首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The observed periodicity in the whistler occurrence rate recorded at our low latitude ground station at Varanasi (geomagnetic latitude, 14°55'N) is interpreted in terms of duct life time at lowL values. Power spectrum analysis of the whistler data yields a period of about 50 min for the growth and decay of ducts. Further dispersion analysis of the whistlers has qualitatively confirmed the existence of separate ducts during the period of observations.  相似文献   

2.
This paper presents discrete chorus type emissions observed in January/July, 1970 during the routine recording of whistlers and VLF emissions at our low latitude ground station Gulmarg (geomag. lat., 24°26N; geomag. long., 147°09 E). The chorus type emissions are comprised of discrete, sometimes overlapping, tones of one or more spectral shapes (risers, falling tones, hooks, etc.). It is shown that these emissions are generated in the equatorial plane (L1.2) by cyclotron resonance between the propagating wave and gyrating electrons.  相似文献   

3.
On certain occasions, whistler rate occurrences at Gulmarg (24°N geomagnetic) and Naini Tal (19°N geomagnetic) are found to exhibit some periodicity. Power spectrum analyses of the occurrence rates yield a dominant period of about 1 hr. It is suggested that this period is an indication of the duct-life times at low L-values. Dispersion analyses of the whistlers have qualitatively confirmed the existence of separate ducts during the period of observation. It is pointed out that power spectrum analyses may not be applicable to whistler data corresponding to high L-values.  相似文献   

4.
Simulation technique for whistler mode signal propagating through inhomogeneous plasma using WKB approximation has been developed (Singh, K., Singh, R.P., Ferencz, O.E., 2004. Simulation of whistler mode propagation for low latitude stations. Earth Planet Space 56, 979-987). In the present paper, we have used it for the analysis of recorded signals at low latitudes and estimated the nose frequency, which is not observed on the dynamic spectra. At low latitudes nose frequency is ∼100 kHz or more and therefore it is absent in the dynamic spectra due to attenuation of the signal at higher frequencies. The importance of nose frequency is in determining the exact path of propagation, which is required in probing of ambient medium. It is shown that the method permits to study the nose frequency variation, it can be used to deduce physical parameters as the global electric field. A case study permits to get a reasonable value of the electric field, which up to now could not be done at very low latitude.  相似文献   

5.
Discrete chorus-type emission and whistler precursors recorded in March 1972 during day time hours at our ground based station Gulmarg are presented. It is shown that discrete chorus type emissions are generated in the equatorial region (L 1.2) during cyclotron resonance interaction between the propagating whistler wave and the gyrating electrons. The whistler precursors are explained in terms of the mechanism suggested by Dowden (1972).  相似文献   

6.
The present paper analyzes the dual frequency signals from GPS satellites recorded at Varanasi (Geographic latitude 25°, 16′ N, longitude 82°, 59′ E) near the equatorial ionization anomaly (EIA) crest in India, to study the effect of geomagnetic storm on the variation of TEC, during the low solar active period of May 2007 to April 2008. Three most intense—but still moderate class—storms having a rapid decrease of Dst-index observed during the GPS recorded data have been analyzed, which occurred on 20 November 2007, 9 March 2008 and 11 October 2008 were selected and storm induced features in the vertical TEC (VTEC) have been studied considering the mean VTEC value of quiet days as reference level. The possible reasons for storm time effects on VTEC have been discussed in terms of local time dependence, storm wind effect as well as dawn-dusk component of interplanetary electric field (IEF) Ey intensity dependence.  相似文献   

7.
An attempt has been made to estimate the east-west component (Ew) of the magnetospheric equatorial electric field near L = 1.12 during a magnetic storm period from the whistlers observed at our low latitude ground station, Nainital (geomag.lat. 19°1'N), on March 25, 1971 in the 0130–0500 IST sector. The method of measuring Ew from the observed cross L-motions of whistler ducts within the plasmasphere, indicated by changes in nose frequency of whistlers, has been outlined. The nose frequencies of non-nose whistlers under consideration have been deduced from Dowden-Allcock linear Q-technique. The variation of (?n)23 with local time has been shown, the slope of which can be directly related to the convection electric field. The estimated equatorial electric field at L? 1.12 is in the range 0.1–0.5 mV m?1 (in the 0130–0500 IST sector) during a storm period, which is in agreement with the results reported by earlier workers. The departure from a dipole field and the contribution of an induced electric field from the temporal changes have been discussed. The importance of an electric field study has been indicated.  相似文献   

8.
《Planetary and Space Science》2007,55(10):1218-1224
In this paper, we report the results derived from a statistical analysis of whistlers recorded at Varanasi during the period January 1990–December 1999. The monthly occurrence rate shows a maximum during January to March. In order to study the role of geomagnetic disturbance on the whistler occurrence rate, we have used the KP index and its variation. It is found that the occurrence probability monotonically increases with ∑KP (daily sum) values. It is found that, when ∑KP>20, the occurrence rate is greater than the average value, in good agreement with results reported by other workers. In addition, we also present the probability of the observation of whistlers during weak/intense geomagnetic storms and also during the main phase and recovery phase of geomagnetic storms.  相似文献   

9.
The Voyager 1 observations of whistlers at Jupiter are summarized in order to provide a basis for further analyses of the density profile of the Io plasma torus as well as to support studies of atmospheric lightning at Jupiter. All the whistlers detected by Voyager I fell into three general regions in the torus at radial distances ranging between 5 and 6RJ. An analysis of the broadband wave amplitudes measured by the Voyager 1 plasma wave instrument and estimates of the peak whistler amplitudes imply that the grouping of whistlers was due to variations in the sensitivity of the receiver to the whistlers and not to variations in the source or propagation paths of the whistlers. The whistler dispersions are presented in statistical form for each of the three groups of events and analyzed in view of the structure of the Io plasma torus as determined by plasma measurements. The results of these analyses give source locations for the whistlers at the foot of the magnetic field lines threading the torus in both hemispheres and over a range of longitudes.  相似文献   

10.
It is the purpose of this paper to study whether the non-ducted propagation in the inner plasmasphere in the presence of the equatorial anomaly might be relevant to daytime whistlers observed on the ground at low latitudes. Realistic models of the equatorial anomaly simulating the satellite observations have been incorporated in the ray tracing computations. It is found that there are two different non-ducted modes able to penetrate through the ionosphere onto the ground; (1) whispering gallery mode around the anomaly field line which is trapped just by the outer boundary of the anomaly, and (2) pro-longitudinal (PL) mode at a latitude around 30° which is supported by the horizontal gradient in the tail of the anomaly. These modes may provide a new interpretation for some whistlers observed on the ground. The properties of these modes are examined in detail and then compared with those of ducted propagation. This study may be useful for distinguishing the propagation mode in future ground-based experiments.  相似文献   

11.
Whistler precursors observed during day time at low latitude ground station Gulmarg (Geomag. Lat. 24 10 N) and their morphological features are reported. Transverse resonance interaction between whistler mode wave and counter streaming energetic electrons as the probable generation mechanism has been worked out. Minimum anisotropy required for wave amplification, parallel energy of resonating electrons and wave growth rate relevant to generation mechanism is studied.  相似文献   

12.
With the assumption of a horizontally stratified ionosphere and a perfectly conducting Earth plane, the form of the low latitude polarization ellipse is shown to be totally dependent on the properties of the ducted hydromagnetic wave. The diurnal azimuth variation and the preferential north-south orientation of the major axis are shown to be related to ionospheric foF2 variations. Mechanisms for the production of elliptically polarized signals at large distances from the source region are discussed. The consistent hydromagnetic emission polarization ellipses which are observed at low latitudes suggest a stationary source in the generation latitudes.  相似文献   

13.
14.
The purpose of this work is to investigate the effect of magnetic activity on ionospheric time delay at low latitude Station Bhopal (geom. lat. 23.2°N, geom. long. 77.6°E) using dual frequency (1575.42 and 1227.60 MHz) GPS measurements. Data from GSV4004A GPS Ionospheric Scintillation and TEC monitor (GISTM) have been chosen to study these effects. This paper presents the results of ionospheric time delay during quiet and disturbed days for the year 2005. Results show that maximum delay is observed during quiet days in equinoxial month while the delays of disturbed period are observed during the months of winter. We also study the ionospheric time delay during magnetic storm conditions for the same period. Results do not show any clear relationship either with the magnitude of the geomagnetic storm or with the main phase onset (MPO) of the storm. But most of the maximum ionospheric time delay variations are observed before the main phase onset (MPO) or sudden storm commencement (SSC) as compared to storm days.  相似文献   

15.
In order to estimate the path latitude of low-latitude whistlers, the measurement of the direction of arrival (bearing and elevation) and the polarization has been successfully carried out a low-latitude station at Takayama (geomag. lat. 26°), by using our newly developed electronic devices. Our system of using two crossed loops and a vertical monopole is, in principle, based on Crary's method and is effective for elliptically polarized waves. The measurements were made at a specific frequency of 4.5 kHz.The main results of our preliminary experiments are (i) the exit points of observed whistlers are located several tens of kilometers approximately north-north-east of the observing site and (ii) although a few whistlers have shown the polarization very close to circular, the polarization of most whistlers are generally elliptical, indicating the effect of multi-rays propagating in the Earth- ionosphere waveguide.  相似文献   

16.
Synoptic observations made on magnetic recording tape at Huancayo, Peru, at the magnetic dip equator, during the International Geophysical Year 1957–1958, were aurally reviewed at that time and no whistlers, hiss, or other emissions were heard. In view of the more recent observation of whistlers at geomagnetic latitudes as low as 12°, and in conjunction with a study of equatorial hiss observed in the topside ionosphere, these recordings have recently been reassessed by reducing them with modern real-time, digital spectrographic equipment. Although the observations were found to be of high quality, and to show the classical features of ground-wave and sky-wave propagation of sferics and VLF transmissions, again no evidence whatsoever of whistlers, hiss, or other emissions is found. Thus it is concluded that the whistlers observed at very low latitudes do not propagate subionospherically to the equator and it is confirmed that “hybrid” whistlers must be due to subionospheric propagation across the equator of the causative sferic rather than of the short whistler.  相似文献   

17.
In order to investigate Pc3-4 geomagnetic pulsations at very low and equatorial latitudes, L=1.0 to 1.2, we analyzed simultaneous geomagnetic data from Brazilian stations for 26 days during October-November 1994. The multitaper spectral method based on Fourier transform and singular value decomposition was used to obtain pulsation power spectra, polarization parameters and phase. Eighty-one (81) simultaneous highly polarized Pc3-4 events occurring mainly during daytime were selected for the study. The diurnal events showed enhancement in the polarized power density of about 3.2 times for pulsations observed at stations close to the magnetic equator in comparison to the more distant ones. The phase of pulsation observed at stations near the magnetic equator showed a delay of 48-62° in relation to the most distant one. The peculiarities shown by these Pc3-4 pulsations close to the dip equator are attributed to the increase of the ionospheric conductivity and the intensification of the equatorial electrojet during daytime that regulates the propagation of compressional waves generated in the foreshock region and transmitted to the magnetosphere and ionosphere at low latitudes. The source mechanism of these compressional Pc3-4 modes may be the compressional global mode or the trapped fast mode in the plasmasphere driving forced field line oscillations at very low and equatorial latitudes.  相似文献   

18.
Observations of whistlers during quiet times made at low-latitude ground station Nainital (geomag. lat. 19 1 N) are used to deduce plasmasphere-ionosphere coupling fluxes. The whistler data from 3 magnetically quiet days are presented that show a smooth decrease in dispersion with time. This decrease in dispersion is interpreted in terms of a corresponding decrease in electron content of tubes of ionization. The electron densities, electron tube contents (1016 el/m2-tube) and coupling fluxes (10 el m–1 s–2) are computed by means of an accurate curve fitting method developed by Tarcsai (1975) and are in good agreement with the results reported by other workers.  相似文献   

19.
We report the discovery of highly distorted X-ray emission associated with the nearby cluster Zw 1718.10108, one of the dominant members of which is the powerful radio galaxy 3C353. This cluster has been missed by previous X-ray cluster surveys because of its low Galactic latitude ( b =19.5°), despite its brightness in the hard X-ray band (210 keV flux of 1.21011 erg cm2 s1). Our optical charge-coupled device image of the central part of the cluster reveals many member galaxies which are dimmed substantially by heavy Galactic extinction. We have measured redshifts of three bright galaxies near the X-ray emission peak and they are all found to be around z =0.028. The ASCA gas imaging spectrometer and ROSAT high-resolution imager images show three aligned X-ray clumps embedded in low surface-brightness X-ray emission extended by 30 arcmin. The averaged temperature measured with ASCA is kT =4.3±0.2 keV, which appears to be hot for the bolometric luminosity when compared with the temperatureluminosity correlation of galaxy clusters. The irregular X-ray morphology and evidence for a non-uniform temperature distribution suggest that the system is undergoing a merger of substructures. Since the sizes and luminosities of the individual clumps are consistent with those of galaxy groups, Zw 1718.10108 is interpreted as an on-going merger of galaxy groups in a dark matter halo forming a cluster of galaxies and thus is in a transition phase of cluster formation.  相似文献   

20.
The relationship between substorm ionospheric currents and the corresponding ground magnetic perturbations is examined, by using the height-integrated ionospheric current density deduced from the Chatanika incoherent scatter radar and the simultaneous magnetic variations along the Alaska meridian chain of stations. Although time variations of the H component near the radar site on the Earth's surface are in good agreement with those of the east-west ionospheric current, there is a substantial disagreement between the current deduced from the D perturbations and the observed north-south current in the evening sector. It is shown that the disagreement can be removed by introducing a new finding by Yasuhara et al. (1975) that the upward field-aligned current on the poleward side of the auroral oval in the evening sector is more intense than its counterpart fieldaligned current and that it contributes greatly to the ground D perturbations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号