首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 260 毫秒
1.
The settling of solid particles in a fluid is an important process that needs to be considered in many fields of research. For example, the interactions among particles and between particles and the surrounding fluid are important topics in studying suspended sediment transport and water clarification. In this paper, the settling processes and interactions of twin spherical particles released side by side were experimentally studied. The Reynolds number varied in the range of 1-300, which is wit...  相似文献   

2.
《国际泥沙研究》2023,38(5):739-753
Soil erosion is a significant threat in the Rif region in northern Morocco. Hence, accurate cartography of the phenomenon, magnitude, and extent of erosion in the area needs a simple, rapid, and economical method such as magnetic susceptibility (MS). The current study aims to: (i) determine the factors influencing the variation of soil MS, (ii) exploit MS to estimate soil loss using two approaches in different homogenous units characterized by the same climatic conditions with different edaphic characteristics (land use, slope, and lithology), and (iii) highlight the potential for using MS as a cheap and rapid tracer of a long term erosion and deposition processes. Mass-specific magnetic susceptibility at low (χlf) and high (χhf) frequencies were measured for 182 soil samples collected in the study area. A tillage homogenization (T-H) model and a simple proportional model (SPM) were applied on an undisturbed soil profile to predict the eroded soil depths for given cores. The results confirm that χlf is influenced by land use, slope, and soil type. Pedogenesis is the main factor affecting soil MS enhancement, indicated by homogenous magnetic mineralogy with a dominance of super-paramagnetic (SP) and stable single domain (SSD) magnetic grains. The study results show that higher soil losses have occurred in almost all the soil samples when applying the T-H model compared to application of the SPM. The SPM underestimates erosion due to its ignorance of the MS of the plow layers after erosion. The current study implies the high efficacy of magnetic susceptibility as the quick, easily measurable, simple, and cost-effective approach that can be used as an alternative technique for evaluating soil redistribution.  相似文献   

3.
《Journal of Hydrology》2006,316(1-4):84-97
Dyes are important hydrological tracers. Many different dyes have been proposed as optimal tracers, but none of these dyes can be considered an ideal water tracer. Some dyes are toxic and most sorb to subsurface materials. The objective of this study was to find the molecular structure of an optimal water tracer. We used QSAR to screen a large number of hypothetical molecules, belonging to the class of triarylmethane dyes, in regard to their sorption characteristics to a sandy soil. The QSAR model was based on experimental sorption data obtained from four triarylmethane dyes: C.I. Food Blue 2 (C.I. 42090; Brilliant Blue FCF), C.I. Food Green 3 (C.I. 42053; FD&C Green No. 3), C.I. Acid Blue 7 (C.I. 42080; ORCOacid Blue A 150%), and C.I. Acid Green 9 (C.I. 42100; ORCOacid Fast Green B). Sorption characteristics of the dyes to the sandy soil were expressed with the Langmuir isotherm. Our premise was that dye sorption can be reduced by attachment of sulfonic acid (SO3) groups to the triarylmethane template. About 70 hypothetical dyes were created and QSAR were used to estimate sorption characteristics. The results indicated that both the position and the number of SO3 groups affected dye sorption. Sorption decreased with increasing number of SO3 groups attached to the molecule. Increasing the number of sulfonic acid groups also decreases the toxicity of the compounds. An optimal triarylmethane water tracer contains 4 to 6 SO3 groups.  相似文献   

4.
In this study, the distribution and partition of polybrominateddiphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in water from the Pearl River Estuary were investigated. A seasonal dependence for dissolved and particle phase PCB and PBDE levels was observed. A high dissolved phase level occurred in the dry season. The positive correlation between POC content in the particles and phase distribution coefficients (Kp) suggested that POC may play an important role in determining the partition of PBDEs and PCBs. A linear correlation between the observed log KOC and log KOW for PBDEs and PCBs was found with slopes less than one. The observed log KOC values were lower than the predicted log KOC values for PBDEs (except for BDE28). The log KOC values were higher than the predicted values for PCBs. A combination of sorption to colloids (10-98% for PBDEs and less than 25% for PCBs) and adsorption to BC was responsible for this observation.  相似文献   

5.
In this paper, we promote a novel approach to develop reservoir operation routines by learning from historical hydrologic information and reservoir operations. The proposed framework involves a knowledge discovery step to learn the real drivers of reservoir decision making and to subsequently build a more realistic (enhanced) model formulation using stochastic dynamic programming (SDP). The enhanced SDP model is compared to two classic SDP formulations using Lake Shelbyville, a reservoir on the Kaskaskia River in Illinois, as a case study. From a data mining procedure with monthly data, the past month’s inflow (Qt−1), current month’s inflow (Qt), past month’s release (Rt−1), and past month’s Palmer drought severity index (PDSIt−1) are identified as important state variables in the enhanced SDP model for Shelbyville Reservoir. When compared to a weekly enhanced SDP model of the same case study, a different set of state variables and constraints are extracted. Thus different time scales for the model require different information. We demonstrate that adding additional state variables improves the solution by shifting the Pareto front as expected while using new constraints and the correct objective function can significantly reduce the difference between derived policies and historical practices. The study indicates that the monthly enhanced SDP model resembles historical records more closely and yet provides lower expected average annual costs than either of the two classic formulations (25.4% and 4.5% reductions, respectively). The weekly enhanced SDP model is compared to the monthly enhanced SDP, and it shows that acquiring the correct temporal scale is crucial to model reservoir operation for particular objectives.  相似文献   

6.
Here we used Empirical Mode Decomposition(EMD) method to study seasonal variability and nonlinear trend of corrected AERONET Aerosol Optical Depth(AOD/Hi) and corrected PM10 mass concentrations(PM10×f(RH)) in Hong Kong during 2005–2011. AOD/Hi is highly correlated with PM10×f(RH) in semi-annual and annual time scales(with correlation coefficient 0.67 for semi-annual and 0.79 for annual components, 95% confidence interval). On the semi-annual scale, both AOD/Hi and PM10×f(RH) can capture the two maxima in March and October, respectively, with much stronger amplitude in March probably due to the long-range transport of dust storm. On the annual cycle, the AOD/Hi and PM10×f(RH), which are negatively correlated with the precipitation and solar radiation, vary coherently with the maxima in February. This annual peak occurs about one month earlier than the first peak of the semi-annual variability in March, but with only half amplitude. During 2005–2011, both AOD/Hi and PM10×f(RH) exhibit the pronounced decreasing trend with the mean rate of 14 μg m–3 per year for PM10×f(RH), which reflects the significant effects of the air pollution control policy in Hong Kong during the past decade. The nonlinear trend analysis indicates that the decreasing of PM10×f(RH) is slower than that of AOD/Hi when the AOD/Hi is less than 0.44 but becomes faster when the AOD/Hi exceeds 0.44. These results illustrate that the AERONET AOD can be used quantitatively to estimate local air-quality variability on the semi-annual, annual, and long-term trend time scales.  相似文献   

7.
8.
The aim of the present study is twofold. Firstly, the paper investigates the undrained cyclic and post-cyclic behaviour of two silica sands by means of multi-stage cyclic triaxial tests. Secondly, based on the post-cyclic response observed in the element test, the authors formulate a simplified stress–strain relationship that can be conveniently used for the construction of p–y curves for liquefiable soils. The multi-stage loading condition consists of an initial cyclic loading applied to cause liquefaction, followed by undrained monotonic loading that aimed to investigate the post-cyclic response of the liquefied sample. It was found that due to the tendency of the liquefied soil to dilate upon undrained shearing, the post-liquefaction strain–stress response was characterised by a distinct strain–hardening behaviour. The latter is idealized by means of a bi-linear stress–strain model, which can be conveniently formulated in terms of three parameters, i.e.: (i) take-off shear strain, γto, i.e. shear strain required to mobilize 1 kPa of shear strength; (b) initial secant shear modulus, G1, defined as 1/γto; (c) post-liquefied shear modulus at large strain, G2 (γγto). Based on the experimental results, it is concluded that these parameters are strongly influenced by the initial relative density of the sample, whereby γto decreases with increasing relative density. Differently both shear moduli (G1 and G2) increases with increasing relative density. Lastly, the construction of new p–y curves for liquefiable soils based on the idealized bi-linear model is described.  相似文献   

9.
Abstract

The Hilhorst model was used to convert bulk electrical conductivity (σb) to pore water electrical conductivity (σp) under laboratory conditions by using the linear relationship between the soil dielectric constant (εb) and σb. In the present study, applying the linear relationship εbσb to data obtained from field capacitance sensors resulted in strong positive autocorrelations between the residuals of that regression. We were able to derive an accurate offset of the relationship εb–σb and to estimate the evolution of σp over time by including a stochastic component to the linear model, rearranging it to a time-varying dynamic linear model (DLM), and using Kalman filtering and smoothing. The offset proved to vary for each depth in the same soil profile. A reason for this might be the changes in soil temperature along the soil profile.
Editor D. Koutsoyiannis; Associate editor M.D. Fidelibus  相似文献   

10.
《Marine pollution bulletin》2012,64(5-12):471-476
Polycyclic aromatic hydrocarbons (PAHs) are important environmental pollutants due to their persistence and bioaccumulation potential both in organisms and in sediments. In this study, bioaccumulation and depuration experiments were performed employing local Mediterranean mussel species, Mytilus galloprovincialis, with two biomarkers: filtration rate and lysosomal stability (neutral red retention) assay. Benzo(a)anthracene (BaA) was chosen as the model PAH compound due to its common presence in several matrices in the marine environment. Bioconcentration Factors (BCFs) for the mussels exposed to different BaA concentrations were calculated from both kinetic rate constants and from the experimental data and found between 27-3184 and 16-2745, respectively. Experimental QSAR values were found comparable to the previous QSAR models created for BaA. The effect of BaA exposure on the mussels showed a more clear dose–response relationship according to the results of lysosomal stability compared to the filtration rate.  相似文献   

11.
12.
The complex micro-interfacial interaction theories of heavy metal ions such as Pb(Ⅱ)and Cd(Ⅱ)adsorption on fine sediment in aqueous solution were not systematically investigated.The aim of this work was to reflect the micro-interfacial adsorption characteristics.Sediment samples were collected from an estuary.The Isothermal and kinetics adsorption experiment were done to acquire the data.Isothermal,kinetics,film diffusion and intraparticle diffusion models were adopted to fit the adsorption experimental data.The results indicated that the Langmuir,Freundlich and Temkin models were suitable for analyzing the isothermal experimental data.The maximum adsorption capacities of Pb(Ⅱ)and Cd(Ⅱ)on the sediment were 1.1377 and 0.9821 mg·g-1,respectively.The qm and KL of the Langmuir model,Kf and nF of the Freundlich model,and b and A of the Temkin model all exhibited a power function relationship with the initial adsorbate concentration.The pseudo-second-order model provided a better fit for the experimental kinetics data compared with the fit of the pseudo-first-order and Elovich models.The pseudo-second-order parameters k2 and qe of Pb(Ⅱ)and qe of Cd(Ⅱ)both had a power function relationship with adsorption time,additionally,the k2 of Cd(Ⅱ)had an exponential function relationship with adsorption time.The liquid-film diffusion parameters kfd of Pb(Ⅱ)and Cd(Ⅱ)were 0.0569 and 0.1806 min1,respectively.The intraparticle diffusion parameter kid values of Pb(Ⅱ)and Cd(Ⅱ)were 0.0055 mg$g1$min1/2 and 0.0049 mg$g1$min1/2,respectively.The physical significance of the model parameters showed that Pb(Ⅱ)adsorption on sediment was stronger than Cd(Ⅱ).The results of this study provided a theoretical reference for the micro-interfacial mechanism of heavy metal ion adsorption on sediment.  相似文献   

13.
This short communication investigates if the capillary air-liquid interfacial area vs. saturation relationship Alv(S) can be predicted from the capillary pressure vs. saturation relationship S(h), using the theoretical sample scale model of Diamantopoulos and Durner (2013, 2015). We selected three published experimental datasets, where S(h) and Alv(S) relationships had been measured for the same porous media. The sample scale model was fitted to the retention curve S(h) of each porous medium and then used to predict the air-liquid interfacial area Alv(S). We also included in the analysis the thermodynamic models of Leverett (1941) and Grant and Gerhard (2007). For two sandy materials and especially for high saturation values, the model predicted the capillary Alv(S) successfully, which was in one case given by a pore-network model simulation (Kibbey and Chen, 2012) and in the other case experimentally determined (Brusseau et al., 2006). For glass bead experiments, the contact angle needed to be fitted to properly describe the experimental Alv(S) curve.  相似文献   

14.
Single grain OSL has become a widely used approach in Quaternary geochronology. However, the origins of De distributions and the sources of variation in individual dose estimates are still poorly understood. The amount of scatter in these distributions on top of the known uncertainties in measurement and analysis is defined by overdispersion and this quantity is generally used for weighting individual De values to calculate a central equivalent dose. In this study, we address the nature and amount of different sources of dispersion in quartz single grain De estimates, by (i) using appropriate statistical tools to characterize De populations and (ii) modelling, with a specifically designed Geant4 code, dose rate distributions arising from the presence of potassium feldspar grains in well-sorted sands. The model uses Monte Carlo simulations of beta emissions and interactions in a random close packing of quartz and feldspar spheres representing a sand sample. Based on the simulation results, we explain the discrepancy between intrinsic and natural overdispersion values in a well-bleached sample, thus validating the model. The three parameters having the most influence on dispersion in dose rate distributions, and modelled in this study, appear to be grain size, potassium content and total dose rate.Finally an analysis of measurement uncertainties and other sources of variations in equivalent dose estimates lead us to conclude that all age models (both logged and unlogged) which include an overdispersion value to weight individual De values rely mainly on unknown parameters; this ignorance may lead to an inadvertent bias in De estimates. Assuming counting statistics make a small contribution to dispersion (as is often the case), we suggest that in some cases it is most appropriate to use unweighted averages of equivalent doses when dividing by commonly measured average dose rates.  相似文献   

15.
The seismic responses of steel buildings with perimeter moment resisting frames (MRF) with welded connections (WC) are estimated and compared to those of similar buildings with semi-rigid post-tensioned connections (PC). The responses are estimated in terms of ductility reduction factors (R µ,), ductility demands (µ G ) and force reduction factors (R). Two steel model buildings, which were modeled as complex-3D-MDOF systems, were used in the study. Results indicate that the reduction magnitude of global response parameters is larger than that of local response parameters, contradicting the same reduction implicitly assumed in the static equivalent lateral force procedure, implying that non-conservative design may result. The value of 8 for R, suggested in many codes for ductile steel MRF, and the value of 1 suggested in the well known Newmark and Hall procedure for the ratio of R to µ G , cannot be justified. The reason for this is that SDOF systems were used to model actual structures, where higher mode effects, energy dissipation and structural overstrength weren’t explicitly considered. The codes should be more transparent regarding the magnitude and the components involved in the force reduction factors. The seismic performance of steel buildings with PC may be superior to that of the buildings with WC, since their force reduction factors are larger and their ductility demands smaller, implying that PC buildings could be designed for smaller lateral seismic forces. The conclusions of this paper are for the particular structural systems and models considered. Much more research is needed to reach more general conclusions.  相似文献   

16.
Clarification of the molecular mechanism underlying the interaction of coal with CH4, CO2, and H2O molecules is the basis for an in-depth understanding of the states of fluid in coal and fluid-induced coal swelling/contraction. In terms of instrumental analysis, molecular simulation technology based on molecular mechanics/dynamics and quantum chemistry is a powerful tool for revealing the relationship between the structure and properties of a substance and understanding the interaction mechanisms of physical-chemical systems. In this study, the giant canonical ensemble Monte Carlo (GCMC) and molecular dynamics (MD) methods were applied to investigate the adsorption behavior of a Yanzhou coal model (C222H185N3O17S5). We explored the adsorption amounts of CH4, CO2, and H2O onto Yanzhou coal, the adsorption conformation, and the impact of oxygen-containing functional groups. Furthermore, we revealed the different adsorption mechanisms of the three substances using isosteric heat of adsorption and energy change data. (1) The adsorption isotherms of the mono-component CH4, CO2, and H2O were consistent with the Langmuir model, and their adsorption amounts showed an order of CH4<CO2<H2O. In addition, high temperatures were non-conducive to adsorption. When the three components of CH4/CO2/H2O were mixed (at a molar ratio of 1:1:1) for adsorption, only the adsorption curve of H2O was consistent with the Langmuir model. (2) The mean values of the isosteric heat of adsorption of CH4, CO2, and H2O were 22.54, 36.90, and 37.82 kJ/mol, respectively; that is, H2O>CO2>CH4. In addition, at higher temperatures, the isosteric heat of adsorption decreased; pressure had no significant effect on the heat of adsorption. (3) CH4 molecules displayed an aggregated distribution in the pores, whereas CO2 molecules were cross arranged in pairs. Regarding H2O molecules, under the influence of hydrogen bonds, the O atom pointed to surrounding H2O molecules or the H atoms of coal molecules in a regular pattern. The intermolecular distances of the three substances were 0.421, 0.553, and 0.290 nm, respectively. The radial distribution function (RDF) analysis showed that H2O molecules were arranged in the most compact fashion, forming a tight molecular layer. (4) H2O molecules showed a significantly stratified distribution around oxygen-containing functional groups on the coal surface, and the bonding strength showed a descending order of hydroxyl> carboxyl>carbonyl. In contrast, CO2 and CH4 showed only slightly stratified distributions. (5) After the adsorption of CH4, CO2, and H2O, the total energy, the energy of valence electrons, and the non-bonding interaction of the system in the Yanzhou coal model all decreased. The results regarding the decrease in the total energy of the system indicated an order of H2O>CO2>CH4 in terms of the adsorption priority of the Yanzhou coal model. The results regarding the decrease in the energy of valence electrons showed that under certain geological conditions, a pressure-induced “coal strain” could lead to a structural rearrangement during the interaction of coal with fluid to form a more stable conformation, which might be the molecular mechanism of coal swelling resulting from the interaction between fluid and coal. An analysis of the contribution of Van der Waals forces, electrostatic interactions and hydrogen bonds to the decrease in non-bonding interactions revealed the mechanism underlying the interactions between coal molecules and the three substances. The interaction between coal molecules and CH4 consisted of typical physical adsorption, whereas that between coal molecules and CO2 consisted mainly of physical adsorption combined with weak chemical adsorption. The interaction between coal molecules and H2O is physical and chemical.  相似文献   

17.
The current study deals with the depth of scour at the location of impact between a free fall jet and a riverbed. The current study is based on extensive laboratory experiments that were designed to mimic full-scale behavior. The literature review shows that relations among hydraulic parameters for predicting the depth of scour are complex; therefore, six artificial intelligence techniques are used in the current study to capture these complex relation. A total of 120 observations are used for t...  相似文献   

18.
Dissolution of dense non-aqueous phase liquid (DNAPL) contaminants like tetrachloroethene (PCE) can be “bioenhanced” via biodegradation, which increases the concentration gradient at the DNAPL–water interface. Model simulations were used to evaluate the impact of ecological interactions between different dehalorespiring strains and hydrodynamics on the bioenhancement effect and the extent of PCE dechlorination. Simulations were performed using a two-dimensional coupled flow-transport model, with a DNAPL pool source and two microbial species, Dehalococcoides mccartyi 195 and Desulfuromonas michiganensis, which compete for electron acceptors (e.g., PCE), but not for their electron donors. Under biostimulation, low vx conditions, D. michiganensis alone significantly enhanced dissolution by rapidly utilizing aqueous-phase PCE. In co-culture under these conditions, D. mccartyi 195 increased this bioenhancement modestly and greatly increased the extent of PCE transformation. Although D. michiganensis was the dominant population under low velocity conditions, D. mccartyi 195 dominated under high velocity conditions due to bioclogging effects.  相似文献   

19.
20.
An attempt has been made to examine an empirical relationship between moment magnitude (M W) and local magnitude (M L) for the earthquakes in the northeast Indian region. Some 364 earthquakes that were recorded during 1950–2009 are used in this study. Focal mechanism solutions of these earthquakes include 189 Harvard-CMT solutions (M W?≥?4.0) for the period 1976–2009, 61 published solutions and 114 solutions obtained for the local earthquakes (2.0?≤?M L?≤?5.0) recorded by a 27-station permanent broadband network during 2001–2009 in the region. The M WM L relationships in seven selected zones of the region are determined by linear regression analysis. A significant variation in the M WM L relationship and its zone specific dependence are reported here. It is found that M W is equivalent to M L with an average uncertainty of about 0.13 magnitude units. A single relationship is, however, not adequate to scale the entire northeast Indian region because of heterogeneous geologic and geotectonic environments where earthquakes occur due to collisions, subduction and complex intra-plate tectonics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号