首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Land degradation is still a very common problem in the mountains of Asia because of inappropriate land use practice in steep topography. Many studies have been carried out to map shifting cultivation and areas susceptible to soil erosion. Mostly, estimated soil loss is taken as the basis to classify the level of soil loss susceptibility of area. Factors that influence soil erosion are: rainfall erosivity, soil erodibility, slope length and steepness, crop management and conservation practices. Thus the reliability of estimated soil loss is based on how accurately the different factors were estimated or prepared. As each and every small pixel of our earth surface is different from one area to another, the manner in which the study area was discretized into smaller homogenous sizes and how the most accurate and efficient technique were adopted to estimate the soil loss are very important. The purpose of this study is to produce erosion susceptibility maps for an area that has suffered because of shifting cultivation located in the mountainous regions of Northern Thailand. For this purpose, an integrated approach using RS and GIS-based methods is proposed. Data from the Upper Nam Wa Watershed, a mountainous area of the Northern Thailand were used. An Earth Resources Data Analysis System (ERDAS) imagine image processor has been used for the digital analysis of satellite data and topographical analysis of the contour data for deriving the land use/land cover and the topographical data of the watershed, respectively. ARCInfo and ARCView have been used for carrying out geographical data analysis. The watershed was discretized into hydrologically, topographically, and geographically homogeneous grid cells to capture the watershed heterogeneity. The soil erosion in each cell was calculated using the universal soil loss equation (USLE) by carefully determining its various parameters and classifying the watershed into different levels of soil erosion severity. Results show that during the time of this study most of the areas under shifting cultivation fell in the highest severity class of susceptibility.  相似文献   

2.
如何快速,有效地进行投保户洪涝灾害损失评估是保险行业急需解决的一个重要课题.从洪涝灾害的成灾机理出发,针对保险公司对具体受灾体理赔需求,提出了计算每个投保户洪灾损失率方法,建立基于遥感(RS)和地理信息系统(GIS)的城市财产保险洪涝灾害损失评估模型.建模时较全面地考虑了与投保物性质有关的承灾体易损度和与投保物所处环境有关的地基承载力等因素,并使用RS/GIS将其定量化提取.最后使用广东省深圳市洪灾数据进行模型检验.验证结果表明,模型对于各个投保户均能得到较好的精度.  相似文献   

3.
4.
In the present investigation, an effort has been made to identify the critical sub-watersheds for the development of best management plan for a small watershed of Eastern India using a hydrological model, namely, AVSWAT2000. A total of 180 combinations of various management treatments including crops (rice, maize ground nut and soybean), tillage (zero, conservation, field cultivator, mould board plough and conventional practices) and fertilizer levels (existing half of recommended and recommended) have been evaluated. The investigation reveled that rice cannot be replaced by other crops such as groundnut, maize, mungbean, sorghum and soybean since comparatively these crops resulted in higher sediment yield. The tillage practices with disk plough have been found to have more impact on sediment yield and nutrient losses than conventional tillage practices for the existing level of fertilizer. Sediment yield decreased in the case of zero tillage, conservation tillage, field cultivator, moldboard plough, and conservation tillage as compare to conventional tillage. Lowest NO3–N loss was observed in zero tillage in all the fertilizer treatments, whereas field cultivator, moldboard plough and disk plough resulted in increase of NO3–N loss. As compared to conventional tillage, the losses of soluble phosphorus were increased in moldboard plough. The losses of organic nitrogen were also increased as fertilizer dose increased. After zero tillage the conservation tillage preformed better in all the fertilizer treatments as per loss of organic nitrogen and organic phosphorus is concerned. It can be concluded that the sediment yield was found to be the highest in the case of disk plough followed by moldboard plough, field cultivator, conventional tillage, field cultivator and least in zero tillage practices. The nutrient losses were found to be in different order with tillage practices, resulted highest in disk plough tillage practices. In view of sediment yield and nutrient losses, the conservation tillage practice was found to be the best as the sediment yield is less than the average soil loss whereas nutrient loss is within the permissible limit.  相似文献   

5.
This paper focuses on artificial groundwater recharge study in Ayyar basin, Tamil Nadu, India. The basin is covered by hard crystalline rock and overall has poor groundwater conditions. Hence, an artificial recharge study was carried out in this region through a project sponsored by Tamil Nadu State Council for Science and Technology. The Indian Remote Sensing satellite 1A Linear Imaging Self Scanning Sensor II (IRS 1A LISS II) satellite imagery, aerial photographs and geophysical resistivity data were used to prioritize suitable sites for artificial recharge and to estimate the volume of aquifer dimension available to recharge. The runoff water available for artificial recharge in the basin is estimated through Soil Conservation Service curve number method. The land use/land cover, hydrological soil group and storm rainfall data in different watershed areas were used to calculate the runoff in the watersheds. The weighted curve number for each watershed is obtained through spatial intersection of land use/land cover and hydrological soil group through GeoMedia 3.0 Professional GIS software. Artificial recharge planning was derived on the basis of availability of runoff, aquifer dimension, priority areas and water table conditions in different watersheds in the basin.  相似文献   

6.
Maps showing the potential for soil erosion at 1:100,000 scale are produced in a study area within Lebanon that can be used for evaluating erosion of Mediterranean karstic terrain with two different sets of impact factors built into an erosion model. The first set of factors is: soil erodibility, morphology, land cover/use and rainfall erosivity. The second is obtained by the first adding a fifth factor, rock infiltration. High infiltration can reflect high recharge, therefore decreasing the potential of surface runoff and hence the quantity of transported materials. Infiltration is derived as a function of lithology, lineament density, karstification and drainage density, all of which can be easily extracted from satellite imagery. The influence of these factors is assessed by a weight/rate approach sharing similarities between quantitative and qualitative methods and depending on pair-wise comparison matrix.The main outcome was the production of factorial maps and erosion susceptibility maps (scale 1:100,000). Spatial and attribute comparison of erosion maps indicates that the model that includes a measure of rock infiltration better represents erosion potential. Field investigation of rills and gullies shows 87.5% precision of the model with rock infiltration. This is 17.5% greater than the precision of the model without rock infiltration. These results indicate the necessity and importance of integrating information on infiltration of rock outcrops to assess soil erosion in Mediterranean karst landscapes.  相似文献   

7.
The Tinto-Odiel estuary area in SW Spain presents a high concentration of industrial, agricultural and mining activities that seriously affect water quality, producing significant concentrations in trace metals and other contaminant elements. Previous studies have highlighted the important environmental effect of these contaminated waters discharged into the Gulf of Cadiz, contributing in a marked way to trace-metal concentrations in the Mediterranean Sea by water inflow through the Strait of Gibraltar. A global biogeochemical characterization of these waters was the main objective of a multidisciplinary research study funded by the European Union, in which remote sensing and GIS techniques, among other methodologies, were jointly applied. The main results confirmed the usefulness of this integrated methodological approach as an effective tool for the assessment of current biogeochemical conditions. Digital image processing provided valuable thematic information for temporal hydrodynamic analysis and water quality parameters mapping, which was integrated into a GIS database together with experimental information sampled in oceanographic cruises.  相似文献   

8.
Mapping of hard rock aquifer system and artificial recharge zonation were carried out in an area of 325 km^2 in parts of the Perambalur District,Tamil Nadu,India.This district has been declared as one of the over-exploited regions in Tamil Nadu by the Central Groundwater Board.To raise the groundwater level,suitable recharge zones were identified and artificial recharge structures are suggested using geomatics technology in the present study.To this end,various thematic maps concerning lithology,soil,geomorphology,land use,land cover,slope,lineament,lineament density,drainage,drainage density and groundwater depth level were prepared.Fissile hornblende gneiss(244 km^2)covered most of the study area followed by charnockites(68 km^2).Structural hills and rocky pediments characterize the major geomorphological features in the targeted area,and are followed by deep moderated pediments.The area is mostly used as crop and fallow land,followed by scrub land and deciduous forest.In the study area,the slopes are predominantly very gentle(142 km^2)and nearly level(66 km^2)ones.Besides,Groundwater level data of 58 wells have been generated,in which the minimum and maximum depth were 3 and 28 m respectively.Integration under the GIS environment has been carried out using all the thematic layers to identify the groundwater prospect zone through the introduction of weight and rank methods.Integrated output performances were classified into very poor,poor,moderate,good and excellent categories.All these classes were further divided into two groups as suitable and non-suitable area for the selection of recharge sites.Hard rock fractures were mapped as lineaments from satellite images,and besides that,rose diagram was also generated to find out the trend of the fracture.Furthermore,fracture data of 146 numbers have been collected using Brunton compass to generate rose diagram and were correlated with the rose diagram derived from lineaments.The present study significantly brought up a few areas such as Ammapalayam,Melapuliyur,Senjeri and around Siruvachur for artificial recharge.  相似文献   

9.
The purpose of this study is to investigate the oasis landscape fragmentation in northwestern China’s arid regions. Landscape maps of Jinta oasis were compiled by using GIS based on Landsat TM data of 1990 and 2000. Landscape indexes for evaluating fragmentation are patch area, patch density, corridor density and split index. Results indicated many difference. First, between the years 1990 and 2000, the landscape fragmentation in Jinta oasis decreased slightly. Second, the area of the matrix decreased at the class level. The landscape fragmentation of the matrix (bare soil) increased as a result of increased influence of human activities on matrix and was opposite to the irrigated farmland whose area is larger and more aggregated in 2000 than in 1990. Third, dense corridor system is one of the most prominent characteristics of the arid regions. It is one of the key factors resulting in the landscape fragmentation; especially the fragmentation within the same patch types. The corridor density of irrigated farmland, residential area and forestland were quite large in Jinta oasis both in 1990 and 2000. The pattern of Jinta oasis is characterized by agricultural oasis embedded in Gobi and in the desert, where the ecosystem was disturbed strongly by the intense human activities.  相似文献   

10.
Mapping of hard rock aquifer system and artificial recharge zonation were carried out in an area of 325 km2 in parts of the Perambalur District, Tamil Nadu, India. This district has been declared as one of the over-exploited regions in Tamil Nadu by the Central Groundwater Board. To raise the groundwater level, suitable recharge zones were identified and artificial recharge structures are suggested using geomatics technology in the present study. To this end, various thematic maps concerning lithology, soil, geomorphology, land use, land cover, slope, lineament, lineament density, drainage, drainage density and groundwater depth level were prepared. Fissile hornblende gneiss (244 km2) covered most of the study area followed by charnockites (68 km2). Structural hills and rocky pediments characterize the major geomorphological features in the targeted area, and are followed by deep moderated pediments. The area is mostly used as crop and fallow land, followed by scrub land and deciduous forest. In the study area, the slopes are predominantly very gentle (142 km2) and nearly level (66 km2) ones. Besides, Groundwater level data of 58 wells have been generated, in which the minimum and maximum depth were 3 and 28 m respectively. Integration under the GIS environment has been carried out using all the thematic layers to identify the groundwater prospect zone through the introduction of weight and rank methods. Integrated output performances were classified into very poor, poor, moderate, good and excellent categories. All these classes were further divided into two groups as suitable and non-suitable area for the selection of recharge sites. Hard rock fractures were mapped as lineaments from satellite images, and besides that, rose diagram was also generated to find out the trend of the fracture. Furthermore, fracture data of 146 numbers have been collected using Brunton compass to generate rose diagram and were correlated with the rose diagram derived from lineaments. The present study significantly brought up a few areas such as Ammapalayam, Melapuliyur, Senjeri and around Siruvachur for artificial recharge.  相似文献   

11.
Many researchers seek to take advantage of the recently available and virtually uninterrupted supply of satellite-based rainfall information as an alternative and supplement to the ground-based observations in order to implement a cost-effective flood prediction in many under-gauged regions around the world. Recently, NASA Applied Science Program has partnered with USAID and African-RCMRD to implement an operational water-hazard warning system, SERVIR-Africa. The ultimate goal of the project is to build up disaster management capacity in East Africa by providing local governmental officials and international aid organizations a practical decision-support tool in order to better assess emerging flood impacts and to quantify spatial extent of flood risk, as well as to respond to such flood emergencies more expediently. The objective of this article is to evaluate the applicability of integrating NASA’s standard satellite precipitation product with a flood prediction model for disaster management in Nzoia, sub-basin of Lake Victoria, Africa. This research first evaluated the TMPA real-time rainfall data against gauged rainfall data from the year 2002 through 2006. Then, the gridded Xinanjiang Model was calibrated to Nzoia basin for period of 1985–2006. Benchmark streamflow simulations were produced with the calibrated hydrological model using the rain gauge and observed streamflow data. Afterward, continuous discharge predictions forced by TMPA 3B42RT real-time data from 2002 through 2006 were simulated, and acceptable results were obtained in comparison with the benchmark performance according to the designated statistic indices such as bias ratio (20%) and NSCE (0.67). Moreover, it is identified that the flood prediction results were improved with systematically bias-corrected TMPA rainfall data with less bias (3.6%) and higher NSCE (0.71). Although the results justify to suggest to us that TMPA real-time data can be acceptably used to drive hydrological models for flood prediction purpose in Nzoia basin, continuous progress in space-borne rainfall estimation technology toward higher accuracy and higher spatial resolution is highly appreciated. Finally, it is also highly recommended that to increase flood forecasting lead time, more reliable and more accurate short- or medium-range quantitative precipitation forecasts is a must.  相似文献   

12.
Remote sensing, evaluation of digital elevation models (DEM), geographic information systems (GIS) and fieldwork techniques were combined to study the groundwater conditions in Eritrea. Remote sensing data were interpreted to produce lithological and lineament maps. DEM was used for lineament and geomorphologic mapping. Field studies permitted the study of structures and correlated them with lineament interpretations. Hydrogeological setting of springs and wells were investigated in the field, from well logs and pumping test data. All thematic layers were integrated and analysed in a GIS. Results show that groundwater occurrence is controlled by lithology, structures and landforms. Highest yields occur in basaltic rocks and are due to primary and secondary porosities. High yielding wells and springs are often related to large lineaments, lineament intersections and corresponding structural features. In metamorphic and igneous intrusive rocks with rugged landforms, groundwater occurs mainly in drainage channels with valley fill deposits. Zones of very good groundwater potential are characteristic for basaltic layers overlying lateritized crystalline rocks, flat topography with dense lineaments and structurally controlled drainage channels with valley fill deposits. The overall results demonstrate that the use of remote sensing and GIS provide potentially powerful tools to study groundwater resources and design a suitable exploration plan.An erratum to this article can be found at  相似文献   

13.
14.
Remote sensing, evaluation of digital elevation models (DEM), geographic information systems (GIS) and fieldwork techniques were combined to study the groundwater conditions in Eritrea. Remote sensing data were interpreted to produce lithological and lineament maps. DEM was used for lineament and geomorphologic mapping. Field studies permitted the study of structures and correlated them with lineament interpretations. Hydrogeological setting of springs and wells were investigated in the field, from well logs and pumping test data. All thematic layers were integrated and analysed in a GIS. Results show that groundwater occurrence is controlled by lithology, structures and landforms. Highest yields occur in basaltic rocks and are due to primary and secondary porosities. High yielding wells and springs are often related to large lineaments, lineament intersections and corresponding structural features. In metamorphic and igneous intrusive rocks with rugged landforms, groundwater occurs mainly in drainage channels with valley fill deposits. Zones of very good groundwater potential are characteristic for basaltic layers overlying lateritized crystalline rocks, flat topography with dense lineaments and structurally controlled drainage channels with valley fill deposits. The overall results demonstrate that the use of remote sensing and GIS provide potentially powerful tools to study groundwater resources and design a suitable exploration plan.The online version of the original article can be found at  相似文献   

15.
《China Geology》2022,5(4):614-625
Landsat 8 Oli, ASTER, and Sentinel 2A satellite images processing was used to map geological formations, lineaments and hydrothermal alteration minerals in the Aouli inlier, as a case study to illustrate the application of digital images processing and Geographic Information System (GIS) in geological mapping and mining prospecting. Principal Component Analysis (PCA) applied to the Landsat images allowed good lithological discrimination and contributed to the updating of available geological maps. The Automatic lineament extraction from Sentinel images revealed the main tectonic structures affecting Aouli inlier. The ratio bands (b5+b7)/b6 and the false color composite (b4/b6, b2/b1, b3/b2) allowed the hydrothermal alteration minerals mapping from Aster images. Combined with available geological data and field observations, the satellite derived data were integrated and analyzed in a GIS software to establish mining prospecting guides. The results showed that the anomaly zones are intimately linked to NNE –SSW and NW –SE oriented faults and to highly fractured areas developing argillic and Fe rich alterations. Verified via field survey, this approach was successfully applied to the Aouli inlier to rapidly target potential areas to be explored in the tactical phase. This provides a model for future prospecting efforts for similar mineral deposits in other areas.©2022 China Geology Editorial Office.  相似文献   

16.
The present study combined remote sensing with geographical information system (GIS) technology to interpret Landsat TM images from 1996 to 2000 and establish a land cover database for the Hexi Corridor of China’s Gansu Province. The areas of sand and dust emission and trends in their change were extracted by analyzing the database, with the following results: In 2000, the source area for sand and dust storms totaled nearly 170,000 km2, accounting for 75.1% of the study region. The emission area decreases from as much as 70,000 km2 in winter and spring to around 58,000 km2 in summer and autumn, accounting for 41.1 and 34.1% of the source area, respectively. During the 4 years of the study period, the emission area decreased by nearly 57 km2 in winter and spring (a 0.1% change); however, the vulnerability of the land surface to wind erosion increased in ca. 190 km2 and decreased in ca. 102 km2. Although the area of dust emission decreased from 1996 to 2000, the area vulnerable to wind erosion increased by ca. 87 km2, and the increased number of sand and dust storm days in the region between 2000 and 2003 appears to be correlated with this increase.  相似文献   

17.
海南省国土资源遥感综合调查信息系统是海南省国土资源遥感综合调查成果的集中体现,是一个数据可动态更新的运行系统。这里遵循GIS软件工程的原理和方法,分析了海南省国土资源遥感综合调查信息系统的数据、系统需求,采用原型化、结构化和面向对象相结合的设计方法,对系统数据库、功能、结构进行了总体设计,阐述了空间数据库的建立,最后论述了系统集成的思路和模式、数据的集成处理方法以及系统开发中的几个关键内容。  相似文献   

18.
Sustainable management of groundwater resources has now become an obligation,especially in arid and semi-arid regions given the socio-economic importance of this resource.The optimization in zoning for groundwater exploitation helps in planning and managing groundwater supply works such as boreholes and wells in the catchment.The objective of this study is to use remote sensing and GIS-based Analytical Hierarchy Process(AHP)techniques to evaluate the groundwater potential of Wadi Saida Watershed.Spatial analysis such as geostatistics was also used to validate results and ensure more accuracy.Through the GIS tools and remote sensing technique,earth observation data were converted into thematic layers such as lineament density,geology,drainage density,slope,land use and rainfall,which were combined to delineate groundwater potential zones.Based on their respective impact on groundwater potential,the AHP approach was adopted to assign weights on multi-influencing factors.These results will enable decision-makers to optimize hydrogeological exploration in large-scale catchment areas and map areas.According to the results,the southern part of the Wadi Saida Watershed is characterized as a higher groundwater potential area,where 32%of the total surface area falls in the excellent and good class of groundwater potential.The validation process revealed a 71%agreement between the estimated and actual yield of the existing boreholes in the study area.  相似文献   

19.
The Chinese Loess Plateau is suffering from severe soil erosion. The eco-environmental changes of the plateau are believed to have an important influence on global eco-environmental sustainability; hence, this problem has attracted considerable attention from scientists around the world. This study has two purposes; application of remote sensing (RS) and geographic information system (GIS) techniques in the dynamic analysis of eco-environmental changes in the semiarid zone; and using the Longdong region of the Chinese Loess Plateau as an example, to make dynamic analysis of the eco-environmental changes of the region during the 1986–2004 period and identify controlling factors. Landsat Thematic Mapper (TM) data at a spatial resolution of 30 m were used for analysis. Two training areas were selected in Jingning and Qingcheng counties for analysis using 10-m resolution SPOT and Landsat TM data. The satellite RS images were obtained from the Institute of Remote Sensing Application (IRSA), Chinese Academy of Sciences (CAS). Each images was rectified by Albers Equal Area Conic projection based on 1:50,000 scale topographic maps after spectrum preparation of the images. To make the precision within 1 or 2 pixels, the accurate coordinative control points of the two systems were identified. Then the interpretation key was established based on the land use/cover survey in the study area. The images were classified into six primary environmental types (farmland, forest, grassland, water, construction area, and desert) and 25 sub-types using a visual image interactive interpretation method to obtain vector and attribute data. The resultant accuracy of the land use/cover classification reached 95%. Finally, the transformation areas and ratios of various eco-environmental types in the region were calculated to obtain the transition matrixes of eco-environmental types in the two training areas, Jingning and Qingcheng. This study demonstrates that satellite RS and GIS techniques are effective tools to monitor and analyze the eco-environmental changes in the semiarid region. Visual image interactive interpretation based on GIS technique provides comprehensive information on the direction, rate, and location of eco-environmental changes. The transition matrix model can be used to precisely analyze the variation and rates of the eco-environmental types and their spatial distribution. Great land use changes have taken place Longdong during the 1986–2004 period. These eco-environmental changes were driven by natural and human factors. Natural factors influencing the Longdong region of the Chinese Loess Plateau mainly include temperature, water condition, terrain, soil, and erosion; while human activities include over-cultivation, overgrazing, and fuelwood cutting. As viewed from the extent and severity of the influences, human activities play a very important role in altering the eco-environment of the semiarid region. The study results indicate a need for future research and observation in the semiarid region.  相似文献   

20.
Vast tracts of forests are lost globally every year especially in the developing countries of the tropics due to various human activities such as lumbering, farming, bush fires, surface mining and urbanization. The rainforest in Ghana has experienced rapid depletion since the 1980s. The impact of deforestation is widespread, affecting the livelihoods of local people and disrupting the tropical ecosystem. There is a serious concern in the study area about climatic change, soil erosion, siltation of rivers and loss in biodiversity which have an adverse impact on traditional medicinal plants of the local people. The study examined the extent of land cover change through image differencing of Landsat TM 1986 and 2002. The image classification indicated that, vegetative cover from 1986 to 2002 has been reducing whiles land use activities have been increasing. Closed canopy, open canopy and plantation have significantly diminished and land use activities especially built ups, farms, mining and openfields are more than doubled. The driving forces for the change in land cover are population growth, lumbering, socio-economic and cultural practices of the people. Lumbering and mining have been some of the major causes of the changing landscape in primary forest. Also the reliance on wood for domestic energy and the need to increase food productivity to feed growing population have also contributed greatly to the rapid depletion of the vegetative cover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号