首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of petro- and paleomagnetic studies of the volcanic and sedimentary rocks of the Linxi and Xingfuzhilu formations (Solonker Zone, Inner Mongolia, China) are reported. The direction of an ancient prefold magnetization component is determined (Dec = 157.8°, Inc =–43.5°, K = 10.0, α95 = 5.8°) and the coordinates of the corresponding paleomagnetic pole at ~250 Ma are calculated (Plat = 64.2°, Plong = 350.6°, dp = 4.5°, dm = 7.2°). The obtained and published paleomagnetic, geochronological, and geochemical data permit palinspatic reconstructions, according to which (1) a paleobasin ~500 km wide existed between the Late Permian and beginning of the Early Triassic (250 Ma); and (2) its closure occurred not in the Permian as previously thought, but at the beginning of the Early Triassic.  相似文献   

2.
The petro- and paleomagnetic studies of ultramafic rocks (dunites, clinopyroxenites, kosvites) from the Konder Massif revealed the primary thermal remanance nature of the defined characteristic magnetization components. The calculated coordinates of the paleomagnetic poles are as follows: Plat = −4°, Plong = 178°, dp = 5°, and dm = 8° for the dunites; Plat = −2°, Plong = 181°, dp= 6°, and dm = 10° for the clinopyroxenites; and Plat = 71°, Plong = 206°, dp = 5°, and dm = 6° for the kosvites. Based on paleomagnetic and petromagnetic data, the age is estimated to be the Early Neoproterozoic for the dunites and clinopyroxenites and the Early Cretaceous for the kosvites. The massif as a whole is dated back to the Early Neoproterozoic (1000–950 Ma).  相似文献   

3.
Doklady Earth Sciences - New paleomagnetic data on the Devonian and Early Carboniferous rocks in Tuva have been obtained. Component analysis of magnetization has been carried out. Coordinates of...  相似文献   

4.
In this paper, the results of paleomagnetic studies for the Middle Jurassic subvolcanic bodies and volcanogenic-sedimentary rocks that are exposed in the Bodrak River valley within the limits of the second range of the Crimean Mountains are presented. Detailed magnetic cleanings showed the applicability of most of the sampled objects for paleomagnetic studies. The natural remanent magnetization of the examined sample is usually the sum of two components; the most stable of them possesses a bipolar distribution, indicating its primary character. The similarity between the paleomagnetic directions of subvolcanic bodies and nearly coeval volcanogenic-sedimentary rocks, which occur at angles of about 60°, suggests the disturbed occurrence of the igneous bodies. These results can be used for further detailed paleomagnetic studies of the Middle Jurassic igneous complexes in Mountainous Crimea for paleomagnetic reconstruction and the solution of local geological and structural geological problems.  相似文献   

5.
The paper summarizes paleomagnetic and rock-magnetic data on the Late Cretaceous diatremes and associated dikes from the Minusa trough located within the southwestern Siberian Platform. It is shown that the stable characteristic component of magnetization is superimposed magnetization (in physical sense). It is linked to Fe-rich titanomagnetite produced by the decay and oxidation of Ti-rich titanomagnetite derived from a primary magma. This process, however, coincides in time with the intrusion cooling, which is supported by paleomagnetic tests. Correlation of magnetic polarity with 39Ar/40Ar ages suggests that the acquired stable characteristic component of magnetization corresponds to magnetic Chrons C33-C32 and characterizes the Middle Campanian magnetic field (74–82 Ma). The mean paleomagnetic pole for this span is located at 82.8° N, 188.5° E, with α95 = 6.1 and, within confidence intervals, coincides with the reference data from the European part of the Eurasian plate. The excellent agreement between virtual paleomagnetic poles testifies that the intraplate motions in the Mesozoic resulting in the crust deformation of Central Asia ceased in the late Cretaceous or were so small that elude detection by the paleomagnetic method.  相似文献   

6.
《Gondwana Research》2013,23(3-4):956-973
The configuration and the timing of assembly and break-up of Columbia are still matter of debate. In order to improve our knowledge about the Mesoproterozoic evolution of Columbia, a paleomagnetic study was carried out on the 1420 Ma Indiavaí mafic intrusive rocks that crosscut the polycyclic Proterozoic basement of the SW Amazonian Craton, in southwestern Mato Grosso State (Brazil). Alternating field and thermal demagnetization revealed south/southwest ChRM directions with downward inclinations for sixteen analyzed sites. These directions are probably carried by SD/PSD magnetite with high coercivities and high unblocking temperatures as indicated by additional rock magnetic tests, including thermomagnetic data, hysteresis data and the progressive acquisition of isothermal remanent magnetization. Different stable magnetization components isolated in host rocks from the basement 10 km NW away to the Indiavaí intrusion, further support the primary origin of the ChRM. A mean of the site mean directions was calculated at Dm = 209.8°, Im = 50.7° (α95 = 8.0°, K = 22.1), which yielded a paleomagnetic pole located at 249.7°E, 57.0°S (A95 = 8.6°). The similarity of this pole with the recently published 1420 Ma pole from the Nova Guarita dykes in northern Mato Grosso State suggests a similar tectonic framework for these two sites located 600 km apart, implying the bulk rigidity of the Rondonian-San Ignacio crust at that time. Furthermore these data provide new insights on the tectonic significance of the 1100–1000 Ma Nova Brasilândia belt—a major EW feature that cuts across the basement rocks of this province, which can now be interpreted as intracratonic, in contrast to previous interpretation. From a global perspective, a new Mesoproterozoic paleogeography of Columbia has been proposed based on comparison of these 1420 Ma poles and a 1780 Ma pole from Amazonia with other paleomagnetic poles of similar age from Baltica and Laurentia, a reconstruction in agreement with geological correlations.  相似文献   

7.
The Jurassic paleogeographic position of the Pontides is not well studied because of insufficient paleomagnetic data. For this reason, a paleomagnetic study was carried out in order to constrain the paleolatitudinal drift of the Turkish blocks during the Jurassic period. A total of 32 sites were sampled from volcanic and volcanoclastic rocks of the Lower/Middle Jurassic Kelkit formation (Eastern Pontides), Mudurnu formation (Sakarya continent) and Upper Jurassic–Lower Cretaceous Ferhatkaya formation exposed around Amasya region (Eastern Pontides). Rock magnetic experiments demonstrate that the main ferromagnetic mineral is pseudo-single-domain titanomagnetite in these rocks. Paleomagnetic analysis revealed two main components of the natural remanent magnetization during stepwise thermal and alternating field demagnetization. The first component is a low-coercivity (unblocking temperature) component with a direction sometimes similar to that of the earth’s present field or a viscous component. The second component, which is interpreted as the characteristic remanent magnetization (ChRM) direction, has low to high coercivity properties between 20 and 100 mT or unblocking temperatures between 300 and 580°C. A positive fold test at the 95% level of confidence proved that the ChRM of the sites is primary. Paleomagnetic directions calculated for the Kelkit formation in the Eastern Pontides have a mean direction of D = 334.8°, I = 49.7°, α 95 = 7.1° after tilt-correction. A mean direction of D = 332.2°, I = 48.5°, α 95 = 14.6° was obtained from the volcanoclastic rocks of the Mudurnu formation, and D = 324.3°, I = 43.3°, α 95 = 9.5° was calculated for the Upper Jurassic–Lower Cretaceous limestones/Ferhatkaya formation of the Amasya region. The Jurassic rocks in the Eastern Pontides and Mudurnu region are considered to represent products of the rifted Neo-Tethys ocean, while the Upper Jurassic–Lower Cretaceous sediments in Amasya are related to basin-filling materials. The data suggest that the Kelkit formation was formed at 30.5°N paleolatitude and the equivalent Mudurnu formation at 29.5°N paleolatitude. The paleolatitude of the Eastern Pontides indicates that this rifting block was separated from Eurasia by a marginal basin instead of being a part of Eurasia. The lower paleolatitude of the Amasya region at 24.8°N in the Upper Jurassic to Lower Cretaceous clearly indicates southward drift of the Turkish blocks during the Jurassic to Lower Cretaceous period together with the motion of Eurasia.  相似文献   

8.
Paleomagnetic data on Middle- and Late-Paleozoic rocks from the central part of the Ural-Mongolian Belt in Kazakhstan are considered. The primary remanences in the Permian rocks and secondary magnetization components of the same age in pre-Permian rocks of central and northern Kazakhstan are not rotated relative to the East European Platform. In southern Kazakhstan adjoining the Tien Shan almost all data point to large, up to 90°, counterclockwise rotation of blocks. These rotations, related to the regional wrench fault zone, must be subtracted from older paleomagnetic data to ensure their correct interpretation. The paleomagnetic declinations in Upper Carboniferous rocks coincide more or less over all of Kazakhstan, whereas the Silurian and Early Devonian declinations in the north and south of Kazakhstan differ approximately by 180°. It can be suggested that the Devonian volcanic belt, having a horseshoe outline, was initially an almost rectilinear NW-trending feature. Its oroclinal bending took place in the Devonian and Early Carboniferous and completed by the Late Carboniferous. We compared the model of the Kazakh Orocline based on paleomagnetic data with the geological events in this territory. It turned out that a slow bending of an initially rectilinear subduction zone is consistent with lateral migration of active volcanism and folding inside a developing loop, whereas extension outside the loop was accompanied by subsidence and rifting. In general, the proposed model connects the main tectonic events in Kazakhstan with the movements established from paleomagnetic data.  相似文献   

9.
《Gondwana Research》2013,23(3-4):974-991
It is a common concept that different tectonic units in the western part of the Central Asian Orogenic Belt were united into the landmass of the Kazakhstania continent in the Paleozoic but many important details of its history remain enigmatic and controversial. Recently published paleomagnetic data from this region demonstrate that the ~ 2000 km long horseshoe-shaped Devonian Volcanic Belt was created by oroclinal bending of an originally rectilinear active margin of Kazakhstania. Still, the Silurian and Devonian paleomagnetic results which this interpretation is based upon are limited and unevenly spread along the belt, and additional middle Paleozoic data are highly desirable. Accordingly, we studied three mid-Paleozoic objects from different segments of this volcanic belt. Two of the three new objects yielded paleomagnetic directions that fit perfectly into the oroclinal scenario, whereas the third one provided no interpretable data. The earlier history of Kazakhstania, however, remains misty. We obtained three new Ordovician results in north–central Kazakhstan and found similar inclinations but widely dissimilar declinations. Previously published data show a large scatter of Ordovician declinations in South Kazakhstan and Kyrgyzstan as well. We analyzed all seven Middle–Late Ordovician paleolatitudes and came to the conclusion that a nearly E–W trending active margin of the Kazakhstania landmass had existed at low (~ 10°S) latitudes at that time. We hypothesize that this margin of the Kazakhstania landmass collided with another island arc, called Baydaulet–Akbastau, and with the Aktau–Junggar microcontinent by the Ordovician–Silurian boundary. As a result of this collision, subduction ceased, and regional deformation, magmatism, and rotations of crustal fragments took place in most of Kazakhstania. In Silurian time, Kazakhstania moved northward crossing the equator and rotating clockwise by ~ 45°. This changed the orientation of the Kazakhstania to NW–SE, and thereby established the (rectilinear) predecessor of the modern curved Devonian Volcanic Belt.  相似文献   

10.
《Tectonophysics》1987,143(4):329-334
A paleomagnetic investigation of the Lower Devonian Llandstadwell Formation in southwest Wales has yielded a characteristic direction (declination = 196°, inclination = −5°) that passes a fold test. Comparison of the corresponding virtual geomagnetic pole (334°E, 39°S) to previously published poles for Great Britain indicates that the magnetization is secondary and likely to be of Carboniferous age. No evidence for post-Hercynian rotation of Pembrokeshire is indicated by our data.  相似文献   

11.
In order to test different hypotheses concerning the Paleozoic evolution of the Ural–Mongol belt (UMB) and the amalgamation of Eurasia, we studied Middle Devonian basalts from two localities (11 sites) and Lower Silurian volcanics, redbeds, and intra-formational conglomerates from three localities (20 sites) in the Chingiz Range of East Kazakhstan. The Devonian rocks prove to be heavily overprinted in the late Paleozoic, and a high-temperature, presumably primary, southerly, and down component is isolated at only four sites from a homoclinal section. Most Silurian redbeds are found to be remagnetized in the late Paleozoic; in contrast, a bipolar near-horizontal remanence, isolated from Silurian volcanics, is most probably primary as indicated by positive tilt and conglomerate tests. Analysis of paleomagnetic data from the Chingiz Range shows that southward-pointing directions in Ordovician, Silurian, and Devonian rocks are of normal polarity and hence indicate large-scale rotations after the Middle Devonian. The Chingiz paleomagnetic directions can be compared with Paleozoic data from the North Tien Shan and with the horseshoe-shaped distribution of subduction-related volcanic complexes in Kazakhstan. Both paleomagnetic and geological data support the idea that today's strongly curved volcanic belts of Kazakhstan are an orocline, deformed mostly before mid-Permian time. Despite the determination of nearly a dozen new Paleozoic paleopoles in this study and other recent publications by our team, significant temporal and spatial gaps remain in our knowledge of the paleomagnetic directions during the middle and late Paleozoic. However, the paleomagnetic results from the Chingiz Range and the North Tien Shan indicate that these areas show generally coherent motions with Siberia and Baltica, respectively.  相似文献   

12.
Alternating field and thermal demagnetization of igneous rocks of the Malvern Hills identifies a number of magnetite-held components which are characterized by a high blocking temperature (M2) component D = 283°, I = 47°, and lower blocking temperature (M3) component D = 269°, I = −43° which is of complex origin or more than one age. Two subordinate components are (M1) D = 7°, I = 56° and (M4) D = 174°, I = 51° in later dolerites. A pervasive hematite-held remanence with a mean D = 186°, I = −5° is linked to Hercynian palaeofield directions and the uplift/folding of the Malvernian axis. The similarity of the magnetization directions in the Stanner–Hanter (702 Ma) and Malvernian (681 Ma) rocks suggests that folding of the Palaeozoic rocks in the Malvern Hills was achieved by upthrust of the basement and involved little folding of the latter. The Old Radnor sediments possess a post-folding remanence D = 117°, I = −13° of probable Cambrian age and a subordinate remanence which may be Hercynian in age. The late Precambrian–Cambrian palaeomagnetic record (ca. 700–500 Ma) of England and Wales is compared with data from the Armorican Massif. Although the apparent polar wander (a.p.w.) paths are widely dissimilar prior to 550 Ma, the two regions had similar latitudes and went through similar palaeolatitudinal movements throughout this interval. The palaeomagnetic data support models involving tectonic rotations but little closure across this part of the Hercynian Belt.  相似文献   

13.
In recent years, there has been a significant increase in the paleomagnetic data of the Amazonian Craton, with important geodynamic and paleogeographic implications for the Paleo-Mesoproterozoic Columbia supercontinent (a.k.a., Nuna, Hudsoland). Despite recent increase of paleomagnetic data for several other cratons in Columbia, its longevity and the geodynamic processes that resulted in its formation are not well known. A paleomagnetic study was performed on rocks from the ∼1535 Ma AMG (Anorthosite-Mangerite-Rapakivi Granite) Mucajaí Complex located in the Roraima State (Brazil), in the northern portion of the Amazonian Craton, the Guiana Shield. Thermal and AF treatments revealed northwestern/southeastern directions with upward/downward inclinations for samples from twelve sites. This characteristic remanent magnetization is mainly carried by Ti-poor magnetite and in a lesser amount by hematite. Site mean directions were combined with previous results obtained for three other sites from the Mucajaí Complex, producing the dual polarity mean direction: Dm = 132.2°; Im = 35.4° (N = 15; α95 = 12.7°; k = 10.0) and a paleomagnetic pole located at 0.1°E, 38.2°S (A95 = 12.6°; K = 10.2). The Mucajaí pole favours the SAMBA (South AMerica-BAltica) link in a configuration formed by Amazonia and Baltica in Columbia. Also, there is geological and paleomagnetic evidence that the juxtaposition of Baltica and Laurentia at 1.76–1.26 Ga forms the core of Columbia. The present paleomagnetic data predict a long life 1.78–1.43 Ga SAMBA connection forming part of the core of the supercontinent.  相似文献   

14.
A combined magnetic fabric and paleomagnetic study has been carried out on the siliciclastic rocks gathered from a stratigraphic cross-section through the Nanpanjiang Basin, South China, in an attempt to extract the paleoflow information preserved in and, thus, constrain the possible origins of these clastic rocks. The sediments used for this study were formed by sediment-gravity flows along the southern margin of the South China block in the Middle Triassic time (ca. 245–228 Ma). The results show a normal distribution of both low field magnetic susceptibility values and natural remanent magnetization intensities, which along with the monotonic detrital framework mode, mainly comprising quartz and lithic particles, may suggest a single provenance involved in deposition of these clastic deposits. Anisotropy of magnetic susceptibility (AMS) analysis acquires primarily the sedimentary magnetic fabrics, which, in this study, reveal paleoflow directions ranging from NNW to ENE with an overall mean orientation of NE. Demagnetization on a part of samples isolates a characteristic remanent component averaged at D = 44.8°, I = 16.9°, κ = 9.7, α95 = 6. 5°, n = 55, corresponding to a paleolatitude N8.6° and a clockwise rotation of ca. 45° since the Middle Triassic for the studied cross-section. This mean direction passes fold tests and is consistent with the reference direction expected from the South China block at the 95% confidence level. Restoring this ∼45° declination renders an overall northward paleoflow, which, combined with other evidence, suggests a southern provenance for these sediments during deposition in the Middle Triassic time. In terms of the early Mesozoic plate framework of southeastern Asia, a tectonic scenario is proposed here, whereby the nearly N–S convergence of the Indochina and South China blocks and its related Indosinian orogeny in the Middle Triassic caused the formation of the Nanpanjiang foreland basin, which was filled by voluminous detritus shed from the uplifted orogenic belt on its southern side.  相似文献   

15.
Paleomagnetic study of dykes and intrusions remanent in the central part of the Kola Peninsula has been carried out; the Devonian age of these objects has been confirmed by isotopic-geochronological studies. The component analysis of the magnetization vector in the samples has shown that there are two magnetization components in most samples. The paleomagnetic pole corresponding to the direction of a more stable component is located in the close vicinity of the Middle Devonian segment of the apparent polar wander path (APWP) for the East European Craton, so this enables us to estimate its age to be as old as the Devonian. The second magnetization component was found in Devonian dykes of both northern and southern parts of the Kola Peninsula; the paleomagnetic pole corresponding to this component is located close to the Mesozoic (Early Jurassic) part of the APWP for the East European Craton. It is suggested that the extensive remagnetization of Devonian intrusions in the Kola Peninsula was caused by the thermal effect of the Barents-Amerasian superplume and by the appearance of an extensive area with trap magmatism within the modern Arctic Basin region. Discovery of a significant thermal event that covered the Fennoscandian northeast allows us to explain the geochronological problem concerning the Mesozoic ages of particular singular zircon grains from Precambrian rocks of the shield derived via the SHRIMP method.  相似文献   

16.
Kovalenko  D. V.  Lobanov  K. V. 《Doklady Earth Sciences》2018,483(2):1491-1494
Doklady Earth Sciences - New paleomagnetic data are determined for Silurian rocks of Tuva. One-, two-, and three-component magnetization is distinguished for the rocks. The low-temperature (LT)...  相似文献   

17.
We report a new paleomagnetic pole for the Black Range Dolerite Suite of dykes, Pilbara craton, Western Australia. We replicate previous paleomagnetic results from the Black Range Dyke itself, but find that its magnetic remanence direction lies at the margin of a distribution of nine dyke mean directions. We also report two new minimum ID-TIMS 207Pb/206Pb baddeleyite ages from the swarm, one from the Black Range Dyke itself (>2769 ± 1 Ma) and another from a parallel dyke whose remanence direction lies near the centre of the dataset (>2764 ± 3 Ma). Both ages are slightly younger than a previous combined SHRIMP 207Pb/206Pb baddeleyite weighted mean date from the same swarm, with slight discordance interpreted as being caused by thin metamorphic zircon overgrowths. The updated Black Range suite mean remanence direction (D = 031.5°, I = 78.7°, k = 40, α95 = 8.3°) corresponds to a paleomagnetic pole calculated from the mean of nine virtual geomagnetic poles at 03.8°S, 130.4°E, K = 13 and A95 = 15.0°. The pole's reliability is bolstered by a positive inverse baked-contact test on a younger Round Hummock dyke, a tentatively positive phreatomagmatic conglomerate test, and dissimilarity to all younger paleomagnetic poles from the Pilbara region and contiguous portions of Australia. The Black Range pole is distinct from that of the Mt Roe Basalt (or so-called ‘Package 1’ of the Fortescue Group), which had previously been correlated with the Black Range dykes based on regional stratigraphy and imprecise SHRIMP U–Pb ages. We suggest that the Mt Roe Basalt is penecontemporaneous to the Black Range dykes, but with a slight age difference resolvable by paleomagnetic directions through a time of rapid drift of the Pilbara craton across the Neoarchean polar circle.  相似文献   

18.
To constrain the age of Australian opal formation, we have undertaken a paleomagnetic study of oxidised ironstone ‘nuts’ from Yowah, Queensland. Following standard methods, we have calculated a mean direction of declination D = 191.4°, inclination I = 61.7° (α95 = 4.0°), indicating a paleomagnetic pole position at latitude λp = 71.3°S, longitude ?p = 119.4°E (A95 = 5.3°). The direction comprises both normal and reverse polarities that fail a reversal test most probably owing to contamination by small recent/present-day components. The mean direction should not be significantly affected. A chi-square comparison with paleomagnetic poles for dated Cenozoic rocks in eastern Australia, poles derived from the Global Moving Hotspot Reference Frame and the Cenozoic pole path for North America, appropriately transferred to Australian coordinates, yields a mean age estimate of 35 ± 7 Ma, i.e. late Eocene to early Oligocene. This is interpreted as the age of the ironstone formation, which places a maximum age for the formation of precious Yowah opal. This result confirms and tightens the age for the nearby Canaway weathered profile.  相似文献   

19.
《International Geology Review》2012,54(10):1108-1118
The paper contains recent information on the history of the earth's magnetic field in the Jurassic and Lower Cretaceous, obtained in paleomagnetic exploration of the key paleontological sections of sea deposits in the Bay of Anabar and Khatanga basin. Six paleomagnetic zones in the Valanginian were found for the first time, as well as alternation of paleomagnetic zones in Middle and Lower Jurassic rocks. Comparison of paleomagnetic sections of different regions indicates inversions of the magnetic field of the earth. The pole position was calculated for the Lower Valanginian: λ = = 174° E; Φ = 63.2° N. Possibility is seen for the use of rocks possessing high magnetic viscosity and low values of Q and of the collapse field, for paleomagnetic purposes. – Authors.  相似文献   

20.
This study has investigated magnetic remanence, rock magnetism and anisotropy of magnetic susceptibility (AMS) in granulite and amphibolite grade metamorphic terranes of the Huabei Shield between Inner Mongolia in the west and the Bohai Sea in the east. Rock magnetic studies identify annealed metamorphic magnetite grains with multidomain properties as the remanence carriers; a widely recorded stable remanence was probably fixed by grain shape effects. Granulite facies terranes are typically between one and two orders more strongly magnetised than amphibolite terranes and AMS fabrics correlate mostly with metamorphic mineral fabrics observed in the country rocks. Progressive thermal demagnetisation identifies a range of two and three component structures resident in magnetite. An important component recognised as a partial or complete remagnetisation by Late Mesozoic–Tertiary tectonic/magmatic activity is present in basement at the southern margin of the outcrop (Miyun terrane) and where extensive granite plutonism has occurred (Zhunhua terrane). These components have directions corresponding to remanence in the Yunmeng Shan Granite (119–114 Ma, D/I=33/58°, 39 samples, a95=3.5°, palaeopole at 201°E, 64°N). Most remanence elsewhere was probably acquired during post-tectonic uplift and cooling of the basement between ∼2200 and 1850 Ma because palaeomagnetic directions are removed from the Phanerozoic palaeofield path and they are distinct from the palaeomagnetic record in the overlying Jixian Supergroup deposited at ∼1840–900 Ma. These latter magnetisations are considered reliable indicators of the palaeofield during Late Palaeoproterozoic times because deformation of overlying supracrustal rocks is mostly slight and no prominent deflection of magnetic remanence by magnetic fabrics is observed. Palaeofield directions and poles attributed to the time of uplift-related cooling are: Qian’an Terrane (D/I=215/71°, a95=9°, 17 samples, pole at 99°E, 10°N) and North Qianxi Terrane (D/I=44/−45°, a95=4°, 41 samples, pole at 79°E, 11°S). In addition, a more widely-preserved shallow northerly component correlates with a NW→E swathe of components recorded by uplift-related cooling within the Datong–Huan’an granulite terrane in the west of the shield. A preliminary Palaeo-Mesoproterozoic apparent polar wander path for the Huabei Shield is defined from the Palaeoproterozoic record in the metamorphic basement rocks and the Meso-Neoproterozoic record in the overlying Jixian Supergroup. It incorporates a loop between ∼2200 and 1850 Ma and exhibits a general east to west trend in subsequent times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号