首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anisotropic modelling of intensity distribution, affected by the construction of macroseismic planes, allows an analysis of the influence of each point of observed intensity on the analytical determination of epicenter and of the principal attenuation directions. Such a procedure is a vital aid in the cases in which the observed intensity points, that, for location or joined intensity level, are not consistent with an anisotropic model of intensity attenuation. A suitable filtering on intensity levels associated with the points of the intensity map, for a better modelling of observed intensity distribution, is proposed with the aim of a better seismic hazard evaluation.  相似文献   

2.
利用2008年汶川M8.0地震获得的强震动记录数据,根据《仪器地震烈度计算暂行规程》计算得到各台站处的仪器地震烈度值,分析仪器地震烈度与宏观地震烈度的对应关系,研究该仪器烈度计算方法的适用性。结果表明,利用该算法所得的仪器烈度值与宏观烈度完全吻合的比率为47.5%,偏差±1度以内的比率为89.1%,说明二者对应情况较为理想,仪器烈度可在一定程度上客观反映实际的震害情况;在各宏观烈度区内仪器烈度值虽然具有一定的离散性,但其均值与宏观烈度区值的偏差相对较小,均控制在±0.3度以内。另外,文中还绘制了汶川地震仪器烈度分布图,虽然与宏观烈度在整体分布上具有一定的对应关系,但受多种因素的影响,仪器烈度分布与宏观烈度分布不可能完全一致。仪器烈度与宏观烈度的概念和属性有所差异,发挥的作用也不尽相同,不应混淆和相互替代。  相似文献   

3.
A modelling of the observed macroseismic intensity of historical and instrumental earthquakes in southern Spain is proposed, with the aim of determining the macroseismic parameters for seismic hazard evaluation in a region in which the characterization of intensity distribution of seismic events shows different levels of difficulty referable to the complex faults system of the area in study. The adopted procedure allows an analytical determination of epicenters and principal attenuation directions of earthquakes with a double level of verification with reference to the maximum shaking area and structural lineaments of the region, respectively. The analyses, carried out on a suitable number of events, highlight, therefore, some elements for a preliminary characterization of a seismic zonation on the basis of the consistency between seismic intensity distribution of earthquakes and corresponding structural framework.  相似文献   

4.
--A study of the intensity distribution of the earthquake of December 5th 1456, which affected a large area of central and southern Italy was carried out, verifying, through a recently proposed methodology, the two hypotheses assumed by different authors for one single seismic event and three distinct and close ones. This methodology is based on a vectorial modelling of the macroseismic intensity distribution which aims at determining the epicentre and the principal (minimum and maximum) attenuation directions.¶The study was structured, considering each of the two assumed hypotheses, in a set of tests obtained for the macroseismic field and the intensity map, by analysing different configurations of the observed intensity distribution.¶The results obtained are in agreement with the hypothesis of the time coexistence of three distinct seismic events, for which the calculated epicentres and the principal attenuation directions are compatible with the observed intensity distribution and with the tectonic trend of the Apennine region, respectively.  相似文献   

5.
文中叙述了大同—阳高地震区的烈度划分原则、烈度分布范围、烈度异常情况,给出了宏观地震参数(h=11.2km,震级5.8M_L),指出宏观调查的烈度值与强震仪记录的强余震加速度基本一致。  相似文献   

6.
The use of shake maps in terms of macroseismic intensity in earthquake early warning systems as well as intensity based seismic hazard assessments provides a valuable supplement to typical studies based on recorded ground motion parameters. A requirement for such applications is ground motion prediction equations (GMPE) in terms of macroseismic intensity, which have the advantages of good data availability and the direct relation of intensity to earthquake damage. In the current study, we derive intensity prediction equations for the Vrancea region in Romania, which is characterized by the frequent occurrence of large intermediate depth earthquakes giving rise to a peculiar anisotropic ground shaking distribution. The GMPE have a physical basis and take the anisotropic intensity distribution into account through an empirical regional correction function. Furthermore, the relations are easy to implement for the user. Relations are derived in terms of epicentral, rupture and Joyner–Boore distance and the obtained relations all provide a new intensity estimate with an uncertainty of ca. 0.6 intensity units.  相似文献   

7.
Ground motion prediction equations (GMPE) in terms of macroseismic intensity are a prerequisite for intensity-based shake maps and seismic hazard assessment and have the advantage of direct relation to earthquake damage and good data availability also for historical events. In this study, we derive GMPE for macroseismic intensity for the Campania region in southern Italy. This region is highly exposed to the seismic hazard related to the high seismicity with moderate- to large-magnitude earthquakes in the Appenninic belt. The relations are based on physical considerations and are easy to implement for the user. The uncertainties in earthquake source parameters are accounted for through a Monte Carlo approach and results are compared to those obtained through a standard regression scheme. One relation takes into account the finite dimensions of the fault plane and describes the site intensity as a function of Joyner–Boore distance. Additionally, a relation describing the intensity as a function of epicentral distance is derived for implementation in cases where the dimensions of the fault plane are unknown. The relations are based on an extensive dataset of macroseismic intensities for large earthquakes in the Campania region and are valid in the magnitude range M w = 6.3–7.0 for shallow crustal earthquakes. Results indicate that the uncertainties in earthquake source parameters are negligible in comparison to the spread in the intensity data. The GMPE provide a good overall fit to historical earthquakes in the region and can provide the intensities for a future earthquake within 1 intensity unit.  相似文献   

8.
The paper deals with issues related to the testing of the ESI-2007 scale by using as an example the real seismic event that occurred on August 27, 2008 in South Baikal. The main objective of the paper is to carry out a comparative assessment of the earthquake’s intensity based on traditional macroseismic scales and environmental seismic intensity (ESI-2007) scales. The results of the macroseismic survey served as the initial data. Analysis has been made on the ESI-2007 scale in conformity with the requirements for seismic scales. Particular emphasis has been placed on the type (or rank) of the ESI-2007 scale. Such an investigation is one of the first cases of the application of a new scale by the example of a regional seismic event.  相似文献   

9.
Coherency of the source model of the 1991 Racha earthquake in the Greater Caucasus with different data types is analyzed. Authors, when interpreting macroseismic data, accept complex nature of macroseismic effects generation but, nevertheless, consider that its spatial distribution follows certain regularities. First time in the practice, method of evaluation of the mecroseismic material completeness is proposed based on the intensity attenuation along with distance. It is demonstrated the character of macroseismic intensity attenuation can be used for verification of the source model elements constructed based on other seismological data. Dependence of the macroseismic effect distribution on azimuth in near field of the 1991 Racha earthquake is recognized.  相似文献   

10.
—The special geological conditions in the Xiji-Langfu area are the main reason for the anomalous high macroseismic intensity caused by the Tangshan, 1976 earthquake. The area is formed by deep deposits - mainly alluvium sands and clays poorly consolidated and with high water content - that have been trapped by the Xiadian fault. From simulated ground motion we have computed quantities commonly used for engineering purposes like the acceleration maximum amplitude (AMAX) and the total energy of ground motion (W), which is related to the Arias Intensity. The thick low velocity deposits are responsible for the large increment of the values of AMAX and W inside the basin. On the two sides of the Xiadian fault AMAX and W can vary by 200% and 700% respectively, and these variations are quite stable with varying thickness of the sedimentary deposit used in the models. With the existing relationships between acceleration (AMAX) and macroseismic intensity (I) our results can explain the large values of I observed in the Xiji-Langfu area, in connection with the Tangshan earthquake.  相似文献   

11.
An evaluation of the magnitude of historical earthquakes is proposed, through an empirical relation based on a felt area of historical earthquakes derived from a vectorial modelling of macroseismic intensity distribution.  相似文献   

12.
This paper begins with a critical assessment of the concept of macroseismic intensity, on which traditional scales, such as MSK and EMS, are based. The main shortcoming identified is the model's failure to consider the spectral features of ground motion. This omission may lead to erroneous seismic zonation, as shown in the paper. As a result, the model is of little interest to engineers who must design and build safe structures while adopting economical solutions. The paper presents a way to radically improve this situation. The starting point for this approach was the experience of the destructive Vrancea earthquake of 1977.03.04, which made it clear that intensity appears to be different for structures having natural periods pertaining to different spectral domains. The solution proposed to the shortcomings of the traditional intensity concept is postulated on a system of analytical expressions, covering definitions of global intensities, of intensities related to oscillation frequency and of intensities related to a definite spectral band. The latter definition lies at the basis of a definition of discrete intensity spectra. Illustrative applications are presented, in relation to global intensities and to discrete intensity spectra. We then analyze an illustrative case in which the use of traditional macroseismic survey techniques led to erroneous seismic zonation. Finally, some conclusions and recommendations are presented. Based on the authors?? long-term experience, we strongly recommend close interaction between seismologists and engineers in working groups and joint projects targeted on radical improvement of the basic concepts of seismic intensity and of specific analysis procedures.  相似文献   

13.
探讨地震宏观破坏场分布的影响因素   总被引:3,自引:0,他引:3  
李闽峰  李圣强  陈颙 《中国地震》2000,16(4):293-306
提出震后根据仪器定位的微观震中和断层构造的关系快速确定可能的宏观震中位置,并依此使用烈度经验分布模型来进行震害快速评估。这将提高直接用微观震中位置进行震害快速评估方法的精度。通过对全国133个主要地震的微观震中与宏观震中偏离量进行统计可知。偏离量在35km范围内的占88%,其余基本都在75km范围内。这样就给出了判定宏观震中的重点区域和分析区域。详细分析南北地震带66个震例及其与断层空间分布特征的关系。以及震源机制解结果后发现,影响宏观震中偏离的因素除仪器定位本身的误差外,主要还有断层展布方向、活动规模、断层相互交接特征及震级大小等。通过对这些影响因素的分类处理分析,建立了震后室内快速判定可能的宏观震中位置的原则和步骤。以该方法为基础,通过建立包含有关因素的全国断层数据库,即可在实际的震害快速评估中得以应用。  相似文献   

14.
Seismic intensity, measured through the Mercalli–Cancani–Sieberg (MCS) scale, provides an assessment of ground shaking level deduced from building damages, any natural environment changes and from any observed effects or feelings. Generally, moving away from the earthquake epicentre, the effects are lower but intensities may vary in space, as there could be areas that amplify or reduce the shaking depending on the earthquake source geometry, geological features and local factors. Currently, the Istituto Nazionale di Geofisica e Vulcanologia analyzes, for each seismic event, intensity data collected through the online macroseismic questionnaire available at the web-page www.haisentitoilterremoto.it. Questionnaire responses are aggregated at the municipality level and analyzed to obtain an intensity defined on an ordinal categorical scale. The main aim of this work is to model macroseismic attenuation and obtain an intensity prediction equation which describes the decay of macroseismic intensity as a function of the magnitude and distance from the hypocentre. To do this we employ an ordered probit model, assuming that the intensity response variable is related through the link probit function to some predictors. Differently from what it is commonly done in the macroseismic literature, this approach takes properly into account the qualitative and ordinal nature of the macroseismic intensity as defined on the MCS scale. Using Markov chain Monte Carlo methods, we estimate the posterior probability of the intensity at each site. Moreover, by comparing observed and estimated intensities we are able to detect anomalous areas in terms of residuals. This kind of information can be useful for a better assessment of seismic risk and for promoting effective policies to reduce major damages.  相似文献   

15.
The aim of this paper is to provide a complete and reliable macroseismic knowledge of the events that stroke a large area in Central Italy on 7 and 11 May 1984. Previous studies, together with original accounts integrated with new and unpublished information, have been gathered and examined in order to re-evaluate macroseismic intensities in terms of the European Macroseismic Scale (EMS98). New intensity maps have been compiled; the total number of localities with available information for both the shocks increases from 1254 of the previous study to 1576. On the basis of the new dataset, the macroseismic magnitude of the first shock is MW 5.6 which is lower than the previous macroseismic computation (MW 5.7). Moreover, the topic of assessing macroseismic intensity in the presence of multiple shocks has been also investigated, proposing an unconventional approach to presenting the macroseismic data: an overall picture of the cumulative effects produced by all the seismic sequence is given to support a partial but faithful reconstruction of the second shock. This approach is inspired by the common experience in interpreting historical seismic sequences and gives a picture of the impact of the 1984 events on the territory.  相似文献   

16.
We model the macroseismic damage distribution of four important intermediate-depth earthquakes of the southern Aegean Sea subduction zone, namely the destructive 1926 M?=?7.7 Rhodes and 1935 M?=?6.9 Crete earthquakes, the unique 1956 M?=?6.9 Amorgos aftershock (recently proposed to be triggered by a shallow event), and the more recent 2002 M?=?5.9 Milos earthquake, which all exhibit spatially anomalous macroseismic patterns. Macroseismic data for these events are collected from published macroseismic databases and compared with the spatial distribution of seismic motions obtained from stochastic simulation, converted to macroseismic intensity (Modified Mercalli scale, IMM). For this conversion, we present an updated correlation between macroseismic intensities and peak measures of seismic motions (PGA and PGV) for the intermediate-depth earthquakes of the southern Aegean Sea. Input model parameters for the simulations, such as fault dimensions, stress parameters, and attenuation parameters (e.g. back-arc/along anelastic attenuation) are adopted from previous work performed in the area. Site-effects on the observed seismic motions are approximated using generic transfer functions proposed for the broader Aegean Sea area on the basis of VS30 values from topographic slope proxies. The results are in very good agreement with the observed anomalous damage patterns, for which the largest intensities are often observed at distances >?100 km from the earthquake epicenters. We also consider two additional “prediction” but realistic intermediate-depth earthquake scenarios, and model their macroseismic distributions, to assess their expected damage impact in the broader southern Aegean area. The results suggest that intermediate-depth events, especially north of central Crete, have a prominent effect on a wide area of the outer Hellenic arc, with a very important impact on modern urban centers along northern Crete coasts (e.g. city of Heraklion), in excellent agreement with the available historical information.  相似文献   

17.
The 23 April 1909 earthquake, with epicentre near Benavente (Portugal), was the largest crustal earthquake in the Iberian Peninsula during the twentieth century (M w = 6.0). Due to its importance, several studies were developed soon after its occurrence, in Portugal and in Spain. A perusal of the different studies on the macroseismic field of this earthquake showed some discrepancies, in particular on the abnormal patterns of the isoseismal curves in Spain. Besides, a complete list of intensity data points for the event is unavailable at present. Seismic moment, focal mechanism and other earthquake parameters obtained from the instrumental records have been recently reviewed and recalculated. Revision of the macroseismic field of this earthquake poses a unique opportunity to study macroseismic propagation and local effects in central Iberian Peninsula. For this reasons, a search to collect new macroseismic data for this earthquake has been carried out, and a re-evaluation of the whole set has been performed and it is presented here. Special attention is paid to the observed low attenuation of the macroseismic effects, heterogeneous propagation and the distortion introduced by local amplifications. Results of this study indicate, in general, an overestimation of the intensity degrees previously assigned to this earthquake in Spain; also it illustrates how difficult it is to assign an intensity degree to a large town, where local effects play an important role, and confirms the low attenuation of seismic propagation inside the Iberian Peninsula from west and southwest to east and northeast.  相似文献   

18.
Realistic Modeling of Seismic Wave Ground Motion in Beijing City   总被引:5,自引:0,他引:5  
— Algorithms for the calculation of synthetic seismograms in laterally heterogeneous anelastic media have been applied to model the ground motion in Beijing City. The synthetic signals are compared with the few available seismic recordings (1998, Zhangbei earthquake) and with the distribution of observed macroseismic intensity (1976, Tangshan earthquake). The synthetic three-component seismograms have been computed for the Xiji area and Beijing City. The numerical results show that the thick Tertiary and Quaternary sediments are responsible for the severe amplification of the seismic ground motion. Such a result is well correlated with the abnormally high macroseismic intensity zone in the Xiji area associated with the 1976 Tangshan earthquake as well as with the ground motion recorded in Beijing city in the wake of the 1998 Zhangbei earthquake.  相似文献   

19.
The seismic hazard for the Calabro-Sicilian area is evaluated using an anisotropic formulation of the Grandori attenuation law. For each macroseismic field two main directions are identified: minimum and maximum attenuation of the macroseismic intensity. The results of the investigation show that the anisotropic formulation improves the compatibility level of the model (with respect to the isotropic one) with the intensities observed and produces probabilistic expected intensities which compare favourably with the values of seismic history in the investigated area when the zonation defined by the Messina University research group was used.  相似文献   

20.
On October 27, 2004, a moderate size earthquake occurred in the Vrancea seismogenic region (Romania). The Vrancea seismic zone is an area of concentrated seismicity at intermediate depths beneath the bending area of the southeastern Carpathians. The 2004 M w?=?6 Vrancea subcrustal earthquake is the largest seismic event recorded in Romania since the 1990 earthquakes. With a maximum macroseismic intensity of VII Medvedev–Sponheuer–Kárník (MSK-64) scale, the seismic event was felt to a distance of 600 km from the epicentre. This earthquake caused no serious damage and human injuries. The main purpose of this paper is to present the macroseismic map of the earthquake based on the MSK-64 intensity scale. After the evaluation of the macroseismic effects of this earthquake, an intensity dataset has been obtained for 475 sites in the Romanian territory. Also, the maximum horizontal accelerations recorded in the area by the K2 network are compared to the intensity values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号