首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

This study presents new whole-rock major and trace element geochemistry, zircon U–Pb ages, and Hf-isotope compositions for volcanic rocks from the Manketouebo Formation of the central Great Xing’an Range, NE China. These data provide precise ages and information on the petrogenesis and source of the magmas that formed this formation, furthering our understanding of the geodynamic setting of the large-scale late Mesozoic magmatism in the Great Xing’an Range and other areas in NE China. The Manketouebo Formation in the study area is dominated by rhyolites and rhyolitic tuffs with minor trachydacites. The LA-ICP-MS zircon U–Pb dating indicates that these volcanic rocks formed between 143 and 139 Ma. The volcanic rocks contain high silica (66.70–79.91 wt.%) and total alkali (5.93–9.72 wt.%) concentrations, and low concentrations of MgO (0.08–1.15 wt.%), total FeO (0.68–4.50 wt.%), and CaO (0.10–2.56 wt.%). They are enriched in large-ion lithophile elements (LILEs; e.g. Rb, Th, and U) and light rare earth elements (LREEs), and depleted in high field strength elements (HFSEs; e.g. Nb, Ta, Ti, and P) and heavy rare earth elements (HREEs), indicating that they are similar to highly fractionated I-type igneous rocks. All of the magmatic zircons from the analysed samples have high initial 176Hf/177Hf ratios (0.282900–0.283093), positive εHf(t) values (7.48–14.19), and young Hf two-stage model ages (954–344 Ma) that suggest the primary magma that formed the volcanic rocks of the Manketouebo Formation was derived from the partial melting of Neoproterozoic to Phanerozoic juvenile crustal material, indicating in turn that significant crustal growth occurred at this time within the Xing’an Terrane. These data, combined with previous research into the spatial–temporal distribution of Mesozoic volcanic rocks in NE China, suggest that the Early Cretaceous magmatism in the Great Xing’an Range was influenced by both the subduction of the Palaeo-Pacific Plate and the closure of the Mongol–Okhotsk Ocean. This was a crucial period in the transformation from the Mongol–Okhotsk Ocean to the Palaeo-Pacific tectonic regimes. In summary, the early stages of Early Cretaceous magmatism in this area were related to the closure of the Mongol–Okhotsk Ocean, whereas the later stages of magmatism in this area and elsewhere in NE China were related to the subduction of the Palaeo-Pacific Plate.  相似文献   

2.
The Yanhu granitoids are located in the west segment of the Bangongco-Nujiang suture in the western Tibetan Plateau. The main rock types of the granitoids are diorite porphyry, quartz diorite, granodiorite, granite and granite porphyry. Here, their zircon LA-ICP-MS U-Pb ages and petrogeochemical data are reported. Three groups of magmatic events can be distinguished from the Yanhu area: group 1 includes samples AK01 and ZK01 of diorite porphyry, and sample D3658 of quartz diorite that yield mean zircon U-Pb ages of 121.0 ± 2.7 Ma, 116.6 ± 2.0 Ma and 116.0 ± 3.9 Ma, respectively; group 2 includes sample D0050 of diorite porphyry, samples D1393 and D3660 of granodiorite and sample D3065 of granite porphyry that yield mean zircon U-Pb ages of 104.9 ± 2.0 Ma, 105.4 ± 3.8 Ma, 104.2 ± 1.9 Ma and 104.2 ± 1.9 Ma, respectively; group 3 includes sample D3093 of granite that yields mean zircon U-Pb ages of 93.6 ± 1.5 Ma. The zircon LA-ICP-MS U-Pb ages suggest that the Yanhu granitoids were emplaced at 121.0–93.6 Ma, representing Cretaceous magmatism in the west segment of the Bangongco-Nujiang suture. The granitoids are composed of SiO2 (56.57 to 76.98 wt.%), Al2O3 (12.20 to 17.90 wt.%), Na2O (3.61 to 4.98 wt.%), K2O (2.06 to 4.71 wt.%) and CaO (0.27 to 5.74 wt.%). The Yanhu granitoids exhibit enrichment in LREE (light REE) and LILE (large ion lithophile elements) such as Rb, Th, U, Pb and K and depletion of HREE (heavy REE), P, Ti, Nb, Ta and Zr. Their A/CNK ratios of 0.85-1.06 are <1.1, implying that they are high-K, metaluminous-weakly peraluminous I-type granites. TheYanhu granitoids were generated mainly by partial melts of the meta-igneous lower crust and some arc-related materials. The Yanhu granitoids probably formed in VAG and syn-COLG tectonic settings related to the southward subduction of the Tethyan Ocean. Diorite porphyry and quartz diorite magmatism from 121.0 Ma to 116.0 Ma may be associated with the southward Bangongco–Nujiang Tethys oceanic crust subduction. Diorite porphyry, granodiorite, and granite porphyry magmatism from 105.4 Ma to 104.2 Ma may be associated with the rising asthenosphere induced by the slab breakoff. Granite magmatism from 93.6 Ma may be related to the crustal thickening induced by the final amalgamation of the Lhasa Terrane and the Qiangtang Terrane.  相似文献   

3.
A combined U–Pb zircon geochronological and whole-rock isotopic and geochemical study has been carried out on high-grade orthogneiss, meta-basite, and meta-sediments from the Erzgebirge. The results indicate multiple pulses of Ediacaran–Ordovician magmatism in a transitional volcanic-arc to rift-basin setting. Orthogneiss from high-pressure nappes exhibit a step-like pattern of inherited zircon ages and emplacement ages of 500–475 Ma. In contrast, granite gneiss from the medium-pressure core of the Erzgebirge is characterised by three pulses of magmatism in the Early Cambrian, Late Cambrian, and Early Ordovician. A trend of decreasing Th/U ratios in zircon is observed to c.500 Ma, after which significant increases in the trend and variability of the data is inferred to mark the transition from arc-related to rift-related magmatism. Sediments deposited in the Early Cambrian have continental island arc affinity. Major detrital peaks in the Ediacaran and subordinate Tonian, Palaeoproterozoic, and Neoarchaean data are consistent with an Avalonian-Cadomian Arc and West African Craton derivation. The Early Cambrian sediments were locally reworked by a thermal event in the Ordovician resulting in leucocratic banding and recorded in Ordovician zircon rims characterised by systematically lower Th/U ratios. Ptygmatically folded leucocratic bands containing Ordovician zircon rims, associated with low Th/U ratios, are further observed in the granite gneiss core of the Erzgebirge. Variscan ages are rare, except in a fine-grained high-pressure micaschist, which contains exclusively small, structure-less, zircon with a weighted mean age of 350 ± 2 Ma. These data, along with a re-evaluation of previously published data, have been interpreted as the product of flattening subduction during the Early Cambrian; followed by the opening of slab windows in the Late Cambrian; and finally delamination in the Early Ordovician. Delamination of the orphaned slab led to asthenospheric upwellings triggering extension, bimodal magmatic pulses, recycling of fertile crust, high-temperature metamorphism, and cratonisation of relatively young crust.  相似文献   

4.
ABSTRACT

We report geochemical data and zircon SHRIMP U-Pb ages for Late Mesozoic granitoids from the western Zhejiang province and southern Anhui province (the WZSA region) from southeast China. In combination with published geochronological and geochemical data, the granitoids in the region can be divided into three stages: 171–141 Ma, 140–121 Ma, and 120–95 Ma. The first stage of these granitoids is mainly composed of granite porphyry and granodiorite which are similar to I-type granitoids, including having weakly negative Eu anomalies with enrichment in light rare earth elements (LREE), Rb, Th, and U. The second stage of granitoids consists of monzogranite, syenogranite, and granite with the characteristics of both A-type and I-type granitoids including strongly negative Eu anomalies; depletion of Ba, Sr, and Ti; and enrichment of K, Rb, and high field strength elements (HFSEs) (such as Th and U). The third stage of granitoids is mainly composed of granite, quartz monzonite, quartz diorite, and mafic rocks with weakly negative Eu anomalies and also enrichment in LREE, Rb, Th, U, and K. From our work, we propose a transition from compressional to extensional magmatism at ~141 Ma. Based on the geochemical characteristics of these granites and coeval mafic rocks, we propose that the formation of the A-type magmatism in the WZSA region formed as the result of lithospheric extension and asthenospheric upwelling during the Early Cretaceous.  相似文献   

5.
Rare earth element (REE) mineralization is hosted within Neoproterozoic alkaline metaigneous rocks in the northwestern part of the Okcheon Metamorphic Belt (OMB), a polymetamorphosed fold-and-thrust belt transecting the Paleoproterozoic Gyeonggi and Yeongnam Massifs in the southern Korean Peninsula. The principal carrier phase of REEs is allanite. Allanite grains can be subdivided into several types based on the texture and mineral assemblage including quartz, K-feldspar, biotite, britholite, apatite, fergusonite, andradite, magnetite, zircon, titanite and fluorite. Electron microprobe analysis of allanite clearly distinguishes sample-to-sample variations in total REEs, Ca, Al, Fe and Y but the textural varieties from each rock sample do not show marked differences in those elements. Sensitive high-resolution ion microprobe dating of allanite and zircon reveals a complex history of multistage mineralization. Allanite grains from REE ores yielded Late Ordovician (444.6 ± 8.0 Ma), Permian to Triassic (ca. 300–220 Ma) and Early Jurassic (199–183 Ma) 208Pb/232Th ages. These multiple age components often coexist in single grains showing slight differences in backscattered electron brightness. The Ordovician components have distinctly higher Th/U than the younger domains in the same rock sample. The cores and rims of zircon from a syenite hosting REE ore bodies yielded Neoproterozoic (858.2 ± 6.3 Ma) and Early Jurassic (ca. 190 Ma) 206Pb/238U ages, respectively. The Early Jurassic ages (194–187 Ma) also obtained from zircon grains from granites taken from dykes occurring close to the ores and a drill core indicate the correspondence between granitic magmatism and REE mineralization. The Neoproterozoic zircon inheritance (weighted mean = 853.9 ± 3.8 Ma) in these granites is in sharp contrast to the dominant Paleoproterozoic inherited zircon from the widespread earliest Middle Jurassic granites enclosing the mineralized zone. The geotectonic significance of the Late Ordovician event recorded in the allanite, as well as in detrital zircon from the OMB, is still unclear but its temporal coincidence with intraplate volcanism and arc-related igneous activity, respectively, reported from the southwestern edge of the adjacent Taebaeksan Basin and the southwestern Gyeonggi Massif is noteworthy. The following Permian–Triassic and Early Jurassic mineralization events are probably linked to the continental suturing between the North and South China blocks and subsequent post-orogenic magmatism, and arc magmatism resulting from the paleo-Pacific plate subduction, respectively. Sub-grain Sm–Nd isotopic analyses of allanite by laser ablation multiple collector ICPMS yielded initial εNd values plotting along the Nd isotopic evolution path of the Neoproterozoic metaigneous rocks, indicating that REEs originating from the host rock have been recycled during multistage mineralization events. The profound differences in inherited zircon ages and Nd isotopic compositions between the Early and Middle Jurassic granites may reflect the presence of a major thrust-bounded crustal structure beneath the OMB.  相似文献   

6.
The age of intraplate volcanism in northern Pannonian Basin of Carpathians is revisited using a combination of zircon U/Pb, zircon (U–Th)/He and apatite (U–Th)/He dating techniques, complemented by electron microprobe (EMP) characterisation of dated minerals. A total of six maar structures and diatremes in the South-Slovakian Volcanic Field (SSVF) were dated and the obtained new ages yielded the following key findings: Two isolated maars in SE part indirectly dated by geomorphologic constraints to Late Pleistocene are actually of Pliocene (2.8 ± 0.2 Ma) and Late Miocene (5.5 ± 0.6 Ma) ages. In contrast, two maars in NW part of the study area are of Late Pliocene age (4.1 ± 0.4 and 5.2–5.4 Ma), younger than the Late Miocene age (~6.5 Ma) inferred previously from K/Ar data on the proximal basaltic lava flows. These maars therefore belong to the second volcanic phase that was previously identified only in SE part of the SSVF. In the light of the new geochronologic data, it seems likely that the Pliocene phreatomagmatic eruptions may have occurred along extension-related, NW- and NE-trending orthogonal faults. EMP analyses and imaging revealed an extensive syn- and post-growth metasomatic replacement by dissolution-reprecipitation in the majority of zircons. Abundant silicate melt inclusions in porous metasomatised parts of the zircons are diagnostic of magmatic rather than hydrothermal metasomatism. Consistent ages of the metasomatised and non-metasomatised zones do not indicate disturbance of the U–Pb system during the metasomatism. Enrichment in U and Th loss in the metasomatised zircons are diagnostic of an increasing oxygen fugacity triggered by degassing of the volatile residual melt during the final stages of alkali basalt fractionation. Rare zircon-to-baddeleyite transformation was probably connected with lowered silica activity in carbonated basaltic magmas in south-eastern part of the study area.  相似文献   

7.
Absolute ages of migmatization in the polymetamorphic, parautochthonous basement of the Sveconorwegian Province, Sweden, have been determined using U–Pb ion probe analysis of zircon domains that formed in leucosome of migmatitic orthogneisses. Migmatite zircon was formed by recrystallization whereas dissolution–reprecipitation and neocrystallization were subordinate. The recrystallized migmatite zircon was identified by comparison of zircon in mesosomes and leucosomes. It is backscatter electron‐bright, U‐rich (800–4400 ppm) with low Th/U‐ratios (generally 0.01–0.1), unzoned or ‘oscillatory ghost zoned’, and occurs as up to 100 μm‐thick rims with transitional contacts to cores of protolith zircon. Protolith ages of 1686 ± 12 and 1668 ± 11 Ma were obtained from moderately resorbed, igneous zircon crystals (generally Th/U = 0.5–1.5, U < 300 ppm) in mesosomes; protolith zircon is also present as resorbed cores in the leucosomes. Linkage of folding, synchronous migmatization and formation of recrystallized zircon rims allowed direct dating of south‐vergent folding at 976 ± 7 Ma. At a second locality, similar recrystallized zircon rims in leucosome date pre‐Sveconorwegian migmatization at 1425 ± 7 Ma; an upper age bracket of 1394 ± 12 Ma for two overprinting phases of deformation (upright folding along gently SSW‐plunging axes and stretching in ESE) was set by zircon in a folded metagranitic dyke. Lower age brackets for these events were set at 952 ± 7 and 946 ± 8 Ma by zircon in two crosscutting and undeformed granite–pegmatite dykes. Together with previously published data the present results demonstrate: (i) Tectonometamorphic reworking during the Hallandian orogenesis at 1.44–1.42 Ga, resulting in migmatization and formation of a coarse gneissic layering. (ii) Sveconorwegian continent–continent collision at 0.98–0.96 Ga, involving (a) emplacement of an eclogite unit, (b) regional high‐pressure granulite facies metamorphism, (c) southvergent folding, subhorizontal, east–west stretching and migmatization, all of which caused overprint or transposition of older Mesoproterozoic and Sveconorwegian structures. The Sveconorwegian migmatization and folding took place during or shortly after the emplacement of Sveconorwegian eclogite and is interpreted as a result of north–south shortening, synchronous with east–west extension and unroofing during late stages of the continent–continent collision.  相似文献   

8.
For the first time, an albite orthogneiss has been recognised and dated within the HP–LT blueschist facies metabasites and metapelites of the Ile de Groix. It is characterised by a peraluminous composition, high LILE, Th and U contents, MORB-like HREE abundances and moderate Nb and Y values. A U–Pb age of 480.8?±?4.8?Ma was obtained by LA-ICP-MS dating of zircon and titanite. It is interpreted as the age of the magmatic emplacement during the Early Ordovician. Morphologically different zircon grains yield late Neoproterozoic ages of 546.6–647.4?Ma. Zircon and titanite U–Pb ages indicate that the felsic magmatism from the Ile de Groix is contemporaneous with the acid, pre-orogenic magmatism widely recognised in the internal zones of the Variscan belt, related to the Cambro-Ordovician continental rifting. The magmatic protolith probably inherited a specific chemical composition from a combination of orogenic, back-arc and anorogenic signatures because of partial melting of the Cadomian basement during magma emplacement. Besides, the late Devonian U–Pb age of 366?±?33?Ma obtained for titanite from a blueschist facies metapelite corresponds to the age of the HP–LT peak metamorphism.  相似文献   

9.
广西钦甲花岗岩体单颗粒锆石LA-ICP-MS U-Pb定年及其地质意义   总被引:10,自引:0,他引:10  
本文对钦甲花岗岩体进行了详细的LA-ICP-MS锆石U-Pb同位素年龄测定.这些锆石的阴极发光图像发育环带结构,Th/U值较高(大于0.1),具有岩浆成因锆石的特征.研究结果表明,钦甲花岗岩体为一复式岩体,其不同单元锆石的206Pb/238U加权平均年龄分别为412.4±1.8 Ma、434.8±1.7 Ma、442....  相似文献   

10.
Jilin Province in NE China lies on the eastern edge of the Xing–Meng Orogenic Belt. Mineral exploration in this area has resulted in the discovery of numerous large, medium, and small sized Cu, Mo, Au, and Co deposits. To better understand the formation and distribution of both the porphyry and skarn types Cu deposits of the region, we examined the geological characteristics of the deposits and applied zircon U–Pb and molybdenite Re–Os isotope dating to constrain the age of the mineralization. The Binghugou Cu deposit yields a zircon U–Pb age for quartz diorite of 128.1 ± 1.6 Ma; the Chang'anpu Cu deposit yields a zircon U–Pb age for granite porphyry of 117.0 ± 1.4 Ma; the Ermi Cu deposit yields a zircon U–Pb age for granite porphyry of 96.8 ± 1.1 Ma; the Tongshan Cu deposit yields molybdenite Re–Os model ages of 128.7 to 130.2 Ma, an isochron age of 129.0 ± 1.6 Ma, and a weighted mean model age of 129.2 ± 0.7 Ma; and the Tianhexing Cu deposit yields molybdenite Re–Os model ages of 113.9 to 115.2 Ma, an isochron age of 114.7 ± 1.2 Ma, and a weighted mean model age of 114.7 ± 0.7 Ma. The new ages, combined with existing geochronology data, show that intense porphyry and skarn types Cu mineralization was coeval with Cretaceous magmatism. The geotectonic processes responsible for the genesis of the Cu mineralization were probably related to lithospheric thinning. By analyzing the accumulated molybdenite Re–Os, zircon U–Pb, and Ar–Ar ages for NE China, it is concluded that the Cu deposits formed during multiple events coinciding with periods of magmatic activity. We have identified five phases of mineralization: early Paleozoic (~476 Ma), late Paleozoic (286.5–273.6 Ma), early Mesozoic (~228.7 Ma), Jurassic (194.8–137.1 Ma), and Cretaceous (131.2–96.8 Ma). Although Cu deposits formed during each phase, most of the Cu mineralization occurred during the Cretaceous.  相似文献   

11.
The layered Bushveld Complex hosts a number of chromitite layers, which were found to contain significant amounts of zircon grains compared with adjacent silicate rocks. Cathodoluminescent-dark, partially metamict cores and transparent rims of composite zircon grains were analyzed for trace elements with SIMS and LA-ICPMS techniques. The cores are enriched in REE, Y, Th and U and are characterized by distinctly flatter REE patterns in contrast to those of the rims and transparent homogenous crystals. Zircon from the different stratigraphic units has specific Th/U ratios, the highest of which (1.5–4) occurs in a Merensky Reef zircon core. The Ti content of Bushveld zircon ranges from 12 to 52 ppm correlating to a crystallization temperature range of 760–930 °C. The geochemical characteristics of the first zircon generation are consistent with its high-temperature crystallization as the first major U, Th and REE acceptor from a highly-evolved residue of the high-Mg basalt magma, whereas the rims and coreless crystals have crystallized from percolating intercumulus liquid of new influx of the same magma. U-Pb SHRIMP dating of zircon cores and rims does not reveal a distinguishable difference between their ages indicating the absence of inherited zircon. Concordia ages of 2,051?±?9 Ma (2σ, MSWD?=?0.1) and 2,056?±?5 Ma (2σ, MSWD?=?0.05) for zircons from the Merensky Reef and the Upper Platreef located equally near the top of the Critical Zone are in agreement with published ages for the Merensky Reef. Zircon from the deeper-seated Lower Group, Middle Group and Lower Platreef chromitites yields younger concordia ages that may reflect prolonged late-stage volatile activity.  相似文献   

12.
U–Pb isotope analyses by LA-MC-ICPMS (Laser Ablation – Multi Collector – Inductively Coupled Plasma Mass Spectrometry) in zircon crystals from metatonalites, tonalites and granodiorite gneiss from the Arroio dos Ratos Complex (ARC) early magmatism in southernmost Brazil are presented. The ARC is located in the eastern portion of the Sul-rio-grandense Shield, occurring as septa and roof pendants on granitoids emplaced along the Southern Brazilian Shear Belt (SBSB). The SBSB corresponds to a translithospheric structure composed of several anastomosed shear zones of dominantly transcurrent kinematics whose syntectonic magmatism, of Neoproterozoic age, is characteristic of post-collisional environments. The studied rocks comprise TTG-type associations with coeval mafic magmatism, deformed and metamorphosed within a ductile shear zone. Zircon crystals obtained from six samples are interpreted as igneous given that the crystals are subhedral to euhedral, bipyramidal, with concentric zonation, have ratios Th/U between 0.13 and 0.81 and have restricted evidence of overgrowth. The oldest Association 1 (A1) has structures compatible with recrystallization under conditions of high temperature and an igneous age of 2148 ± 33 Ma, obtained in a metatonalite. The rocks of Association 2 (A2) have similar compositions, although with a more significant coeval mafic fraction. They are intrusive into A1 and also show high-temperature recrystallization features. However, they are less deformed and partly preserve their primary, igneous fabric. The igneous ages obtained from two A2 tonalites are 2150 ± 28 Ma and 2136 ± 27 Ma. Association 3 (A3) is represented by tonalitic to granodioritic gneisses whose structure, composition and metamorphic features are similar to those of A1 rocks, except for the absence of coeval mafic magmas in the former. Local features resulting from partial melting are present in A3 rocks. Three samples from A3 were dated. A tonalitic gneiss gives igneous age of 2099 ± 10 Ma and two granodioritic gneisses give igneous ages of 2081 ± 7 Ma and 2077 ± 13 Ma. Restricted to A1, inheritance is represented by one subhedral, zoned, gently rounded zircon crystal interpreted as igneous, of 2732 ± 40 Ma (207Pb/206Pb age), with discordance of 9% and 232Th/238U ratio of 1.17. A single Neoproteozoic metamorphic date value was obtained from the rim of a zircon crystal of Paleoproterozoic core. The age of 635 ± 6 Ma (207Pb/206Pb age), with Th/U ratio < 0.1 and 1% discordance, is interpreted as compatible with adjacent SBSB magmatism. The three associations are interpreted to represent the record of successive magmatic pulses that mark the evolution of a Paleoproterozoic continental magmatic arc. In the study area, these magmatic arc associations represent relict areas partly reworked and relatively well-preserved from Neoproterozoic tectono-magmatic post-collisional events during the construction of the Southern Brazilian Shear Belt.  相似文献   

13.
As the boundary between the Indochina and the South China blocks, the Ailao Shan-Red River (ASRR) shear zone underwent a sinistral strike-slip shearing which is characterized by ductile deformation structures along the Ailao Shan range. The timing issue of left-lateral shearing along the ASRR shear zone is of first-order importance in constraining the nature and regional significance of the shear zone. It has been, therefore, focused on by many previous studies, but debates still exist on the age of initiation and termination of shearing along the shear zone. In this paper, we dated 5 samples of granitic plutons (dykes) along the Ailao Shan shear zone. Zircon U–Pb ages of four sheared or partly sheared granitic rocks give ages of 30.9 ± 0.7, 36.6 ± 0.1, 25.9 ± 1.0 and 27.2 ± 0.2 Ma, respectively. An undeformed granitic dyke intruding mylonitic foliation gives crystallization age of 21.8 ± 1 Ma. The Th/U ratios of zircon grains from these rocks fall into two populations (0.17–1.01 and 0.07–0.08), reflecting magmatic and metamorphic origins of the zircons. Detailed structural and microstructural analysis reveals that the granitic intrusions are ascribed to pre-, syn- and post-shearing magmatisms. The zircon U–Pb ages of these granites provide constraints on timing of the initiation (later than 31 Ma from pre-shearing granitic plutons, but earlier than 27 Ma from syn-shearing granitic dykes) and termination (ca. 21 Ma from the post-shearing granitic dykes) of strong ductile left-lateral shearing, which is consistent with previous results on the Diancang Shan and Day Nui Con Voi massifs in the literature. We also conclude that the left-lateral shearing along the ASRR shear zone is the result of southeastward extrusion of the Indochina block during the Indian–Eurasian plate collision. Furthermore, the left-lateral shearing was accompanied by the ridge jump, postdating the opening, of the South China Sea.  相似文献   

14.
U–Pb zircon analyses from three meta-igneous and two metasedimentary rocks from the Siviez-Mischabel nappe in the western Swiss Alps are presented, and are used to derive an evolutionary history spanning from Paleoarchean crustal growth to Permian magmatism. The oldest components are preserved in zircons from metasedimentary albitic schists. The oldest zircon core in these schists is 3.4 Ga old. Detrital zircons reveal episodes of crustal growth in the Neoarchean (2.7–2.5 Ga), Paleoproterozoic (2.2–1.9 Ma) and Neoproterozoic (800–550 Ma, Pan-African event). The maximum age of deposition for the metasedimentary rocks is given by the youngest detrital zircons within both metasedimentary samples dated at ~490 Ma (Cambrian-Ordovician boundary). This is in the age range of two granitoid samples dated at 505 ± 4 and 482 ± 7 Ma, and indicates sedimentation and magmatism in an extensional setting preceding an Ordovician orogeny. The third felsic meta-igneous rock gives a Permian age of intrusion, and is part of a long-lasting Variscan to post-Variscan magmatic activity. The zircons record only minor disturbance of the U–Pb system during the Alpine orogeny.  相似文献   

15.
Migmatite gneisses are widespread in the Dabie orogen, but their formation ages are poorly constrained. Eight samples of migmatite, including leucosome, melanosome, and banded gneiss, were selected for U–Pb dating and Hf isotope analysis. Most metamorphic zircon occurs as overgrowths around inherited igneous cores or as newly grown grains. Morphological and internal structure features suggest that their growth is associated with partial melting. According to the Hf isotope ratio relationships between metamorphic zircon and inherited cores, three formation mechanisms for metamorphic zircon can be determined, which are dissolution–reprecipitation of pre‐existing zircon, breakdown of Zr‐bearing phase other than zircon in a closed system and crystallization from externally derived Zr‐bearing melt. Four samples contain magmatic zircon cores, yielding upper intercept U–Pb ages of 807 ± 35–768 ± 12 Ma suggesting that the protoliths of the migmatites are Neoproterozoic in age. The migmatite zircon yields weighted mean two‐stage Hf model ages of 2513 ± 97–894 ± 54 Ma, indicating reworking of both juvenile and ancient crustal materials at the time of their protolith formation. The metamorphic zircons give U–Pb ages of 145 ± 2–120 ± 2 Ma. The oldest age indicates that partial melting commenced prior to 145 Ma, which also constrains the onset of extensional tectonism in this region to pre‐145 Ma. The youngest age of 120 Ma was obtained from an undeformed granitic vein, indicating that deformation in this area was complete at this time. Two major episodes of partial melting were dated at 139 ± 1 and 123 ± 1Ma. The first episode of partial melting is obviously older than the timing of post‐collision magmatism, corresponding to regional extension. The second episode of partial melting is coeval with the widespread post‐collision magmatism, indicating the gravitational collapse and delamination of the orogenic lithospheric keel of the Dabie orogen, which were possibly triggered by the uprising of the Cretaceous mid‐Pacific superplume.  相似文献   

16.
The diamondiferous Ellendale 9 (E9) pipe is a funnel-shaped maar-diatreme volcano consisting of inward-dipping tuff sequences intruded by lamproite plugs and dykes. The host rocks for the E9 pipe are Permian sandstones. The multiple lithological contacts exposed within the mined maar volcano provide a natural laboratory in which to study the effect of volcanic processes on U–Th–Pb–He systematics. Zircon from the regional sandstone and E9 lamproite display a bimodal distribution of ages on (U–Th)/He–U/Pb plots. The zircon U/Pb ages for the E9 pipe (n?=?52) range from 440 to 2,725 Ma, while the cluster of (U–Th)/He ages for the lamproite dyke zircon indicate that dyke emplacement occurred at 20.6?±?2.8 Ma, concordant with a maximum emplacement age of about ≤22 Ma from phlogopite 40Ar/39Ar. These ages indicate a xenocrystic origin for the zircon entrained in the E9 dyke. The U/Pb ages of detrital zircon from the regional sandstone host (373–3,248 Ma; n?=?41) are indistinguishable from those of the lamproite zircon xenocrysts, whereas the detrital zircon in the host sandstone yield (U–Th)/He ages from 260 to 1,500 Ma. A thermochronology traverse across the E9 lamproite dyke reveals that the zircon (U–Th)/He ages in the host sandstone have not been significantly thermally reset during dyke emplacement, even at the contact. The capability of the zircon (U–Th)/He method to distinguish deep, mantle source lithologies from upper crustal source lithologies could be used in geochemical exploration for diamonds. Pre-screening of detrital samples using etching and helium assay methods will improve the efficiency and decrease the cost of greenfields exploration.  相似文献   

17.
New data are presented on the petrogeochemical composition, age, and formation conditions of the Late Neoproterozoic metarhyolite–basalt association of the Glushikha trough (Yenisei Ridge). The association is localized within the subaerial and shallow-water terrigenous-carbonate sediments of the Orlovka Group, which overlies Proterozoic rocks with unconformity. The felsic volcanics are essentially potassic and enriched in Rb, U, Th, and Fe. They show a weakly fractionated REE pattern with a prominent negative Eu anomaly. The basalts and picrite basalts have higher contents of Ti, Fe, P, HFSE, REE, U, Th, Ba, and Sr, and their spidergrams show no Nb or Ta depletion with respect to Th and LREE. These rocks have the petrochemical parameters of intraplate magmatic associations in continental rift zones. New geochronological data (SHRIMP II) on single zircon grains from the felsite porphyry of the metarhyolite–basalt association (717 ± 15 Ma) indicate Late Neoproterozoic volcanism in the Yenisei part of the Central block of the Trans-Angara region. According to Sm–Nd isotopic data, the rhyolites originate from Paleoproterozoic crust (TNd(DM) = 1757 Ma; TNd(DM-2st) = 1651 Ma; ∑ Nd(T) = ? 2.7). The Orlovka volcanosedimentary rocks are rift-related, as evidenced by the following facts: (1) localization of the volcanosedimentary rocks in a narrow fault-line trough; (2) bimodal rhyolite-basaltic composition of the volcanics; and (3) petrology and geochemistry of the picrite basalts and basalts, typical of intraplate environments. The studies show that Late Neoproterozoic rifting and intraplate plume magmatism took place not only in the Tatarka–Ishimba fault zone but also in the Yenisei fault zone of the Yenisei Ridge.  相似文献   

18.
Garnet–clinopyroxene ultra‐high‐pressure (UHP) rocks from the northern Bohemian Massif contain zircon with micro‐diamond inclusions. Trace element concentrations, oxygen and hafnium isotopic composition and U–Pb age of distinct textural domains in zircon characterize their growth conditions and temporal evolution. Diamond‐bearing zircon mantle domains with relicts of oscillatory zoning have uniform Th/U ratios (~0.1–0.2), high‐Ti contents (110–190 ppm, corresponding to temperatures of at least 1100 °C), and some (two of 17 mantle analyses) preserve steep heavy rare earth element (HREE) patterns with YbN/GdN = 10–11, with a weak negative Eu anomaly. These signatures are consistent with crystallization from a melt under UHP/ultra‐high‐temperature (UHT) conditions. Some of the bright‐cathodoluminscence (CL) rims preserve Th/U and Ti values characteristic of the zircon mantles, but others show elevated Th/U ratios of ~0.3–0.4 and lower Ti contents (20–40 ppm; only 13 ppm in a rare low‐CL outer rim). As they feature flat HREE patterns and negative Eu anomalies and commonly make embayments and truncate the mantle zoning, we suggest that they have formed through recrystallization in the solid state during exhumation of the rock, when both garnet and plagioclase were stable. The three zircon domains, that is, cores, mantles and rims, yield U–Pb concordia ages of 340.9 ± 1.5, 340.3 ± 1.5 and 341.2 ± 3.4 Ma respectively. When linked to the previously reconstructed P–T path of the rock, the error limits of the zircon mantle and rim ages constrain the exhumation of the rocks from depth of ~140 km (UHP) to ~80 km (HP) to a minimum rate of 1.5 cm yr?1. The zircon cores are heterogeneous in terms of Th/U ratio (below 0.1 but also above 0.2) and REE characteristics, and their εHf values scatter between ?15.7 and +4.8 with similar values for individual domains within a single zircon grain suggesting a very localized control on hafnium isotope composition on a grain scale. The non‐equilibrated εHf values as well as a large range of the Hf‐depleted mantle model ages possibly reflect the presence of a heterogeneous population of old zircon. Consequently, the uniform and young 238U/206Pb ages may represent (near‐)complete resetting of the U–Pb geochronometer during the UHP–UHT event at c. 340 Ma through dissolution–reprecipitation process. In contrast to Hf, the oxygen isotope composition of zircon is homogeneous, ranging between 7.8‰ and 9.6‰ VSMOW, reflecting a source containing upper crustal material and homogenization at UHP–UHT conditions. Our study documents that continental crust was subducted to mantle depths at c. 340 Ma during the Variscan orogeny and was subsequently very rapidly exhumed, implying that the sequence of events was faster than can be resolved by the secondary ion mass spectrometry technique.  相似文献   

19.
A mafic–ultramafic intrusive belt comprising Silurian arc gabbroic rocks and Early Permian mafic–ultramafic intrusions was recently identified in the western part of the East Tianshan, NW China. This paper discusses the petrogenesis of the mafic–ultramafic rocks in this belt and intends to understand Phanerozoic crust growth through basaltic magmatism occurring in an island arc and intraplate extensional tectonic setting in the Chinese Tianshan Orogenic Belt (CTOB). The Silurian gabbroic rocks comprise troctolite, olivine gabbro, and leucogabbro enclosed by Early Permian diorites. SHRIMP II U-Pb zircon dating yields a 427 ± 7.3 Ma age for the Silurian gabbroic rocks and a 280.9 ± 3.1 Ma age for the surrounding diorite. These gabbroic rocks are direct products of mantle basaltic magmas generated by flux melting of the hydrous mantle wedge over subduction zone during Silurian subduction in the CTOB. The arc signature of the basaltic magmas receives support from incompatible trace elements in olivine gabbro and leucogabbro, which display enrichment in large ion lithophile elements and prominent depletion in Nb and Ta with higher U/Th and lower Ce/Pb and Nb/Ta ratios than MORBs and OIBs. The hydrous nature of the arc magmas are corroborated by the Silurian gabbroic rocks with a cumulate texture comprising hornblende cumulates and extremely calcic plagioclase (An up to 99 mol%). Troctolite is a hybrid rock, and its formation is related to the reaction of the hydrous basaltic magmas with a former arc olivine-diallage matrix which suggests multiple arc basaltic magmatism in the Early Paleozoic. The Early Permian mafic–ultramafic intrusions in this belt comprise ultramafic rocks and evolved hornblende gabbro resulting from differentiation of a basaltic magma underplated in an intraplate extensional tectonic setting, and this model would apply to coeval mafic–ultramafic intrusions in the CTOB. Presence of Silurian gabbroic rocks as well as pervasively distributed arc felsic plutons in the CTOB suggest active crust-mantle magmatism in the Silurian, which has contributed to crustal growth by (1) serving as heat sources that remelted former arc crust to generate arc plutons, (2) addition of a mantle component to the arc plutons by magma mixing, and (3) transport of mantle materials to form new lower or middle crust. Mafic–ultramafic intrusions and their spatiotemporal A-type granites during Early Permian to Triassic intraplate extension are intrusive counterparts of the contemporaneous bimodal volcanic rocks in the CTOB. Basaltic underplating in this temporal interval contributed to crustal growth in a vertical form, including adding mantle materials to lower or middle crust by intracrustal differentiation and remelting Early-Paleozoic formed arc crust in the CTOB.  相似文献   

20.
The microgeochemistry of zircon was studied in three samples: charnockite gneiss (1594), charnockite (1594a), and migmatite leucosome Lc4 (1594c). Prismatic (Zrn I) and oval (Zrn II) zircon morphotypes are distinguished in the first two samples. Most zircon grains consist of two-phase cores and overgrowth rims variable in thickness. The average weighted concordant U–Pb age of Zrn II cores from charnockite gneiss is 2436 ± 10 Ma. The concordant ages of Zrn I and Zrn II cores from charnockite are 2402 ± 16 Ma and 2453 ± 14 Ma, respectively. Some overgrowth rims are 1.9–2.1 Ga in age. In leucosome Lc4, all measured prismatic zircon crystals yielded a discordant age of 1942 ± 11 Ma (the upper intersection of discordia with concordia). These zircons are strongly altered and anomalously enriched in U and Th. Zrn I grains are enriched relative to Zrn II in REE, Li, Ca, Sr, Ba, Hf, Th, and U. Zrn I is considered to be a product of melt crystallization or subsolidus recrystallization in the presence of melt. Zrn II is relict or crystallizing from melt and then partly fused again. Zrn I from charnockite gneiss and especially from charnockite are markedly altered and have a more discordant age than Zrn II. This is probably related to concentration of fluid in the residual melt left after zircon crystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号