首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Shear wave velocities of the lithospheric structure to 73 km depth have been defined along three profiles crossing the Campanian Plain (Southern Italy) from the simultaneous non linear inversion of the local and regional dispersion data. The former consist of group velocity dispersion data obtained from some seismic events which occurred at the borders of the Campanian Plain and recorded at Napoli, and the latter of group and phase dispersion data obtained in previous studies. The main features of the representative VS models are a carbonate basement deepening to ~5 km in the central part of the Plain and a low velocity zone at a depth of ~15 km, rising to 7 km in the southern part, close to Somma-Vesuvio. The low velocity layer can be correlated with that found at ~10 km of depth below Campi Flegrei and the Neapolitan area, and at 5 km below the Somma-Vesuvio caldera area. Such regional velocity reduction can be associated to the presence of a zone with less than 5% partial melting that can be interpreted as magmatic reservoir of the Campanian volcanism.  相似文献   

2.
Summary The ∼ 150 km3 (DRE) trachytic Campanian Ignimbrite, which is situated north-west of Naples, Italy, is one of the largest eruptions in the Mediterranean region in the last 200 ky. Despite centuries of investigation, the age and eruptive history of the Campanian Ignimbrite is still debated, as is the chronology of other significant volcanic events of the Campanian Plain within the last 200–300 ky. New 40Ar/39Ar geochronology defines the age of the Campanian Ignimbrite at 39.28 ± 0.11 ka, about 2 ky older than the previous best estimate. Based on the distribution of the Campanian Ignimbrite and associated uppermost proximal lithic and polyclastic breccias, we suggest that the Campanian Ignimbrite magma was emitted from fissures activated along neotectonic Apennine faults rather than from ring fractures defining a Campi Flegrei caldera. Significantly, new volcanological, geochronological, and geochemical data distinguish previously unrecognized ignimbrite deposits in the Campanian Plain, accurately dated between 157 and 205 ka. These ages, coupled with a xenocrystic sanidine component > 315 ka, extend the volcanic history of this region by over 200 ky. Recent work also identifies a pyroclastic deposit, dated at 18.0 ka, outside of the topographic Campi Flegrei basin, expanding the spatial distribution of post-Campanian Ignimbrite deposits. These new discoveries emphasize the importance of continued investigation of the ages, distribution, volumes, and eruption dynamics of volcanic events associated with the Campanian Plain. Such information is critical for accurate assessment of the volcanic hazards associated with potentially large-volume explosive eruptions in close proximity to the densely populated Neapolitan region. Received August 1, 2000; accepted November 2, 2000  相似文献   

3.
Summary ¶The Campanian Plain is an 80×30km region of southern Italy, bordered by the Apennine Chain, that has experienced subsidence during the Quaternary. This region, volcanologically active in the last 600ka, has been identified as the Campanian Volcanic Zone (CVZ). The products of three periods of trachytic ignimbrite volcanism (289–246ka, 157ka and 106ka) have been identified in the Apennine area in the last 300ka. These deposits probably represent distal ash flow units of ignimbrite eruptions which occurred throughout the CVZ. The resulting deposits are interstratified with marine sediments indicating that periods of repeated volcano-tectonic emergence and subsidence may have occurred in the past. The eruption, defined as the Campanian Ignimbrite (CI), with the largest volume (310km3), occurred in the CVZ 39ka ago. The products of the CI eruption consist of two units (unit-1 and unit-2) formed from a single compositionally zoned magma body. Slightly different in composition, three trachytic melts constitute the two units. Unit-1 type A is an acid trachyte, type B is a trachyte and type C of unit-2 is a mafic trachyte.The CI, vented from pre-existing neotectonic faults, formed during the Apennine uplift. Initially the venting of volatile-rich type A magma deposited the products to the N–NE of the CVZ. During the eruption, the Acerra graben already affected by a NE–SW fault system, was transected by E–W faults, forming a cross-graben that extended to the gulf of Naples. E–W faults were then further dislocated by NE–SW transcurrent movements. This additional collapse significantly influenced the deposition of the B-type magma of unit-1, and the C-type magma of unit-2 toward the E–SE and S, in the Bay of Naples. The pumice fall deposit underlying the CI deposits, until now thought to be associated with the CI eruption, is not a strict transition from plinian to CI-forming activity. It is derived instead from an independent source probably located near the Naples area. This initial volcanic activity is assumed to be a precursor to the CI trachytic eruptions, which vented along regional faults.Received October 23, 2002; revised version accepted July 29, 2003  相似文献   

4.
More than ca 100 km3 of nearly homogeneous crystal-poor phonolite and ca 100 km3 of slightly zoned trachyte were erupted 39 ka during the Campanian Ignimbrite super eruption, the most powerful in the Neapolitan area. Partition coefficient calculations, equilibrium mineral assemblages, glass compositions and texture were used to reconstruct compositional, thermal and pressure gradients in the pre-eruptive reservoir as well as timing and mechanisms of evolution towards magma chamber overpressure and eruption. Our petrologic data indicate that a wide sill-like trachytic magma chamber was active under the Campanian Plain at 2.5 kbar before CI eruption. Thermal exchange between high liquidus (1199°C) trachytic sill and cool country rocks caused intense undercooling, driving a catastrophic and fast (102 years) in situ fractional crystallization and crustal assimilation that produced a water oversaturated phonolitic cap and an overpressure in the chamber that triggered the super eruption. This process culminated in an abrupt reservoir opening and in a fast single-step high decompression. Sanidine phenocrysts crystal size distributions reveal high differentiation rate, thus suggesting that such a sill-like magmatic system is capable of evolving in a very short time and erupting suddenly with only short-term warning.  相似文献   

5.
DAVID SOUDRY 《Sedimentology》1987,34(4):641-660
Ultra-fine structures of the Negev high-grade phosphorites provide valuable clues to unravelling the genesis of these rocks, the question of their differential areal distribution, and the biosedimentary mechanisms involved in their considerable enrichment. Peculiar to these phosphorites is an intergranular phosphate matrix, for the most part constituted by a variety of phosphatic microbial tubules displaying a range of spatial micro-organizations. The phosphate particles fixed by this filamentous meshwork also consists of internally organized and non-organized packed microbial remains of different types. Analogies between the fabrics of the matrix and the corpuscles lead to conception of a two-stage depositional scheme for these phosphorites, based on rhythmical repetition of two sedimentary mini-events, in a slightly oscillating, very shallow marine system—(1) a low-energy event of microbial colonization of the Mishash bottoms, followed by early phosphatization of the organic structures mainly in marginal situations; and (2) a higher-energy event which broke up the phosphatic mats into debris, redepositing them as clastic layers in nearby basinward sites, while becoming bound by a new meshwork of filamentous microphytes. The differential phosphatization of the intergranular microbial binder, again occurring mostly in marginal localities, produced highly enriched phosphorites. Minor truncations and redepositions leading to amalgamation of the successive layers account for the massive fabric now displayed by most of these rocks. Examining the structural and textural features, the validity of the sedimentary mechanisms of Recent phosphorite formation for the Campanian Negev rocks is discussed.  相似文献   

6.
A new coralline sponge, exhibiting typical “stromatoporoid” bodyplan, is described as Sarmentofascis zamparelliae n. sp. from the lower Campanian of the southern Apennines, Italy. It is differentiated from Sarmentofascis cretacea (Turnsek) (Hauterivian of Montenegro) and Sarmentofascis chabrieri Termier, Termier and Vachard (Santonian of France) above all by its slender arborescent skeleton, exhibiting longitudinally distributed astrorhizae-like canals. S. zamparelliae n. sp. is the youngest representative of the genus and is reported from a period exhibiting a distinct decline of “stromatoporoid” sponges. With its clinogonal microstructure and occurrence in inner platform stromatoporoid-foraminiferan floatstones it can be considered a Late Cretaceous environmental analog to the Late Jurassic Cladocoropsis.  相似文献   

7.
International Journal of Earth Sciences - The geochemistry of natural thermal fluids discharging in the Mondragone Plain has been investigated. Thermal spring emergences are located along the...  相似文献   

8.
9.
This paper describes an integrated ground deformation and gravity network aimed at monitoring volcano-tectonic movements in the Campanian area (Southern Italy). It covers an area of more than 3000 km2, including the volcanic centres of Somma-Vesuvius, Campi Flegrei caldera and Ischia island. Levelling, EDM and gravity networks, as well as periodic and continuous GPS measurements are carried out. The aim of the network is twofold: monitoring ground deformations in the above mentioned volcanic areas, and studying the complex tectonics of the Campania Plain, a graben-like structure in which the Neapolitan volcanism is concentrated, in relation to the tectonics of the Southern Apennines and of the Tyrrhenian Basin. The monitoring network consists of larger-scale levelling, EDM and GPS networks covering the whole Campania Plain, connected to the relatively stable areas of Apennines, together with smaller scale networks aimed at accurately monitoring the Somma-Vesuvius volcano, one of the most dangerous over the World due to the high degree of urban development. The Somma-Vesuvius is monitored by levelling network, over 200 km long, by periodic EDM and GPS measurements and by a small network of continuously recording GPS receivers. Moreover, high precision gravimetry is also employed to deep the knowledge of the dynamic framework of the area. The main results indicate that Mt. Vesuvius and the island of Ischia are currently quiescent, while Campi Flegrei are subject to significant slow vertical ground movements, known as “bradyseism”. Recently, two large uplifts, both of about 1.8 m, affected the area respectively in 1970–72 and 1982–84.  相似文献   

10.
11.
Saltwater has invaded the coastal aquifer along the southern Adriatic coast of the Po Plain in Italy. The topography, morphology and land use of the region is complex: rivers, canals, wetlands, lagoons, urban, industrial and agricultural areas and tourist establishments all coexist in a small area. Water table and iso-salinity maps show that in four study areas (Ancona-Bellocchio, Marina Romea, San Vitale Forest, Cervia) out of five, the water tables are below sea level and saltwater has replaced freshwater in the aquifer. The fifth area (Classe Forest) has a relatively pristine freshwater aquifer thanks to an average water-table height of 2 m above sea level, a lower hydraulic conductivity (< 7.7 m/day) and a continuous dune system along the coast. Only in this area is the topography high enough to maintain freshwater heads that can counteract saltwater intrusion according to the Ghyben-Herzberg principle. Furthermore, the climate, with an average yearly precipitation of 606 mm and an average temperature of 14.4°C, allows for little recharge of the aquifer. Ongoing subsidence, encroachment of sea water along rivers and canals, as well as drainage from agricultural land also enhance the salinization process.  相似文献   

12.
In post-Variscan times the Dolomites underwent a number of tectonic events, which may be summarized as follows: Permian and Triassic rifting phases broke the area into NS trending basins with different degrees of subsidence. A Middle Triassic transpressive event then deformed the region along a N70°E axis, generating flower structures within the basement. Volcano-tectonic domal uplift and subsequent caldera formation occurred at the same time as the Late Ladinian magmatism. Early Jurassic rifting also controlled the subsidence which increased eastward. This long period of deformation was followed by a pre-Neogene (Late Cretaceous-Palaeogene ?) EW (ENE-WSW) compression which generated a W-vergent belt, possibly equivalent to the folded foreland of the Dinaric chain. A 70 km EW section of the Dolomites indicates shortening of at least 10 km. During the Neogene the Dolomites, as far north as the Insubric Lineament, were the innermost part of a S-vergent thrust belt: the basement of the Dolomites was thrust southwards along the Valsugana Line onto the sedimentary cover of the Venetian Prealps for at least 10 km. This caused a regional uplift of 3–5 km. The Valsugana Line and its backthrusts on the northern side of the central Dolomites generated a 60 km wide pop-up in the form of a synclinorium within which the sedimentary cover adapted itself mainly by flexural-slip often forming triangle zones. The shortening linked to this folding is about 5 km with Neogene thrusts faulting and folding pre-existing thrust-planes. On the north-eastern side of the Dolomites, Neogene deformation is apparently more strictly controlled by the transpressive effects of the Insubric Lineament and shortening of the sedimentary cover may be greater than in the central Dolomites. Minor deformation linked to the Giudicarie belt is present in the western Dolomites. The present structure of the Dolomites is thus the result of a number of tectonic events of different significance and different strike. Only a 3-dimensional restoration can unravel the true structure of the Dolomites.  相似文献   

13.
Summary The present review of data on the Trecase 1 well, including stratigraphy, updated 40 Ar/39Ar ages and the results of newly performed calcareous nannofossil studies, serves to resolve the chronological contradictions pointed out by Bernasconi et al. (1981) and Balducci et al. (1983) concerning the onset of volcanic activity in the area now occupied by the Somma-Vesuvius Volcanic Complex. New 40 Ar/39Ar data indicate that volcanic activity in this area started about 0.4 myr B.P. After such time, tephritic magmatic activity, distributed in small scattered centers, developed and alternated with periods of volcanic quiescence and marine sedimentation. This first phase of magmatic activity ended in the Vesuvian area about 0.3 myr B.P. and was followed by a period of marine sedimentation in a marginal environment. Complete emergence of the shoreline occurred about 37,000 yr B.P. as a result of sea level changes during the last glacial period and deposition of the 60 m thick Campanian ignimbrite (CI). Volcanic activity reappeared in the Vesuvian area only after the CI eruption. Magma rising along and at the intersection of linear and curved tectonic and volcano-tectonic elements (linked to the pre-existing Pleistocene tectonic trend and formation of the vast Phlegraean Fields caldera) formed a number of small lava and scoria edifices. One of these tephritic centers lies above the CI deposits under the Trecase 1 well area. The CI bottom in the Trecase 1 well is currently at an altitude of − 120 m a.s.l.; this allows estimating the maximum tectonic subsidence over the last 37,000 yr. by the southern sector of the Vesuvian area to be about 30 m. Received April 12, 2000; revised version accepted March 1, 2001  相似文献   

14.
This paper focuses on the recent tectonic evolution of the Bay of Naples with the aim of exploring the connection between local tectonics and volcanism. We reprocessed the seismic reflection dataset acquired in the area in the late 1973. The new processing was highly successful in obtaining a decisive strong reduction of random noise, removal of coherent noise and reduction of spatial aliasing. Classical interpretative schemes and complex attributes of seismic traces were used to reconstruct fault kinematics and reflector patterns. The results show that the faults affecting the Bay of Naples exhibit prevailing NE structural strikes, with the exception of the Pozzuoli Caldera where NW patterns are also common. Many faults are subvertical and show seismic evidence of volcanic activity along them. A main alignment of conjugate NE–SW faults, named here as “Magnaghi–Sebeto line”, intersects several submarine volcanic banks and separates the bay into two sectors, characterized by important geological, geophysical and petrochemical differences. The structural configuration of the bay may reflect the occurrence of either oblique extension or a transfer zone of the NW–SE fault system, along which, in the Campanian–Lucanian Apennine chain, great vertical displacements occur.  相似文献   

15.
A hydrogeological conceptual model has been developed that describes the hydrothermal system of Suio Terme (central Italy). The studied area is located along the peri-Tyrrhenian zone of the central Apennines, between the Mesozoic and Cenozoic carbonate platform sequences of the Aurunci Mountains and the volcanic sequences of the Roccamonfina. A multi-disciplinary approach was followed, using new hydrogeological surveys, the interpretation of stratigraphic logs of boreholes and water wells, and geophysical data—seismic sections, shear-wave velocity (Vs) crustal model and gravimetric model. The collected information allowed for construction of a conceptual hydrogeological model and characterization of the hydrothermal system. The Suio hydrothermal system is strongly influenced by the Eastern Aurunci hydrostructure. Along the southeastern side, the top of the hydrostructure sinks to ?1,000 m relative to sea level via a series of normal faults which give origin to the Garigliano graben. Geological and hydrogeological data strongly suggest the propagation and mixing of hot fluids, with cold waters coming from the shallow karst circuit. The aquitard distribution, the normal tectonic displacements and the fracturing of the karst hydrostructure strongly influence the hydrothermal basin. Carbon dioxide and other gasses play a key role in the whole circuit, facilitating the development of the hydrothermal system. The current level of knowledge suggests that the origin of the Suio hydrothermalism is the result of interaction between the carbonate reservoir of the Eastern Aurunci Mountains and the hot and deep crust of this peri-Tyrrhenian sector, where the Roccamonfina volcano represents the shallowest expression.  相似文献   

16.
This paper documents arsenic concentrations in 157 groundwater samples from the island of Ischia and the Phlegrean Fields, two of the most active volcano-hosted hydrothermal systems from the Campanian Volcanic Province (Southern Italy), in an attempt to identify the environmental conditions and mineral-solution reactions governing arsenic aqueous cycling. On Ischia and in the Phlegrean Fields, groundwaters range in composition from NaCl brines, which we interpret as the surface discharge of deep reservoir fluids, to shallow-depth circulating fluids, the latter ranging from acid-sulphate steam-heated to hypothermal, cold, bicarbonate groundwaters. Arsenic concentrations range from 1.6 to 6900 μg·l− 1 and from 2.6 to 3800 μg·l− 1 in the Phlegrean Fields and on Ischia, respectively. They increase with increasing water temperature and chlorine contents, and in the sequence bicarbonate groundwaters < steam-heated groundwaters < NaCl brines. According to thermochemical modeling, we propose that high As concentrations in NaCl brines form after prolonged water-rock interactions at reservoir T, fO2 and fH2S conditions, and under the buffering action of an arsenopyrite + pyrite + pyrrhotite rock assemblage. On their ascent toward the surface, NaCl brines become diluted by As-depleted meteoric-derived bicarbonate groundwaters, giving rise to hybrid water types with intermediate to low As contents. Steam-heated groundwaters give their intermediate to high As concentrations to extensive rock leaching promoted by interaction with As-bearing hydrothermal steam.  相似文献   

17.
18.
A case study describes the recent catastrophic subsidence of the land surface neighboring the Lepini karstic range (Lazio region). A number of sinkholes in the Pontina plain are shown on the early topographic maps (dated 1850). Their origin is natural and related to subsidence that occurred during the Holocene. A review of sinkholes in central Italy was made by Facenna and others (1993). The aim of this study is to clarify the possible relationships between tectonics and sinkhole formation. The subsidence phenomena have been related to the slow dissolution of the buried carbonate bedrock due to fluids rich in CO2, H2S, and SO2, which migrate through major tectonic fractures. Lowering of piezometric levels in waterbearing formations and seismic events are also important factors as they may upset the stability of a cave system buried by unconsolidated deposits.  相似文献   

19.
A pilot area within the Venetian Plain was selected to assess the arsenic (As) contamination of groundwater. The area represents a typical residential, industrial and agricultural organization representative of most western countries, and is also devoid of lithologies with high or anomalous As content. Hydrogeological and chemical data have been collected, the latter spatialized by a geostatistical approach. The unconfined aquifer reservoir varies from a predominantly gravel composition in the north to a sandy and silt–clay composition further south, including peat layers. The hydrochemical features of the waters are rather homogeneous, featuring low mineral content and a Ca-bicarbonate signature. In contrast, the redox state is highly variable; oxidizing conditions are predominant in the northern and coarse parts of the aquifer, whereas reducing potentials prevail in the southern and silt–clay parts. Several well waters contain arsenic in excess of drinkable limits (=10 ppb), and most of these wells are located in the southern area. A large portion of the studied area has a high probability of containing non-potable water (up to 150 ppb As). Remarkably, As “hot spots” (As > 300 ppb, up to 431 ppb) were identified at the transition from gravel to silt–clay sediments. No industrial or agricultural source of As has been found.  相似文献   

20.
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance, high mobility and strong destructive power. Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters. This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events. Specifically, for the historical landslide cases, the landslide-induced seismic signal, geophysical surveys, and possible in-situ drone/phone videos (multi-source data collaboration) can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical (rheological) parameters. Subsequently, the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events. Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou, China gives reasonable results in comparison to the field observations. The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region (2019 Shuicheng landslide). The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号