves, seagrasses and reef) must also be addressed. It is hoped that such advances will ensure that overall oil spill clean-up decisions will give due consideration to the individual physical and biological characteristics of each of these tropical environments.  相似文献   

2.
The environmental impacts of artisanal fishing gear on coral reef ecosystems were studied in the multi-gear fishery of southern Kenya to evaluate which types of gear have the greatest impact on coral reef biodiversity. The gear types studied were large and small traps, gill nets, beach seines, hand lines and spear guns. Levels of coral damage, proportion of juvenile fish and discards, size and maturity stage at first capture were quantified and compared amongst the gear types. Results indicate that fishers using beach seines, spears and gill nets cause the most direct physical damage to corals. Spear fishers showed the highest number of contacts to live corals per unit catch followed by fishers using gill nets (12.6 ± 1.8 and 5.9 ± 2.0 coral contacts per kg fish caught per trip respectively). Apart from discarding 6.5% of their daily catch in the sea, as it was too small, beach seine fishers also landed the highest percentage of juvenile fish (68.4 ± 15.7%), a proportion significantly higher (p < 0.001) than in any other gear. The size and maturity stage at first capture for 150 of 195 species caught by all gear types was well below the lengths at which they mature. For example, 100% of Lethrinus xanthochilus, 99% of Lethrinus nebulosus and 94% of Lethrinus harak caught were juveniles. Across all gear types, 50.1 ± 22.7% of the catch consisted of juvenile fish, indicating serious growth overfishing. Field assessment of levels of coral density showed that fishing grounds where beach seines were still in use had a significantly lower density than where beach seining was not used. This correlation is likely to arise in part because seines cannot be used in the most coral rich areas, and in part because coral loss is a consequence of seine use. On a per gear basis therefore, beach seines had the most impact on coral reef biodiversity. This study emphasizes the need to enforce restrictions on destructive gear and mesh sizes.  相似文献   

3.
The abundance of some marine fish species are correlated to the abundance of habitat-forming benthic organisms such as sponges and corals. A concern for fisheries management agencies is the recovery of these benthic invertebrates from removal or mortality from bottom trawling and other commercial fisheries activities. Using a logistic model, observations of available substrate and data from bottom trawl surveys of the Aleutian Islands, Alaska, we estimated recovery rates of sponges and corals following removal. The model predicted the observed sponge and coral catch in bottom trawl surveys relatively accurately (R2=0.38 and 0.46). For sponges, the results show that intrinsic growth rates were slow (r=0.107 yr−1). Results show that intrinsic growth rates of corals were also slow (r=0.062 yr−1). The best models for corals and sponges were models that did not include the impacts of commercial fishing removals. Subsequent recovery times for both taxa were also predicted to be slow. Mortality of 67% of the initial sponge biomass would recover to 80% of the original biomass after 20 years, while mortality of 67% of the coral biomass would recover to 80% of the original biomass after 34 years. The modeled recovery times were consistent with previous studies in estimating that recovery times were of the order of decades, however improved data from directed studies would no doubt improve parameter estimates and reduce the uncertainty in the model results. Given their role as a major ecosystem component and potential habitat for marine fish, damage and removal of sponges and corals must be considered when estimating the impacts of commercial bottom trawling on the seafloor.  相似文献   

4.
Kenya     
The Kenya coast is bathed by the northward-flowing warm waters of the East Africa Coastal Current, located between latitudes 1 and 5° S. With a narrow continental shelf, the coastal marine environments are dominated by coral reefs, seagrass beds and mangroves, with large expanses of sandy substrates where river inputs from Kenya's two largest rivers, the Tana and Athi rivers, prevent the growth of coral reefs. The northern part of the coast is seasonally influenced by upwelling waters of the Somali Current, resulting in lower water temperatures for part of the year. The coast is made up of raised Pleistocene reefs on coastal plains and hills of sedimentary origin, which support native habitats dominated by scrub bush and remnant pockets of the forests that used to cover East Africa and the Congo basin. The marine environment is characterized by warm tropical conditions varying at the surface between 25°C and 31°C during the year, stable salinity regimes, and moderately high nutrient levels from terrestrial runoff and groundwater. The semi-diurnal tidal regime varies from 1.5 to 4 m amplitude from neap to spring tides, creating extensive intertidal platform and rocky-shore communities exposed twice-daily during low tides. Fringing reef crests dominate the whole southern coast and parts of the northern coast towards Somalia, forming a natural barrier to the wave energy from the ocean. Coral reefs form the dominant ecosystem along the majority of the Kenya coast, creating habitats for seagrasses and mangroves in the lagoons and creeks protected by the reef crests. Kenya's marine environment faces a number of threats from the growing coastal human population estimated at just under three million in 2000. Extraction of fish and other resources from the narrow continental shelf, coral reef and mangrove ecosystems increases each year with inadequate monitoring and management structures to protect the resource bases. Coastal development in urban and tourist centers proceeds with little regard for environmental and social impacts. With a faltering economy, industrial development in Mombasa proceeds with few checks on pollution and other impacts. In 1998 Kenya's coral reefs suffered 50–80% mortality from the El Niño-related coral bleaching event that affected the entire Indian Ocean. The institutional, human resource and legal infrastructure for managing the coastal environment has in the past been low, however these are rapidly improving with the revitalization of national institutions and the passing in 1999 of an Environment Act. Marine Protected Areas are the key tool currently used in management of marine ecosystems, and focus principally on coral reefs and biodiversity protection. New initiatives are underway to improve application of fisheries regulations, and to use Integrated Coastal Area Management (ICAM) as a framework for protecting marine and coastal environments.  相似文献   

5.
Irgarol 1051 is a s-triazine herbicide used in popular slime-resistant antifouling paints. It has been shown to be acutely toxic to corals, mangroves and sea grasses, inhibiting photosynthesis at low concentrations (>50 ng l(-1)). We present the first data describing the occurrence of Irgarol 1051 in coastal waters of the Northeastern Caribbean (Puerto Rico (PR) and the US Virgin Islands (USVI)). Low level contamination of coastal waters by Irgarol 1051 is reported, the herbicide being present in 85% of the 31 sites sampled. It was not detected in water from two oceanic reference sites. In general, Irgarol 1051was present at concentrations below 100 ng l(-1), although far higher concentrations were reported at three locations within Benner Bay, USVI (223-1,300 ng l(-1)). The known toxicity of Irgarol 1051 to corals and sea grasses and our findings of significant contamination of the Northeastern Caribbean marine environment by this herbicide underscore the importance of understanding, more fully, local and regional exposure of reef and sea grass habitats to Irgarol 1051 and, where necessary, implementing actions to ensure adequate protection of these important ecosystems.  相似文献   

6.
This paper provides a comprehensive overview of the merits and limitations of using an economics based approach to assess and implement initiatives for coastal habitat rehabilitation and creation. A review of the literature indicates that habitat rehabilitation/creation costs vary widely between and within ecosystems. For coral reefs, costs range from US$ 10,000 to 6.5 million/hectare (ha);1 for mangroves US$ 3000–510,000/ha; for seagrasses US$ 9000–680,000/ha and for saltmarshes US$ 2000–160,000/ha. A review of the economic benefits derived from various coastal habitats based on a ‘Total Economic Value’ approach (i.e. accounting for direct and indirect uses, and ‘non-uses’) reveals that many thousands of US$ per hectare could ultimately accrue from their rehabilitation/creation. The paper concludes that despite its limitations, the ‘benefit-cost analysis’ framework can play an important role both in assessing the justification of coastal habitat rehabilitation/creation initiatives, and by helping to improve the overall effectiveness of such initiatives.  相似文献   

7.
Coastal blue carbon refers to the carbon taken from atmospheric CO2; fixed by advanced plants(including salt marsh,mangrove, and seagrass), phytoplankton, macroalgae, and marine calcifiers via the interaction of plants and microbes; and stored in nearshore sediments and soils; as well as the carbon transported from the coast to the ocean and ocean floor. The carbon sequestration capacity per unit area of coastal blue carbon is far greater than that of the terrestrial carbon pool. The mechanisms and controls of the carbon sink from salt marshes, mangroves, seagrasses, the aquaculture of shellfish and macroalgae, and the microbial carbon pump need to be further studied. The methods to quantify coastal blue carbon include carbon flux measurements, carbon pool measurements, manipulative experiments, and modeling. Restoring, conserving, and enhancing blue carbon will increase carbon sinks and produce carbon credits, which could be traded on the carbon market. The need to tackle climate change and implement China's commitment to cut carbon emissions requires us to improve studies on coastal blue carbon science and policy. The knowledge learned from coastal blue carbon improves the conservation and restoration of salt marshes,mangroves, and seagrasses; enhances the function of the microbial carbon pump; and promotes sustainable aquaculture, such as ocean ranching.  相似文献   

8.
We examined the spatial dynamic of artisanal fishing fleets around five European marine protected areas (MPAs) to derive general implications for the evaluation of MPAs as fisheries management tools. The coastal MPAs studied were located off France, Malta and Spain and presented a variety of spatial designs and processes of establishment. We developed a standardized methodology to define factors influencing effort allocation and to produce fishing effort maps by merging GIS with geostatistical modelling techniques. Results revealed that in most cases the factors “distance to the no-take”, “water depth”, and “distance to the port” had a significant influence on effort allocation by the fishing fleets. Overall, we found local concentration of fishing effort around the MPA borders. Thus, neglecting the pattern of fishing effort distribution in evaluating MPA benefits, such as spillover of biomass, could hamper sound interpretation of MPAs as fisheries management tools.  相似文献   

9.
黄河伊洛河中下游鱼类多样性及群落结构   总被引:1,自引:0,他引:1  
为了解伊洛河中下游鱼类多样性、群落结构及其与环境因子的关系,于2016年2-12月对伊洛河中下游5个河段开展鱼类多样性及环境调查.共采集鱼类12361尾,43种,隶属于4目9科37属.伊洛河中下游鱼类群落的Shannon-Wiener多样性指数、Margalef丰富度指数、Pielou均匀度指数和Simpson指数变化范围分别为1.75~2.38、2.44~3.63、0.59~0.76和0.73~0.86.各指数均以西草甸河段最高.各河段优势种以(Hemiculter leucisculus)、似鳊(Pseudobrama simoni)、鲫(Carassius auratus)、兴凯鱊(Acheilognathus chankaensis)和鳑鲏属(Rhodeus)等小型或广适性鱼类为主.丰度/生物量比较(ABC)曲线显示,除西草甸河段外,各河段优势鱼类群落均受到不同程度的干扰.其中七里铺和黑石关鱼类群落处于严重干扰状态,以小型鱼类或大型鱼类的幼鱼为主.采用冗余分析方法分析了鱼类群落结构与环境因子的关系,发现除了河床、水流、捕捞等因子以外,氨氮、总磷浓度与pH是导致伊洛河中下游鱼类群落结构差异的主要影响因子.针对伊洛河鱼类多样性现状,建议加强流域水质监管,恢复河流连通性,推进保护区全面禁渔,开展生态修复等以恢复伊洛河河流健康.  相似文献   

10.
Seagrasses are among the planet’s most effective natural ecosystems for sequestering (capturing and storing) carbon (C); but if degraded, they could leak stored C into the atmosphere and accelerate global warming. Quantifying and modelling the C sequestration capacity is therefore critical for successfully managing seagrass ecosystems to maintain their substantial abatement potential. At present, there is no mechanism to support carbon financing linked to seagrass. For seagrasses to be recognised by the IPCC and the voluntary C market, standard stock assessment methodologies and inventories of seagrass C stocks are required. Developing accurate C budgets for seagrass meadows is indeed complex; we discuss these complexities, and, in addition, we review techniques and methodologies that will aid development of C budgets. We also consider a simple process-based data assimilation model for predicting how seagrasses will respond to future change, accompanied by a practical list of research priorities.  相似文献   

11.
The damming of the Volta River has resulted in reduced flooding and an increase in mangrove cutting, due to the virtual collapse of agriculture and fishing in the estuary. Another ecological consequence of the reduced level of flooding has been reduced dispersal of seedlings of the principal mangrove Rhizophora racemosa. Therefore, after cutting of this species, recolonisation is either by conspecifics growing at very high densities or by one of a number of weed species. Environmental data collected in the vicinity of the mangroves and each of the weed species have enabled suggestions to be made as to whether R. racemosa or Avicennia africana would be the more suitable mangrove to replant. Recommendations have also been made to introduce the palm Nypa fruticans to the area, together with the development of nature-based tourism, both of which would provide alternative means of income generation, thereby reducing the need to cut remaining mangroves.  相似文献   

12.
由于自然和人为因素的影响,三峡水库鱼类资源一直在发生变化,为掌握三峡水库蓄水后典型支流香溪河鱼类群落的现状及历史变化,于2020年7月—2021年4月使用多网目复合刺网和地笼对香溪河鱼类群落进行实地采样,并结合历史数据进行比较分析。研究期间共采集到鱼类55种,隶属于7目14科,鲤科鱼类种类数最多,以杂食性鱼类和湖泊定居性鱼类为主,优势种为贝氏?(Hemiculter bleekeri)、短颌鲚(Coilia bratchygnahus)、似鳊(Pseudobrama simoni)和翘嘴鲌(Culter alburnus),其相对重要性指数(IRI)分别为5502、3828、2567和1109。鱼类物种多样性指数在春季最高,夏季最低。刺网单位捕捞努力量渔获个体数和单位捕捞努力量渔获量在夏季最高,冬季最低。与三峡水库蓄水前相比,香溪河鱼类中长江上游特有鱼类减少4种,外来鱼类增加3种。湖泊定居性种类持续增加,喜流水性种类减少,鱼类优势种发生较大变动。2020—2021年香溪河鱼类组成与1987年的相似性指数为0.29,与2012—2013年的相似性指数为0.53,反映三峡水库蓄水前后香溪河...  相似文献   

13.
Overfishing has caused dramatic changes in structures of exploited populations as well as ecosystems. In this article, we focus on fishing effects on age (size) and spatial structures of exploited fishes. Accumulating evidence has shown that large and experienced spawning individuals are able to produce higher quality and quantity of eggs, known as maternal effects, and that individuals of different age classes tend to spawn in different locations and times. These behaviors are associated with a healthy age structure and contribute to bet-hedging capacity that is important in smoothing out short-term environmental variability. Here, we document a widespread phenomenon of age (size)-truncation of exploited populations driven by size-selective fishery removals. Such size-selective fishing may have evolutionary consequence and may be difficult to reverse. In addition, fishing often reduces population spatial heterogeneity that also contributes importantly to bet-hedging. We review studies showing that the effects of age truncation and reduction of spatial heterogeneity have reduced resilience and elevated the fluctuation amplitude of exploited populations facing a changing environment. Recent analyses indicated that fish populations often exhibit nonlinear nature and have potential to shift dramatically in a short time. All the evidence suggests that fishing, by altering age or spatial structures, may make exploited fishes, more prone to catastrophic shifts. Therefore, to achieve sustainable fisheries, management should conserve the age and spatial structure in addition to viable spawning biomass.  相似文献   

14.
Seagrass ecosystems are diminishing worldwide and repeated studies confirm a lack of appreciation for the value of these systems. In order to highlight their value we provide the first discussion of seagrass meadows as a coupled social–ecological system on a global scale. We consider the impact of a declining resource on people, including those for whom seagrass meadows are utilised for income generation and a source of food security through fisheries support. Case studies from across the globe are used to demonstrate the intricate relationship between seagrass meadows and people that highlight the multi-functional role of seagrasses in human wellbeing. While each case underscores unique issues, these examples simultaneously reveal social–ecological coupling that transcends cultural and geographical boundaries. We conclude that understanding seagrass meadows as a coupled social–ecological system is crucial in carving pathways for social and ecological resilience in light of current patterns of local to global environmental change.  相似文献   

15.
This paper focuses on relationships between mangroves and coastal fish resources. A review of the literature highlights the lack of quantified relationships. We show that mangroves can be considered as a particular case of an estuarine environment, and then address the broader issue of the relationships between tropical estuaries and fishery resources. An estuarine fish community is composed of three main assemblages, respectively from continental, strictly estuarine or marine origin. The major characteristics of these assemblages are defined. On this basis we detail the different and sometimes opposite impacts of major rehabilitation actions on each assemblage. The biological approach is then widened by a critical overview of current approaches in economic valuation of mangrove-related fish resources. This provides a rational and scientific foundation for economic analysis of resources and for coastal management decisions, and allows us to define priorities for further scientific and policy research in these areas.  相似文献   

16.
Intensive recreational SCUBA diving threatens coral reef ecosystems. The reefs at Dahab, South Sinai, Egypt, are among the world’s most dived (>30,000 dives y−1). We compared frequently dived sites to sites with no or little diving. Benthic communities and condition of corals were examined by the point intercept sampling method in the reef crest zone (3 m) and reef slope zone (12 m). Additionally, the abundance of corallivorous and herbivorous fish was estimated based on the visual census method. Sediments traps recorded the sedimentation rates caused by SCUBA divers. Zones subject to intensive SCUBA diving showed a significantly higher number of broken and damaged corals and significantly lower coral cover. Reef crest coral communities were significantly more affected than those of the reef slope: 95% of the broken colonies were branching ones. No effect of diving on the abundance of corallivorous and herbivorous fish was evident. At heavily used dive sites, diver-related sedimentation rates significantly decreased with increasing distance from the entrance, indicating poor buoyancy regulation at the initial phase of the dive. The results show a high negative impact of current SCUBA diving intensities on coral communities and coral condition. Corallivorous and herbivorous fishes are apparently not yet affected, but are endangered if coral cover decline continues. Reducing the number of dives per year, ecologically sustainable dive plans for individual sites, and reinforcing the environmental education of both dive guides and recreational divers are essential to conserve the ecological and the aesthetic qualities of these dive sites.  相似文献   

17.
It is well established that anthropogenic nutrient inputs harm estuarine seagrasses, but the influence of nutrients in rocky intertidal ecosystems is less clear. In this study, we investigated the effect of anthropogenic nutrient loading on Phyllospadix spp., a rocky intertidal seagrass, at local and regional scales. At sites along California, Washington, and Oregon, we demonstrated a significant, negative correlation of urban development and Phyllospadix bed thickness. These results were echoed locally along an urban gradient on the central California coast, where Phyllospadix shoot δ15N was negatively associated with Phyllospadix bed thickness, and experimentally, where nutrient additions in mesocosms reduced Phyllospadix shoot formation and increased epiphytic cover on Phyllospadix shoots. These findings provide evidence that coastal development can threaten rocky intertidal seagrasses through increased epiphytism. Considering that seagrasses provide vital ecosystem services, mitigating eutrophication and other factors associated with development in the rocky intertidal coastal zone should be a management priority.  相似文献   

18.
There is a paucity of data in the published literature on the ecological and economic impacts of derelict fishing traps (DFTs) in coastal ecosystems. We synthesized results from seven NOAA-funded trap fisheries studies around the United States and determined that DFT-caused losses to habitat and harvestable annual catch are pervasive, persistent, and largely preventable. Based on this synthesis, we identified key gaps to fill in order to better manage and prevent DFTs. We conclude with suggestions for developing a U.S. DFT management strategy including: (1) targeting studies to estimate mortality of fishery stocks, (2) assessing the economic impacts of DFTs on fisheries, (3) collaborating with the fishing industry to develop solutions to ghost fishing, and (4) examining the regional context and challenges resulting in DFTs to find effective policy solutions to manage, reduce, and prevent gear loss.  相似文献   

19.
Our view of how water quality effects ecosystems of the Great Barrier Reef (GBR) is largely framed by observed or expected responses of large benthic organisms (corals, algae, seagrasses) to enhanced levels of dissolved nutrients, sediments and other pollutants in reef waters. In the case of nutrients, however, benthic organisms and communities are largely responding to materials which have cycled through and been transformed by pelagic communities dominated by micro-algae (phytoplankton), protozoa, flagellates and bacteria. Because GBR waters are characterised by high ambient light intensities and water temperatures, inputs of nutrients from both internal and external sources are rapidly taken up and converted to organic matter in inter-reefal waters. Phytoplankton growth, pelagic grazing and remineralisation rates are very rapid. Dominant phytoplankton species in GBR waters have in situ growth rates which range from approximately 1 to several doublings per day. To a first approximation, phytoplankton communities and their constituent nutrient content turn over on a daily basis. Relative abundances of dissolved nutrient species strongly indicate N limitation of new biomass formation. Direct ((15)N) and indirect ((14)C) estimates of N demand by phytoplankton indicate dissolved inorganic N pools have turnover times on the order of hours to days. Turnover times for inorganic phosphorus in the water column range from hours to weeks. Because of the rapid assimilation of nutrients by plankton communities, biological responses in benthic communities to changed water quality are more likely driven (at several ecological levels) by organic matter derived from pelagic primary production than by dissolved nutrient stocks alone.  相似文献   

20.
Biogeomorphic ecosystems (e.g. rivers, salt marshes, mangroves and coastal dunes) are shaped by feedbacks between geomorphology and engineer plants that occur at various spatiotemporal scales. The classical bivariate and multivariate statistical methods currently used in biogeomorphology do not permit clear identification of reciprocal causality between geomorphic and biological variables. The aim of this article is to present the potential of the cross-lagged panel model (CLPM) to estimate reciprocal associations (causality) between one geomorphic and one biological variable over time. This tool, which originates from behavioural, social, medical and educational sciences, has clear potential as a novel approach to causal analysis in the context of biogeomorphic ecosystems. We provide a case study of the application of CLPM for analysing biogeomorphic feedbacks between topography and Populus nigra L. physiognomy on a wooded point bar of the Garonne River, France. © 2018 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号