首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The Elna Cu(Au)–porphyry deposit is one of the typical ore objects in the northeastern margin of the Argun superterrane facing the Mongolia–Okhotsk foldbelt. Mineralization includes zones of argillization with fine quartz veins in granodiorite of the Elna massif. The geochronological 40Ar/39Ar studies of hydrothermal near-ore metasomatites and magmatic rocks of the deposit show that the age of host granitoids is 126 ± 2 Ma, which corresponds to the upper age boundary of granitoids from the Burinda Complex, whereas the age of overprinted hydrothermal processes is 122–117 Ma. The age of mineralization correlates well with the age of the thermal event in East Asia. An intense stage of magmatism including both volcanic and intrusive forms occurred in this period.  相似文献   

2.
Gejiu is geographically located near Gejiu city, SW China. It is one of the largest tin-polymetallic districts in the world and contains approximately 3 million tons (Mt) of Sn and smaller quantities of Cu, Pb, and Zn. The deposit primarily yields three different types of ore: skarn-hosted ore, basalt-hosted stratiform ore, and carbonate-hosted stratiform ore. Kafang is one of the primary ore deposits in the Gejiu district and is an unusual occurrence hosted in basaltic rocks. Genetic models of the Kafang deposit suggest that it is related either to Anisian (Lower stage of Middle Triassic) Gejiu basalts or to Cretaceous Gejiu granite. In this study, we performed zircon SIMS U–Pb dating, major and trace element analyses, and Sr–Nd–Pb isotopic analyses for the Gejiu basalts and S isotopic analyses for stratiform Cu ore. Our results and previous studies are used to interpret the petrogenesis of the Gejiu basalts and the origin of the basalt-hosted stratiform Cu deposit. The SIMS zircon U–Pb analyses of the Gejiu basalts yield an age of 244.4 Ma. The trace element ratios of the Gejiu basalts are similar to those of ocean island basalt and have positive εNd(t) values (ranging from 0.6 to 2.5) and uniform (87Sr/86Sr)i values (ranging from 0.70424 to 0.70488). These ratios are close to those of the Permian Emeishan flood basalt. Thus, the Gejiu basalts may represent coeval volcanisms within the plate involving remelting of the Emeishan plume head through a stress relaxation process after the main plume event. The Pb and S isotopic compositions of the Gejiu basalts and the stratiform Cu ores indicate that the source of Cu and S is primarily derived from the Gejiu basalts. However, the age of sulfide mineralization (84.2–79.6 Ma) and the age of hydrothermal alteration (85.5–81.9 Ma) are temporally consistent with the age of the Cretaceous granite emplacement (85.5–83.3 Ma). From a petrological and geochemical study, we determine that the Gejiu basalts may have been subjected to pervasive granite-related hydrothermal alteration during the emplacement of granite. These processes increase the K and Mg contents of basalt and probably caused the formation of the Cu ores. Thus, the Kafang stratiform Cu deposit can be considered as a granite-related hydrothermal deposit.  相似文献   

3.
A sulfide chimney ore sampled from the flank of the active Tiger vent area in the Yonaguni Knoll IV hydrothermal field, south Okinawa trough, consists of anhydrite, pyrite, sphalerite, galena, chalcopyrite and bismuthinite. Electron microprobe analysis indicates that the chalcopyrite contains up to 2.4 wt% Sn, whereas bismuthinite contains up to 1.7 wt% Pt, 0.8 wt% Cu and 0.5 wt% Fe. The Sn‐rich chalcopyrite and Pt–Cu–Fe‐bearing bismuthinite are the first reported occurrence of such minerals in an active submarine hydrothermal system. The results confirm that Sn enters the chalcopyrite as a solid solution towards stannite by the coupled substitution of Sn4+Fe2+ for Fe3+Fe3+, whereas Pt, Cu and Fe enter the bismuthinite structure as a solid solution during rapid nucleation. The fluid inclusions homogenization temperatures in anhydrite (220–310°C) and measured end‐member temperature of the vent fluids on‐site (325°C) indicate that Sn‐bearing chalcopyrite and Pt–Cu–Fe‐bearing bismuthinite express the original composition of the minerals that precipitated as metastable phases at a temperature above 300°C. The result observed in this study implies that sulfides in ancient volcanogenic massive sulfide deposits have similar trace element distribution during nucleation but it is remobilised during diagenesis, metamorphism or supergene enrichment processes.  相似文献   

4.
The Chehugou Mo–Cu deposit, located 56 km west of Chifeng, NE China, is hosted by Triassic granite porphyry. Molybdenite–chalcopyrite mineralization of the deposit mainly occurs as veinlets in stockwork ore and dissemination in breccia ore, and two ore‐bearing quartz veins crop out to the south of the granite porphyry stock. Based on crosscutting relationships and mineral paragenesis, three hydrothermal stages are identified: (i) quartz–pyrite–molybdenite ± chalcopyrite stage; (ii) pyrite–quartz ± sphalerite stage; and (iii) quartz–calcite ± pyrite ± fluorite stage. Three types of fluid inclusions in the stockwork and breccia ore are recognized: LV, two‐phase aqueous inclusions (liquid‐rich); LVS, three‐phase liquid, vapor, and salt daughter crystal inclusions; and VL, two‐phase aqueous inclusions (gas‐rich). LV and LVS fluid inclusions are recognized in vein ore. Microthermometric investigation of the three types of fluid inclusions in hydrothermal quartz from the stockwork, breccia, and vein ores shows salinities from 1.57 to 66.75 wt% NaCl equivalents, with homogenization temperatures varying from 114°C to 550°C. The temperature changed from 282–550°C, 220–318°C to 114–243°C from the first stage to the third stage. The homogenization temperatures and salinity of the LV, LVS and VL inclusions are 114–442°C and 1.57–14.25 wt% NaCl equivalent, 301–550°C and 31.01–66.75 wt% NaCl equivalent, 286–420°C and 4.65–11.1 wt% NaCl equivalent, respectively. The VL inclusions coexist with the LV and LVS, which homogenize at the similar temperature. The above evidence shows that fluid‐boiling occurred in the ore‐forming stage. δ34S values of sulfide from three type ores change from ?0.61‰ to 0.86‰. These δ34S values of sulfide are similar to δ34S values of typical magmatic sulfide sulfur (c. 0‰), suggesting that ore‐forming materials are magmatic in origin.  相似文献   

5.
Abstract: Brown–colored sulfide ore (brown ore) occurs in the easternmost part of the Tsunokakezawa No. 1 orebody of the Fukasawa kuroko-type deposits, northern Honshu, Japan. As this type of ores also occur in the marginal or uppermost part of several other kuroko deposits in Japan, the formation of brown ore appears to be repeated in the process of kuroko formation. The brown ore is characterized by its higher Ag concentration (up to around 2000 g/t) than ordinary black ore (Zn–Pb ore) of volcanogenic massive sulfide deposits. The brown ore from the Fukasawa deposits can be divided into following three ore types based on its texture and mineral composition: pyritic brown ore, principal brown ore and “diseased” brown ore. Primary precipitation textures such as framboidal– and colloform-textures and compositional zoning within sulfide grains are significant in the brown ores. This seems to be due to lack of overprinting high temperature mineralization resulting in preservation of primary features. The Ag-Au mineralization is widely observed within the brown ores. Silver and gold are especially concentrated in the barite veinlets in the principal brown ore, which are supposed to be fillings of conduit of hydrothermal solution precipitated in the latest stage of hydrothermal activity. This mineralization seems to occur at waning stage of brown ore formation by ore solution at a lower temperature (around 250°C) than that of main part of brown ore (around 270°C). Relatively low fluid temperature and contribution of oxic ambient seawater may be responsible for the development of the Ag-Au mineralization in the brown ore. The occurrence of framboidal-rich pyritic brown ore having negative δ34S values (less than –10%) and filamentous texture of sphalerite, seeming remnant of bacteria, indicate the presence of intensive microbial activity in the hydrothermal area for brown ore formation. Formation environment of each ore type of the brown ore is supposed to be as follows: Pyritic brown ore is likely to have formed on the sea-floor around redox boundary at temperature (around 240°C) lower than ordinary black ore. Principal brown ore seems to have been formed beneath the shell of the pyritic brown ore at temperature around 270°C. Footwall of the brown ore is disseminated tuff breccia corresponding to feeder zone of hydrothermal fluid. Overprinting chalcopyrite mineralization is not observed in the brown ore except in limited part of “diseased” ore, which occurs just above the disseminated tuff breccia. Based on the features distinct from the ordinary black ore, the brown ore can be regarded as a product in the marginal part of submarine hydrothermal system, where temperature and flow rate of hydrothermal solution was relatively low and microbial activity was intensive. The brown ore seems to well preserve its primary features after its deposition and might show the initial feature of some part of the ordinary stratiform black ore.  相似文献   

6.
The Hongqiling Cu–Ni sulfide deposit in central Jilin Province is located in the eastern part of the Central Asian Orogenic Belt. Rhenium and osmium isotopes in sulfide minerals from the deposit are used to determine the timing of mineralization and the source of osmium, and ore metals. Sulfide ore samples have osmium and rhenium concentrations of 0.28–1.07 ppb and 2.39–13.17 ppb, respectively. Ten analyses yield an isochron age of 223 ± 9 Ma, indicating that the Cu–Ni sulfide deposit in the area formed in the Triassic. The initial 187Os/188Os ratio is around 0.295 ± 0.019 (MSWD = 1.14) and the δ34S values of sulfide ores vary from ?1.50 to +3.00‰. These data indicate that the mineralizing materials were derived mainly from a mantle with some quantities of crustal components introduced into the rock‐forming and ore‐forming systems during mineralization and magmatic emplacement.  相似文献   

7.
The Bianbianshan deposit, the unique gold-polymetal (Au-Ag-Cu-Pb-Zn) veined deposit of the polymetal metallogenic belt of the southern segment of Da Hinggan Mountains mineral province, is located at the southern part of the Hercynian fold belt of the south segment of Da Hinggan Mountains mineral province, NE China. Ores at the Bianbianshan deposit occur within Cretaceous andesite and rhyolite in the form of gold-bearing quartz veins and veinlet groups containing native gold, electrum, pyrite, chalcopyrite, galena and sphalerite. The deposit is hosted by structurally controlled faults associated with intense hydrothermal alteration. The typical alteration assemblage is sericite + chlorite + calcite + quartz, with an inner pyrite - sericite - quartz zone and an outer seicite - chlorite - calcite - epidote zone between orebodies and wall rocks. δ34 S values of 17 sulfides from ores changing from –1.67 to +0.49‰ with average of –0.49‰, are similar to δ34 S values of magmatic or igneous sulfide sulfur. 206Pb/204Pb, 207Pb/204Pb and 208Pb/ 204Pb data of sulfide from ores range within 17.66–17.75, 15.50–15.60, and 37.64–38.00, respectively. These sulfur and lead isotope compositions imply that ore-forming materials might mainly originate from deep sources. H and O isotope study of quartz from ore-bearing veins indicate a mixed source of deep-seated magmatic water and shallower meteoric water. The ore formations resulted from a combination of hydrothermal fluid mixing and a structural setting favoring gold-polymetal deposition. Fluid mixing was possibly the key factor resulting in Au-Ag-Cu-Pb-Zn deposition in the deposit. The metallogenesis of the Bianbianshan deposit may have a relationship with the Cretaceous volcanic-subvolcanic magmatic activity, and formed during the late stage of the crust thinning of North China.  相似文献   

8.
通过对长江中下游成矿带中武山铜矿和冬瓜山铜矿层状矿体的详细研究,发现了大量具有层圈状构造、层纹状构造或不规则同心环状构造的矿石。在前人研究基础上,经光薄片鉴定、扫描电镜观察和碳氧同位素分析等,认为这类矿石在宏观构造上显示出类似于灰泥丘的孔洞系统,微观上又发现了细菌等微生物结构,判断其属于一种矿化的灰泥丘。资料显示,灰泥丘和热水喷流沉积成矿作用关系密切,灰泥丘可视为热水喷流沉积成矿的证据之一。本文所研究的两个矿床中灰泥丘构造矿石保存状况略有不同,冬瓜山铜矿灰泥丘构造矿石保留了大量显示原生热水喷流沉积成因的组构、并发现细菌等微生物结构,碳氧同位素组成也显示原始沉积特征;而武山铜矿灰泥丘构造矿石则显示出强烈受热液改造的矿石组构和碳氧同位素组成特征,暂未发现细菌等微生物结构。冬瓜山和武山铜矿灰泥丘构造矿石的发现,有力地佐证了长江中下游成矿带在海西期曾发生过热水喷流沉积成矿作用。  相似文献   

9.
Geotectonically the Fengyang and Zhangbaling regions belong to the North China craton and the Dabie-Sulu oragene, respectively. Neo-Archean gneiss and amphibolite and metamor-phosed sea-facies sodic volcanic rocks axe the main outcrops in the two regions, respectively. The Zhangbaling terrane strike-skipped along the Tancheng-Lujiang fault zone in Mesozoic and Cenozo-ic eras and got close to the Fengyang terrane. Mesozoic Yanshanian intrusions occur broadly in thetwo regions. Gold-beating quartz veins occur in the metamorphic rocks in the Fengyang region and in the granodiorite and metamorphosed sea-facies sodic volcanic rocks in the Zhanghaling region.Generally, the formation of the auriferous quartz veins involved three stages. At the first stage,gold-poor sulfide quartz veins were formed; at the second stage gold-rich quartz sulfide veins wereformed; and at the third stage gold-poor barite and/or carbonate veins were formed. The 40^Ar/29^Ar step-heating plateau ages of the first-stage and the second-stage quartz aggregates from the Zhuding, Maoshan and Shangeheng gold deposits range between 116.1 0.6 Ma and 118.3 0.5 Ma and are pretty close to their least apparent ages and isoehronal ages, respectively. All plat-eau, least apparent and isoehronal ages range between 113.4 0.4 Ma and 118.3 0.5 Ma,which are considered as the formation age range of the quartz. It is reasonable and reliable to takethe 40^Ar/39^Ar age range of the quartz as the formation age range of gold-bearing quartz veins onthe basis of spatial relationship between gold-bearing quartz veins and their country rocks. Thegold deposits in the two regions were formed in Aptian, Cretaceous, when the Tancheng-Lujiangfault zone moved as a normal fault with slightly right-lateral strike-skip, was extensional and expe-rienced very strong magnmtic process. It is shown that the magnmtic hydrothermal fluid is a veryimportant part of the gold ore-forming hydrothermal fluid in the Fengyang and Zhanghaling re-gions. The formation of the gold ore deposits in the Fengyang and Zhanghaling regions had genetic relations with the extensional movement of the Tancheng-Lujiang fault zone and magmatic activities and took place under the extensional dynamic condition in Late Cretaceous. Therefore, the exten-sional movement of the Tancheng-Lujiang fault zone presented the energy and space for magmatic and gold ore-forming processes.  相似文献   

10.
The Baizhangyan skarn‐porphyry type W–Mo deposit is located in a newly defined Mo–W–Pb–Zn metallogenic belt, which is in the south of Middle‐Lower Yangtze Valley Cu–Fe–Au polymetallic metallogenic belt in SE China. The W–Mo orebodies occur mainly within the contact zone between fine‐grained granite and Sinian limestone strata. There are two types of W–Mo mineralization: major skarn W–Mo mineralization and minor granite‐hosted disseminated Mo mineralization which was traced by drilling at depth. Eight molybdenite samples from Mo‐bearing ores yield Re–Os dates that overlap within analytical error, with a weighted average age of 134.1 ± 2.2 Ma. These dates are in close agreement with SIMS U–Pb concordant zircon age for fine‐grained granite at 133.3 ± 1.3 Ma, indicating that crystallization of the granite and hydrothermal molybdenite formation were coeval and likely cogenetic. The Baizhangyan W–Mo deposit formed in the Early Cretaceous extensional tectonic setting at the Middle‐Lower Yangtze Valley metallogenic belt and the Jaingnan Ancient Continent. Based on mineral compositions and crosscutting relationships of veinlets, hydrothermal alteration and mineralization, the ore mineral paragenesis of the Baizhangyan deposit is divided into four stages: skarn stage (I), oxide stage (II), sulfide stage (III), and carbonate stage (IV). Fluid inclusions in garnet, scheelite, quartz and calcite from W–Mo ores are mainly aqueous‐rich (L + V) type inclusions. Following garnet deposition at stage I, the high‐temperature fluids gave way to progressively cooler, more dilute fluids associated with tungsten–molybdenite–base metal sulfide deposition (stage II and stage III) (162–360°C, 2.7–13.2 wt % NaCl equivalent) and carbonate deposition (stage IV) (137–190°C, 0.9–5 wt % NaCl equiv.). Hydrogen‐oxygen isotope data from minerals of different stages suggest that the ore‐forming fluids consisted of magmatic water, mixed in various proportions with meteoric water. From stage I to stage IV, there is a systematic decrease in the homogenization temperature of the fluid‐inclusion fluids and calculated δ18O values of the fluids. These suggest that increasing involvement of formation water or meteoric water during the fluid ascent resulted in successive deposition of scheelite and molybdenite at Baizhangyan.  相似文献   

11.
The Huangshilao gold deposit (>13.5 t Au) is comprised of stratabound pyrite‐dominant massive sulfide ores, and is distinguished from the skarn Cu, Au, and Cu–Au deposits that are dominant in the Tongguanshan orefield, Tongling, east‐central China. The stratabound orebodies are situated along flexural slip faults along the unconformity between the Upper Devonian Wutong and the Upper Carboniferous Huanglong Formations. The ores, dominated by crystallized pyrite, colloform pyrite, and pyrrhotite, are systematically sampled from the underground stopes along strike drifts. The δ34S values of ore sulfides yield a wide variation from ?11.3 to 11.4‰, but mostly within 4–8‰, corresponding to the δ34S range (3.4–8.7‰) of the Yanshanian Tongguanshan and Tianshan quartz diorite intrusions in the Tongguanshan orefield, suggesting a magmatic dominated sulfur source. Few obvious negative δ34S values are induced by an involvement of sedimentation‐related biogenic sulfur. The wide δ34S variation denotes an incongruent physical and chemical interaction of the two sources. Combined analysis of gold contents and sulfur isotopes of the sulfides show that the magmatic hydrothermal solution provides primary metals despite a small quantity that may have been contributed by the sedimentary pyrites. The hydrothermal alteration, thermal metamorphism, trace element concentration in pyrites, and existing aeromagnetic data jointly suggest that the hydrothermal fluid migrated vertically from an intrusion below, along the flexural slip faults, but not laterally from the nearby outcrop of Tianshan stock.  相似文献   

12.
安徽铜山铜矿床地球化学特征及其成因   总被引:4,自引:1,他引:4  
铜山铜矿床不同矿石类型在硫、铅、氢、氧同位素,硫化物矿物中微量元素,稀土元素,矿物生成温度等地球化学方面明显地显示了内生成矿作用和外生成矿作用两种不同特征。结合成矿地质条件所进行的矿床成因分析表明,该矿床为一矿石矿质和含矿热液(介质水)分别来自燕山期中酸性岩浆和地下热雨水的多来源矿床,并据此建立了成矿模式。  相似文献   

13.
Apparent Re–Os ages of some magmatic sulfide ore deposits are older than the zircon and baddeleyite U–Pb ages which are interpreted as the formation age of the host intrusions. The Jinchuan Ni–Cu–PGE deposit of China, the world's third largest, is such a case. We report apparent Re–Os isochron ages of 1117 ± 67 Ma, 1074 ± 120 Ma and 867 ± 75 Ma with initial 187Os/188Os ratios of 0.120 ± 0.012, 0.162 ±0.017 and 0.235 ± 0.027 for disseminated ores, sulfides from the disseminated ores and massive ores from Jinchuan, respectively. Using these data and Re–Os ages from the literature, we find that the oldest apparent Re–Os age and lowest initial Os isotope ratio are from disseminated ores which contain small amounts of sulfide minerals, the highest initial Os isotope ratios and youngest apparent Re–Os ages, consistent with the zircon and baddeleyite U–Pb ages, are from massive ores containing 90–100 modal% sulfide, and net-textured ores with about 25 modal% sulfides yield apparent Re–Os ages and initial Os ratios intermediate between those of the disseminated and massive ores.Because Os diffusion between sulfides is inhibited by the intervening silicates even at high temperatures, re-equilibration did not occur in the disseminated ore and the samples retained the Os ratios of the contaminated magma, leading to geologically meaningless ages that are older than the formation age of the rocks. While Os-bearing sulfide minerals and magnetite show low closure temperatures of Os diffusion and the sulfide minerals in the massive ore are closely connected with each other, facilitating fast diffusion of Os, re-equilibration of Os was achieved during cooling of the ore from about 850 °C after the segregation to about 400 °C. Thus, an age corresponding to the formation time and an elevated initial Os ratio were yielded by the massive ore. Os isotopes in the net-textured ore behave in the way intermediate between the disseminated and massive ores. Pb isotope data support the Os results. Disseminated ores have heterogeneous Pb isotope ratios whereas Pb in the massive ores is more uniform, consistent with Pb isotopic equilibration in the massive ores, but not in the disseminated ores.  相似文献   

14.
煎茶岭硫化镍矿床的铂族元素地球化学特征及其意义   总被引:8,自引:2,他引:8  
采用ICP-MS分析方法对煎茶岭硫化镍矿床岩石及矿石的铂族元素地球化学研究表明,煎茶岭矿床蛇纹岩的Cu/Pd值低于原生地幔岩浆的Cu/Pd值,说明岩浆熔离作用较弱,其Au/Pd值反映存在后期变质热液成矿作用镍矿石的Pd/Ir比值变化较小,指示其多数矿石属于岩浆型,尽管岩浆活动弱,但以岩浆成矿作用为主。该硫化镍矿床的铂族元素特征参数(Pt/(Pt Pd)、(Pt Pd)/(Ru Ir Os)、Pd/Ir及Cu/(Ni Cu)等)具有过渡特征,这与其处于过渡的构造环境、特殊的岩浆性质和复杂的成矿作用有关煎茶岭镍矿床成矿过程中有壳源物质的混染,整体上岩、矿石铂族元素含量较低,这与其岩浆熔离作用弱,PGE成矿作用不发育等因素有关  相似文献   

15.
冬瓜山铜矿床是安徽铜陵地区代表性的层控矽卡岩型铜矿床之一,磁黄铁矿是冬瓜山铜矿床中广泛分布的矿石矿物。野外调研与矿相学观察显示,该矿床中的磁黄铁矿矿石具有沉积、热变质和热液交代结构构造。矿物学研究表明,不同矿石中的磁黄铁矿成分差异较大,其Fe含量变化于57.78%~60.67%之间,分属高温六方相和低温单斜相,主要由黄铁矿变质脱硫而成。冬瓜山铜矿的形成可能经历了早期沉积作用、中期热变质作用和晚期岩浆热液交代作用等复杂成矿过程。  相似文献   

16.
Geological and structural conditions of localization, hydrothermal metasomatic alteration, and mineralization of the Petropavlovskoe gold deposit (Novogodnenskoe ore field) situated in the northern part of the Lesser Ural volcanic–plutonic belt, which is a constituent of the Middle Paleozoic island-arc system of the Polar Urals, are discussed. The porphyritic diorite bodies pertaining to the late phase of the intrusive Sob Complex play an ore-controlling role. The large-volume orebodies are related to the upper parts of these intrusions. Two types of stringer–disseminated ores have been revealed: (1) predominant gold-sulfide and (2) superimposed low-sulfide–gold–quartz ore markedly enriched in Au. Taken together, they make up complicated flattened isometric orebodies transitory to linear stockworks. The gold potential of the deposit is controlled by pyrite–(chlorite)–albite metasomatic rock of the main productive stage, which mainly develops in a volcanic–sedimentary sequence especially close to the contacts with porphyritic diorite. The relationships between intrusive and subvolcanic bodies and dating of individual zircon crystals corroborate a multistage evolution of the ore field, which predetermines its complex hydrothermal history. Magmatic activity of mature island-arc plagiogranite of the Sob Complex and monzonite of the Kongor Complex initiated development of skarn and beresite alterations accompanied by crystallization of hydrothermal sulfides. In the Early Devonian, due to emplacement of the Sob Complex at a depth of approximately 2 km, skarn magnetite ore with subordinate sulfides was formed. At the onset of the Middle Devonian, the large-volume gold porphyry Au–Ag–Te–W ± Mo,Cu stockworks related to quartz diorite porphyry—the final phase of the Sob Complex— were formed. In the Late Devonian, a part of sulfide mineralization was redistributed with the formation of linear low-sulfide quartz vein zones. Isotopic geochemical study has shown that the ore is deposited from reduced, substantially magmatic fluid, which is characterized by close to mantle values δ34S = 0 ± 1‰, δ13C =–6 to–7‰, and δ18O = +5‰ as the temperature decreases from 420–300°C (gold–sulfide ore) to 250–130°C (gold–(sulfide)–quartz ore) and pressure decreases from 0.8 to 0.3 kbar. According to the data of microanalysis (EPMA and LA-ICP-MS), the main trace elements in pyrite of gold orebodies are represented by Co (up to 2.52 wt %), As (up to 0.70 wt %), and Ni (up to 0.38 wt %); Te, Se, Ag, Au, Bi, Sb, and Sn also occur. Pyrite of the early assemblages is characterized by high Co, Te, Au, and Bi contents, whereas the late pyrite is distinguished by elevated concentrations of As (up to 0.7 wt %), Ni (up to 0.38 wt %), Se (223 ppm), Ag (up to 111 ppm), and Sn (4.4 ppm). The minimal Au content in pyrite of the late quartz–carbonate assemblage is up to 1.7 ppm and geometric average is 0.3 ppm. The significant correlation between Au and As (furthermore, negative–0.6) in pyrite from ore of the Petropavlovskoe deposit is recorded only for the gold–sulfide assemblage, whereas it is not established for other assemblages. Pyrite with higher As concentration (up to 0.7 wt %) is distinguished only for the Au–Te mineral assemblage. Taking into account structural–morphological and mineralogical–geochemical features, the ore–magmatic system of the Petropavlovskoe deposit is referred to as gold porphyry style. Among the main criteria of such typification are the spatial association of orebodies with bodies of subvolcanic porphyry-like intrusive phases at the roof of large multiphase pluton; the stockwork-like morphology of gold orebodies; 3D character of ore–alteration zoning and distribution of ore components; geochemical association of gold with Ag, W, Mo, Cu, As, Te, and Bi; and predominant finely dispersed submicroscopic gold in ore.  相似文献   

17.
西太平洋冲绳海槽烟囱硫化物矿床矿石化学特征与分带型式   总被引:12,自引:0,他引:12  
侯增谦  T. Urabe 《地球学报》1997,18(2):171-181
西太平洋冲绳海槽烟囱式硫化物矿床分布于琉球弧后扩张盆地、产于尹是名洼陷盆地(深1400m),其特征与日本黑矿类似。硫化物矿石及烟囱主要有3种化学类型:Pb-Zn-Ba型、Zn-Pb型和Cu-Zn型,三者分别代表温度不断升高的热液体系的早、中、晚3个成矿阶段产物,其中,Pb-Zn-Ba矿石及烟囱形成于高fo2环境和高流速、低温、富Pb、Zn、Ba热液体系,Cu-Zn矿石及烟囱形成于低流速、高温、富Cu热液体系,Zn-Pb矿石则介于其间。硫化物烟囱显示明显的矿物-化学分带。在Pb-Zn-Ba矿石(烟囱),Zn、Cd集中于烟囱中央,Ba、Fe、As、Sb、Ag、Pb集中于烟囱外带,Cu则富集于烟囱中外部。在Cu-Zn矿石,As、Sb、Fe、Ag、Au仍富集于烟囱外带,Cu、Zn、Pb则在烟囱中央富集。依此元素化学分带型式,建立了古代黑矿硫化物矿体分带与硫化物堆积模式。  相似文献   

18.
徐亮  谢巧勤  周跃飞  陈平  孙少华  陈天虎 《岩石学报》2019,35(12):3721-3733
铜官山矿田是铜陵矿集区内五大矿田之一,矿田内顺层产出的层状硫化物矿体是铜金矿床的主矿体,矿体内含有较多的胶状黄铁矿,其成因的争议制约了对铜金矿床成矿作用的解析。本文主要利用场发射扫描电镜(FE-SEM)等纳米矿物学手段,并结合光学显微镜、粉晶X射线衍射(XRD)、微区激光拉曼光谱分析等方法,对矿田内铜官山矿床及天马山矿床内层状硫化物矿体中胶状黄铁矿矿石的矿物组成、微形貌、微结构等特征进行系统研究,结果表明胶状黄铁矿矿石多呈胶状、鲕状结构,具有同心环状构造,同心环被赤铁矿、菱铁矿与黄铜矿脉穿切。同心环主要由白铁矿+有机质与胶状黄铁矿交替组成。胶状黄铁矿的黄铁矿颗粒粒径从纳米至亚微米均有分布,以自形-半自形立方体为主,少数呈他形,脉体边部胶状黄铁矿颗粒较大,自形程度较高,重结晶显著。矿石中含有少量白云石、伊利石微晶体,与胶状黄铁矿紧密共存,显示典型沉积特征。共存石英磨圆度较高,存在次生加大现象,表面存在胶状黄铁矿印模,显示为碎屑成因。这些综合信息表明胶状黄铁矿非岩浆热液成因,而是与石炭系地层同沉积成岩成因,并可能有微生物作用参与。高孔隙率、高化学活性及较高有机质含量的胶状黄铁矿可能为燕山期岩浆热液演化的含铜成矿流体提供了沉淀剂,对矿田内铜金硫化物矿体的层控性发挥了重要的控制作用。  相似文献   

19.
The Näsliden and Rävliden deposits in the Skellefte field consist of stratiform massive sulfide ores associated with submarine volcanic and clastic rocks. The ores are pretectonic. Consequently, the orebodies are considered to have formed syngenetically with deposition of the host rocks. Banding and interlayering with host sediments are common features. Cu : Zn and Zn : Pb ratios of the ores show stratigraphically and laterally defined trends. Cu : Pb : Zn ratios correspond with those found in other deposits of volcanogenic origin. Nonstratiform breccia Cu mineralizations occur directly under the massive stratiform ores in the footwall rocks where hydrothermal alteration is strongest. Ore formation took place intermittently resulting in clusters of ore systems occurring at slightly different stratigraphical levels within each deposit.  相似文献   

20.
The Hongtoushan volcanogenic massive sulfide (VMS) deposit is the largest Archean Cu–Zn deposit in China, located in the Qingyuan greenstone belt on the northern margin of the North China Craton. The Cu–Zn mineralization was stratigraphically controlled by the interbeds (~ 100 m in thickness) of mafic–felsic volcanic sets and overlain by banded iron layers. However, the relationship between VMS deposits and associated volcanics has not been examined. This study ultimately clarifies the times and sources of the volcanics and mineralization. Based on in situ zircon U–Pb and O isotope on VMS-hosting mafic, felsic volcanic rocks, banded and massive sulfide ores and postmineralization pegmatite vein, we considered that there were two main formation stages for the Qingyuan Cu–Zn deposits; one was exhalative-hydrothermal sedimentation and another was further Cu–Zn enriched by later hydrothermal processes. The timing of the first stage occurred at 2571 ± 6 Ma based on the magmatic zircons in the VMS-hosting mafic volcanic rocks, from which the inherited zircons also indicate the existence of 2.65–3.12 Ga ancient supercrustal rocks in the Qingyuan district. A modern mantle-like δ18Ozircon value of 5.5 ± 0.1‰ (2SD) for this volcanism was well preserved in the inherited core domains of ore samples. It suggests that the mafic volcanics was most likely sourced from partial melting of juvenile crust, e.g., TTG granites. A large-scale metamorphic or hydrothermal event is documented by the recrystallized zircons in sulfide ores. The timing is tightly constrained by the hydrothermal zircon U–Pb ages. They are 2508 ± 4 Ma for the banded ore, 2507 ± 4 Ma for the massive ore and 2508 ± 2 Ma for the postmineralization pegmatite vein. These indistinguishable ages indicate that the 2507 Ma hydrothermal systems played a significant role in the upgrading of the VMS Cu–Zn orebodies. The weighted δ18O values of hydrothermal zircons show a successively increasing trend from 6.0 ± 0.1‰ (2σ) for the banded ore, 6.6 ± 0.2‰ (2σ) for the massive ore to 7.3 ± 0.2‰ (2σ) for the later pegmatite vein. This variation might be induced by gradual inputting of the δ18O-rich oceanic crust and/or oceanic sediment during the hydrothermal cycling system. Considering its modern mantle-like oxygen isotope composition of 2571 Ma volcanism, a submarine volcanic hydrothermal system involving mantle plumes is a preferred setting for the Neoarchean VMS Cu–Zn deposits in the Qingyuan greenstone belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号