首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
蒙新高原湖泊水质状况及变化特征   总被引:2,自引:3,他引:2  
曾海鳌  吴敬禄 《湖泊科学》2010,22(6):882-887
蒙新高原位于干旱/半干旱气候区,区内湖泊众多,但多为盐湖和咸水湖.近年来,由于湖泊咸化、萎缩甚至干涸的过程加快,区内多数湖泊水资源严重短缺,湖泊及其流域的生态环境遭遇巨大破坏.本文选取蒙新地区11个淡水和微咸水湖泊,通过对不同区域和不同类型的湖泊水质状况分析和对比研究,揭示蒙新地区湖泊水质现状及其变化特征与原因.结果表明,新疆地区湖泊类型多样,湖水阴、阳离子涵盖了各种水化学类型,而内蒙湖泊均为钠组-氯化物型.不同湖泊间湖水离子浓度和矿化度差异较大,湖水交换是蒙新地区湖泊水体矿化度的主要影响因素;与1988年相比,哈纳斯湖、阜康天池和赛里木湖等山地湖泊矿化度无明显变化或呈下降趋势,反映了区域气候变化特征;柴窝堡湖和红碱淖湖水矿化度快速升高,而达里诺尔水体矿化度增幅较小,其差异反映了修筑水库、地下水开采等人类活动在湖泊水环境变化中的不同作用.近50年来,乌伦古湖、博斯腾湖、吉力湖和乌梁素海水体矿化度波动升高,尤其近年来矿化度升高趋势加快,反映了流域内工农业等人类活动增强而导致入湖污染物增加以及气候干旱引起湖水浓缩两个方面所产生的叠加效应.  相似文献   

2.
ABSTRACT

As urban space continues to expand to accommodate a growing global population, there remains a real need to quantify and qualify the impacts of urban space on natural processes. The expansion of global urban areas has resulted in marked alterations to natural processes, environmental quality and natural resource consumption. The urban landscape influences infiltration and evapotranspiration, complicating our capacity to quantify their dynamics across a heterogeneous landscape at contrasting scales. Impervious surfaces exacerbate runoff processes, whereas runoff from pervious areas remains uncertain owing to variable infiltration dynamics. Increasingly, the link between the natural hydrological cycle and engineered water cycle has been made, realising the contributions from leaky infrastructure to recharge and runoff rates. Urban landscapes are host to a suite of contaminants that impact on water quality, where novel contaminants continue to pose new challenges to monitoring and treatment regimes. This review seeks to assess the major advances and remaining challenges that remain within the growing field of urban hydrology.
Editor M.C. Acreman; Associate editor E. Rozos  相似文献   

3.
Coastal contamination in the 1940s was assessed based on analysis of canned blue mussels presumably collected from Birch Harbor, Maine, USA. Analytical results on legacy organic contaminants were compared to long-term National Oceanic and Atmospheric Administration (NOAA) Mussel Watch (MW) monitoring data to estimate the degree of coastal contamination before World War II (WWII) when many synthetic organic compounds were first introduced into the environment. While dieldrin and chlordane were not detected in the canned mussels, dichloro-diphenyl-trichloroethane (DDT) and hexachlorocyclohexanes (HCHs) were present at lower concentrations relative to the more recent MW data. Polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were detected, and the later were significantly higher in canned mussels relative to the MW data (p < 0.05). Furthermore, moving average analysis applied to the MW data depicted three-phased temporal trend patterns (increase-decrease-steady state) for virtually all contaminants indicating an overall increased coastal contamination in post WWII era.  相似文献   

4.
实施“西部大开发”战略的重大决策,对于平衡中国各区域间的发展位差以及提高整个国家的经济实力具有重要的战略意义.而西部脆弱的生态环境决定了西部大开发中要以生态保护优先的环境保护政策为切入点和立足点,坚持经济大开发与可持续发展有机结合.本文系统地阐述了中国蒙新湖区在气候变化和人类活动的影响下水环境的主要问题及控制对策,并以...  相似文献   

5.
The objective of this study is to investigate the effect of rainfall intensity and slope gradient on the performance ofvetiver grass mulch (VGM) in soil and water conservation.The study involved field ...  相似文献   

6.
井水位前驱波与气压、 风、 降雨及强震关系的分析   总被引:12,自引:0,他引:12  
张淑亮  李冬梅  范雪芳 《地震》2005,25(3):69-77
对山西朔州井与静乐井水位前驱波与气压、 风、 降雨及强震关系进行定量、 半定量统计分析的结果表明, 前驱波引起的井水位变幅与气压引起的井水位的水位变幅不一致, 前驱波的周期与气压、 风、 降雨周期不匹配, 出现的时间不同步, 形态差异也很大, 与短时间集中降雨也无明显的对应关系。 前驱波与强震之间存在较好的对应关系, 对应率在50%左右。 井水位前驱波现象不是气压、 风、 降雨等干扰因素的短期突变所造成的, 可能反映了大震前震源内部信息。  相似文献   

7.
This paper discusses the effects of water quality on the hydrological and erosion response of non‐saline, non‐sodic soils during simulated rain experiments. It is well known that rain water quality affects the behaviour of saline soils. In particular, rain simulation experiments cannot be run using tap water if realistic values of infiltration rates and soil erosion are to be found. This paper reports on similar effects for non‐saline, non‐sodic soils. Two soils – a well‐aggregated clay‐rich soil developed on marine silty clay deposits and a soil developed on silt loam – were selected and subjected to a series of simulated rainstorms using demineralized water and tap water. The experiments were conducted in two different laboratories in order to obtain results independent of the tap water quality or the rainfall simulator characteristics. The results indicate that time‐to‐ponding is largely delayed by solute‐rich water (tap water). When tap water is used, infiltration rates are significantly overestimated, i.e. by more than 100 per cent. Interrill erosion rates increase by a factor of 2·5–3 when demineralized water is used. The silty clay soil was more affected by the water quality than the silt loam soil, with respect to infiltration and runoff production. Regarding interrill erosion rates, the two tested soils were similarly affected by the water quality. Therefore, it can be concluded that rainfall simulation experiments with non‐dispersive soils (e.g. non‐saline, non‐sodic) must also be conducted using water with very low electrical conductivity (i.e. less than 30–50 µS cm−1), close to that of distilled water. The use of tap water certainly hampers comparisons and the relative ranking of the hydrological and erosion response of different soils, while parameter values, such as final infiltration rate or time‐to‐ponding, cannot be extrapolated and extended to natural situations. Therefore, the majority of hydrological and erosion models and parameter values measured during rainfall simulations in the past should be used with caution for all types of soils. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
ABSTRACT

Appropriate allocation of limited freshwater resources to humans and ecosystems is an important issue hampering sustainable development in mountainous regions. The Taihang Mountain Region (TMR), including the Yellow and Hai river basins, is an important water source area for the North China Plain. The distributed hydrological model Water and Energy transfer Processes in Large river basins (WEP-L) was used to simulate the water cycle processes and to summarize the temporal and spatial changes in the blue and green water in the TMR from 1956 to 2015. The results show that in the period 2011–2015 the annual average blue water decreased by 7.31 × 109 m3, while the annual average green water increased by 13.60 × 109 m3 compared to 1956–1960. At the inter-annual time scale, the blue water exhibited a downward trend while the green water exhibited an upward trend. The amount of seasonal blue water in the TMR is ranked in descending order: summer, autumn, spring and winter, while for green water, the rank is summer, spring, autumn and winter. The amounts of blue and green water are higher on the windward than on the leeward slopes. The blue water yield is generally higher in forests and grasslands than in farmland, while the green water exhibits the opposite response. A greater emphasis should be placed on the widening gap between blue water and green water due to climate warming, and on soil and water conservation measures.  相似文献   

9.
Total coliforms are used as indicators for evaluating microbial water quality in distribution networks. However, total coliform provides only a weak “evidence” of possible fecal contamination because pathogens are subset of total coliform and therefore their presence in drinking water is not necessarily associated with fecal contamination. Heterotrophic plate counts are also commonly used to evaluate microbial water quality in the distribution networks, but they cover even a wider range of organisms. As a result, both of these indicators can provide incomplete and highly uncertain bodies of evidence when used individually. In this paper, it is shown that combing these two sources of information by an appropriate data fusion technique can provide improved insight into microbial water quality within distribution networks. Approximate reasoning methods like fuzzy logic and probabilistic reasoning are commonly used for data fusion where knowledge is uncertain (i.e., ambiguous, incomplete, and/or vague). Traditional probabilistic frameworks like Bayesian analysis, reasons through conditioning based on prior probabilities (which are hardly ever available). The Dempster–Shafer (DS) theory generalizes the Bayesian analysis without requiring prior probabilities. The DS theory can efficiently deal with the difficulties related to the interpretation of overall water quality where the redundancy of information is routinely observed and the credibility of available data continuously changes. In this paper, the DS rule of combination and its modifications including Yager’s modified rule, Dubois–Prade disjunctive rule and Dezert–Smarandache rule are described using an example of microbial water quality in a distribution network.  相似文献   

10.
Biologically mediated redox processes in the riparian zone, like denitrification, can have substantially beneficial impacts on stream water quality. The extent of these effects, however, depends greatly on the hydrological boundary conditions. The impact of hydrological processes on a wetland's nitrogen sink capacity was investigated in a forested riparian fen which is drained by a first‐order perennial stream. Here, we analysed the frequency distributions and time‐series of pH and nitrogen, silica, organic carbon and oxygen concentrations in throughfall, soil solution, groundwater and stream water, and the groundwater levels and stream discharges from a 3‐year period. During baseflow conditions, the stream was fed by discharging shallow, anoxic groundwater and by deep, oxic groundwater. Whereas the latter delivered considerable amounts of nitrogen (~0·37 mg l?1) to the stream, the former was almost entirely depleted of nitrogen. During stormflow, near‐surface runoff in the upper 30 cm soil layer bypassed the denitrifying zone and added significant amounts to the nitrogen load of the stream. Nitrate‐nitrogen was close to 100% of deep groundwater and stream‐water nitrogen concentration. Stream‐water baseflow concentrations of nitrate, dissolved carbon and silica were about 1·6 mg l?1, 4 mg l?1 and 7·5 mg l?1 respectively, and >3 mg l?1, >10 mg l?1 and <4 mg l?1 respectively during discharge peaks. In addition to that macroscale bypassing effect, there was evidence for a corresponding microscale effect: Shallow groundwater sampled by soil suction cups indicated complete denitrification and lacked any seasonal signal of solute concentration, which was in contrast to piezometer samples from the same depth. Moreover, mean solute concentration in the piezometer samples resembled more that of suction‐cup samples from shallower depth than that of the same depth. We conclude that the soil solution cups sampled to a large extent the immobile soil‐water fraction. In contrast, the mobile fraction that was sampled by the piezometers exhibited substantially shorter residence time, thus being less exposed to denitrification, but predominating discharge of that layer to the stream. Consequently, assessing the nitrogen budget based on suction‐cup data tended to overestimate the nitrogen consumption in the riparian wetland. These effects are likely to become more important with the increased frequency and intensity of rainstorms that are expected due to climate change. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Recent studies in many developing countries have shown that Small Scale Independent Providers (SSIPs) in low-income areas (LIAs) are practical alternatives to water utilities. This study explored supply dynamics and quality of alternative water sources in four LIAs of Lilongwe City in Malawi using qualitative and quantitative methods. Household-level surveys (n = 120) and transect walks were employed to determine the socio-economic activities in the areas. One-on-one discussions were made with water source owners (SSIPs) (n = 24). Data on policy and institutional frameworks was collected through desktop study and Key Informant Interviews (n = 25). Quality of the water sources (shallow wells and boreholes) was determined by collecting grab samples (n = 24) in triplicate using 500 mL bottles. Selected physico-chemical and microbiological parameters were measured: pH, EC, TDS, turbidity, water temperature, salinity, K, Na, Ca, Mg, Cl, F, NO3, alkalinity, water hardness, Fecal coliform (FC) and Faecal Streptococci (FS) bacteria. Water quality data was compared with Malawi Bureau of Standards (MBS) and World Health Organization (WHO) guidelines for drinking water. Shallow wells were reported (65%, n = 120) to be the main source of water for household use in all areas. Some policies like prohibition of boreholes and shallow wells in City locations were in conflict with other provisions of water supply, sanitation and housing. High levels of FC (0–2100 cfu/100 mL) and FS (0–1490 cfu/100 mL) at several sites (>90%, n = 24) suggest water contamination likely to impact on human health. This calls for upgrading and recognition of the water sources for improved water service delivery.  相似文献   

12.
根据呼伦湖的实际水文过程,计算1963-1980年月水量平衡,在此基础上,分析库容与径流、径流+降雨、径流+降雨-蒸发的相关性.利用累积和分析水位、径流、降雨、蒸发年均值的突变情况,进而重点论述了2000年后水位持续降低的原因.同时,探讨各水平衡项的年内分布规律及相互关系.结果表明,2000年后水位的急剧降低是气候变化(暖干化)造成的.河川径流对水位的影响程度最大,其次为湖面降雨.每年4、5月,冰封期积累的降雪融化渗入地下补给湖泊,其他时间则由湖泊补给地下水.  相似文献   

13.
Water resources development and exploitation are critical for a viable and sustainable modern human society. Unfortunately, however, there is a considerable water storage depletion and environmental degradation in especially (semi)‐arid river basins due to the forces of population growth, urbanization, industrialization and intensive agricultural irrigation. Addressing water storage depletion is not only a question of research, but is very much a question of developing appropriate countermeasures to preserve valuable/fragile ecological systems. As one such effort, this study analyzes the hydrology and storage in Baiyangdian Lake as affected by water resources development and exploitation in the Baiyangdian Lake Catchment of Northern China. Three models, WetSpass (Water and Energy Transfer between Soil, Plants and the Atmosphere under quasi‐Steady State), WATBUD (Water Budget) and MODFLOW (USGS three‐dimensional finite‐difference groundwater flow model) were used in combination to simulate the hydrogeologic conditions in the lake catchment for 1956–2008. The model‐calibrated values are in good agreement with the measured values, with R2 > 0·8 and RMSE < 10% of measured values. Runoff, the primary source of water for the lake storage, has steadily declined due mainly to multiple dam construction and reservoir impoundments in the headwater valleys and rivers in the catchment. In addition to dwindling runoff, groundwater levels have declined considerably due to over‐abstraction, mainly for agricultural irrigation. Additionally, evaporation or evapotranspiration is increasing in the lake catchment due to rising temperatures. The worsening hydrological conditions, amid the harsh semi‐arid climate, have resulted in considerable depletion of the storage and hydrology of Baiyangdian Lake. Sustainable countermeasures like agricultural water‐saving and infusion of external water (e.g., via by the South–North Water Transfer Project) could be a viable option for preserving not only the hydrology of the lake catchment, but also storage in Baiyangdian Lake. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
利用环境同位素及水化学分析方法研究发现,岱海除了接受降水的直接补给之外,还接受泉水的补给.岱海周边泉水与井水的δD、δ18O值比当地降水明显贫化,泉水、井水显然不是来自于当地降水的补给;通过对岱海周边包气带土壤水中的氢氧稳定同位素分析发现,土壤水中的δD、δ18O值比当地降水值贫化,在地表埋深1 m附近,土壤中的盐分发生了累积,土壤水中的含盐量明显超过了土壤受蒸发所引起的增加量.研究表明岱海周边地区的大气降水不能入渗补给到潜水中,补给岱海的泉水不是来自于当地降水,而是具有同位素贫化特征的外源水.由此推断,在地层中可能存在一种地下水深循环的跨流域补给方式.在内蒙古高原地区,深循环地下水是维系湖泊不可或缺的补给源.  相似文献   

15.
《水文科学杂志》2013,58(1):124-134
Abstract

The three-route South-to-North Water Diversion Project (SNWDP), transferring water from the water-rich Yangtze River and its tributaries to the much drier area of North China for irrigation, industrial and domestic use, has been implemented in China since 2002. Thus, water quality in the Danjiangkou Reservoir, the water source area of the SNWDP's Middle Route, is of great concern. We investigate its water quality from 2004 to 2006 by monitoring some important physical (T, turbidity and SPM) and chemical (DO, pH, alkalinity, TDS, SpCond, ORP, CODMn and BOD) parameters and nutrient (nitrogen and phosphorus) contents. Consequently, their spatial and temporal patterns in the reservoir were examined. The results indicate that the water of the reservoir is of a Ca and HCO3 type, and the major pollutants are nitrogen and CODMn. Comparisons among the sampling sites show that water quality increases downstream, implying the self-purification capacity of the reservoir. The reservoir in general has better water quality in the dry season than in the wet season. Integrated basin management would be critical of the water quality in the Danjingkou Reservoir for the interbasin water transfer project.  相似文献   

16.
Abkenar open water(AOW)has a 35 km2distribution and is the largest part of the Anzali Lagoon in the southern coastal zone of the Caspian Sea.The effects of deforestation in the upstream basin of the AOW were assessed by measuring the rate of sedimentation,sediment contamination,and ecological risk for aquatic life and end-users using radioisotopes Cesium-137 and Lead-210.The chronology of the AOW sediment column was studied using the Constant Rate of Supply model.Correlations between environmental changes and the sedimentary regime of the study area highlight the contribution of the AOW authorized international and local wood harvesting companies pre-and-post 1950 in the catchment in terms of the rate of sediment supply and the influx of toxic metals.Historical evidence shows that two specific layers formed during World Wars I and II with the mean rates of 0.185±0.04(±STD)and 0.32±0.02 kg/(m2·y),respectively.The highest influx of alkali elements and toxic metals(nickel,cadmium,lead,zinc,and copper)into the basin occurred in 1945.Two layers of gray mud(16-50 cm)and organic-rich dark loss mud(0-16 cm)correlated well with the programmed wood harvesting projects.These layers accumulated from 1953 to 2000 with a mean rate of 0.6±0.2 and 2±0.7 kg/(m2·y).Thus,aquatic life and end-users have been exposed to moderate to extremely high levels of toxic metals and a moderate level of contamination since the 1950s.  相似文献   

17.
Wildfires are landscape scale disturbances that can significantly affect hydrologic processes such as runoff generation and sediment and nutrient transport to streams. In Fall 2016, multiple large drought-related wildfires burned forests across the southern Appalachian Mountains. Immediately after the fires, we identified and instrumented eight 28.4–344 ha watersheds (four burned and four unburned) to measure vegetation, soil, water quantity, and water quality responses over the following two years. Within burned watersheds, plots varied in burn severity with up to 100% tree mortality and soil O-horizon loss. Watershed scale high burn severity extent ranged from 5% to 65% of total watershed area. Water quantity and quality responses among burned watersheds were closely related to the high burn severity extent. Total water yield (Q) was up to 39% greater in burned watersheds than unburned reference watersheds. Total suspended solids (TSS) concentration during storm events were up to 168 times greater in samples collected from the most severely burned watershed than from a corresponding unburned reference watershed, suggesting that there was elevated risk of localized erosion and sedimentation of streams. NO3-N concentration, export, and concentration dependence on streamflow were greater in burned watersheds and increased with increasing high burn severity extent. Mean NO3-N concentration in the most severely burned watershed increased from 0.087 mg L−1 in the first year to 0.363 mg L−1 (+317%) in the second year. These results suggest that the 2016 wildfires degraded forest condition, increased Q, and had negative effects on water quality particularly during storm events.  相似文献   

18.
适宜的生态水位能够反映湖区生态系统的多种需求,是湖泊长期稳定健康运转的基本保障.目前湖泊适宜生态水位的推求大多侧重恢复天然水位情势.然而过水型湖泊承担着防洪、供水、航运等多种功能,频繁的人类活动导致湖泊水位情势异常复杂.同时随着社会经济的快速发展,水质恶化对过水型湖泊生态系统造成了较大的负面影响,仅恢复天然水位情势难以反映过水型湖泊的生态需求.因此,在IHA-RVA法的基础上,本文针对过水型湖泊吞吐性强的特点,利用水质-水位二元响应关系系统地提出了一套逐月修正过水型湖泊适宜生态水位阈值,并确定适宜水位变动率的方法.以洪泽湖为应用实例,结果表明:1)根据湖泊水文情势和入湖污染物变化情况,湖泊调度周期可以划分为平水期(1-4月)、泄水期(5-6月)、蓄水前期(7-9月)和蓄水后期(10-12月);2)各时期内,洪泽湖水位和水质呈现较强的相关性,其中平水期、泄水期和蓄水后期水质均随着水位上升而下降,平均Pearson系数达-0.77,仅在蓄水前期水质随水位上升而改善;3)现阶段洪泽湖的自净能力和污染物滞留比例竞争关系激烈,逐月适宜生态水位阈值为:12.92~12.99、12.79~12.99...  相似文献   

19.
Abstract

Water quality of the Uruguay River was evaluated with multi-parametric (temperature, turbidity, conductivity, pH, dissolved oxygen) and sediment trap data (particle flux, total organic carbon and nitrogen contents) and correlated to precipitation, river discharge and El Niño Southern Oscillation (ENSO) indices for the period 2006–2011. Hydro-meteorological parameters averaged 24–85% variability with coincident precipitation (200–400 mm month-1), discharge (7000–28 000 m3 s-1) and turbidity peaks (50–80 NTU) in the austral spring, and absolute maxima during the El Niño 2009 episode. Spectral analysis of discharge and sea-surface temperature anomaly (SSTA) showed consistent variance maxima at approx. 3 and 1.5 years. Deseasonalized discharge was significantly correlated to SSTA. During river floods, pH decreased (from 7.5 to 6.6) and particle dynamics peaked (turbidity: 15–80 NTU; vertical fluxes: 20–200 g m-2 d-1; total solid load: <1000 to 100 000 t d-1),whereas TOC remained stable (3.2 ± 0.8%) and C/N ratios increased (10–12) due to the higher contribution of terrestrial detritus.  相似文献   

20.
Baseflows have declined for decades in the Lesser Himalaya but the causes are still debated. This paper compares variations in streamflow response over three years for two similar headwater catchments in northwest India with largely undisturbed (Arnigad) and highly degraded (Bansigad) oak forest. Hydrograph analysis suggested no catchment leakage, thereby allowing meaningful comparisons. The mean annual runoff coefficient for Arnigad was 54% (range 44–61%) against 62% (53–69%) at Bansigad. Despite greater total runoff Qt (by 250 mm year1), baseflow at Bansigad ceased by March, but was perennial at Arnigad (making up 90% of Qt vs. 51% at Bansigad). Arnigad storm flows, Qs, were modest (8–11% of Qt) and occurred mostly during monsoons (78–98%), while Qs at Bansigad was 49% of Qt and occurred also during post-monsoon seasons. Our results underscore the importance of maintaining soil water retention capacity after forest removal to maintain baseflow levels.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR D. Gerten  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号