首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present results regarding the dynamical meteorology of Jupiter’s White Ovals at different points in their evolution. Starting from the era with three White Ovals FA, BC, and DE (Galileo), continuing to the post-merger epoch with only one Oval BA (Cassini), and finally to Oval BA’s current reddened state (New Horizons), we demonstrate that the dynamics of their flow have similarly evolved along with their appearance. In the Galileo epoch, Oval DE had an elliptical shape with peak zonal wind speeds of ∼90 m s−1 in both its northern and southern peripheries. During the post-merger epoch, Oval BA’s shape was more triangular and less elliptical than Oval DE; in addition to widening in the north-south direction, its northern periphery was 20 m s−1 slower, and its southern periphery was 20 m s−1 faster than Oval DE’s flow during the Galileo era. Finally, in the New Horizons era, the reddened Oval BA had evolved back to a classical elliptical form. The northern periphery of Oval BA increased in speed by 20 m s−1 from Cassini to New Horizons, ending up at a speed nearly identical to that of the northern periphery of Oval DE during Galileo. However, the peak speeds along the southern rim of the newly formed Oval BA were consistently faster than the corresponding speeds in Oval DE, and they increased still further between Cassini and New Horizons, ending up at ∼140-150 m s−1. Relative vorticity maps of Oval BA reveal a cyclonic ring surrounding its outer periphery, similar to the ring present around the Great Red Spot. The cyclonic ring around Oval BA in 2007 appears to be moderately stronger than observed in 1997 and 2001, suggesting that this may be associated with the coloration of the vortex. The modest strengthening of the winds in Oval BA, the appearance of red aerosols, and the appearance of a turbulent, cyclonic feature to Oval BA’s northwest create a strong resemblance with the Great Red Spot from both a dynamical and morphological perspective.In addition to the White Ovals, we also measure the winds within two compact cyclonic regions, one in the Galileo data set and one in the Cassini data set. In the images, these cyclonic features appear turbulent and filamentary, but our wind field reveals that the flow manifests as a coherent high-speed collar surrounding relatively quiescent interiors. Our relative vorticity maps show that the vorticity likewise concentrates in a collar near the outermost periphery, unlike the White Ovals which have peak relative vorticity magnitudes near the center of the vortex. The cyclones contain several localized bright regions consistent with the characteristics of thunderstorms identified in other studies. Although less studied than their anticyclonic cousins, these cyclones may offer crucial insights into the planet’s cloud-level energetics and dynamical meteorology.  相似文献   

2.
We present a study of the equatorial region of Jupiter, between latitudes ∼15°S and ∼15°N, based on Cassini ISS images obtained during the Jupiter flyby at the end of 2000, and HST images acquired in May and July 2008. We examine the structure of the zonal wind profile and report the detection of significant longitudinal variations in the intensity of the 6°N eastward jet, up to 60 m s−1 in Cassini and HST observations. These longitudinal variations are, in the HST case, associated with different cloud morphology. Photometric and radiative transfer analysis of the cloud features used as tracers in HST images show that at most there is only a small height difference, no larger than ∼0.5-1 scale heights, between the slow (∼100 m s−1) and fast (∼150 m s−1) moving features. This suggests that speed variability at 6°N is not dominated by vertical wind shears but instead we propose that Rossby wave activity is the responsible for the zonal variability. Removing this variability, we find that Jupiter’s equatorial jet is actually symmetric relative to equator with two peaks of ∼140-150 m s−1 located at latitudes 6°N and 6°S and at a similar pressure level. We also study the local dynamics of particular equatorial features such as several dark projections associated with 5 μm hot spots and a large, long-lived feature called the White Spot (WS) located at 6°S. Convergent flow at the dark projections appears to be a characteristic which depends on the particular morphology and has only been detected in some cases. The internal flow field in the White Spot indicates that it is a weakly rotating quasi-equatorial anticyclone relative to the ambient meridionally sheared flow.  相似文献   

3.
Hubble Space Telescope Wide Field Planetary Camera 2 imaging data of Jupiter were combined with wind profiles from Voyager and Cassini data to study long-term variability in Jupiter’s winds and cloud brightness. Searches for evidence of wind velocity periodicity yielded a few latitudes with potential variability; the most significant periods were found nearly symmetrically about the equator at 0°, 10-12°N, and 14-18°S planetographic latitude. The low to mid-latitude signals have components consistent with the measured stratospheric temperature Quasi-Quadrennial Oscillation (QQO) period of 4-5 years, while the equatorial signal is approximately seasonal and could be tied to mesoscale wave formation. Robustness tests indicate that a constant or continuously varying periodic signal near 4.5 years would appear with high significance in the data periodograms as long as uncertainties or noise in the data are not of greater magnitude. However, the lack of a consistent signal over many latitudes makes it difficult to interpret as a QQO-related change. In addition, further analyses of calibrated 410-nm and 953-nm brightness scans found few corresponding changes in troposphere haze and cloud structure on QQO timescales. However, stratospheric haze reflectance at 255-nm did appear to vary on seasonal timescales, though the data do not have enough temporal coverage or photometric accuracy to be conclusive. Sufficient temporal coverage and spacing, as well as data quality, are critical to this type of search.  相似文献   

4.
We show that the peak velocity of Jupiter’s visible-cloud-level zonal winds near 24°N (planetographic) increased from 2000 to 2008. This increase was the only change in the zonal velocity from 2000 to 2008 for latitudes between ±70° that was statistically significant and not obviously associated with visible weather. We present the first automated retrieval of fast (∼130 m s−1) zonal velocities at 8°N planetographic latitude, and show that some previous retrievals incorrectly found slower zonal winds because the eastward drift of the dark projections (associated with 5-μm hot spots) “fooled” the retrieval algorithms.We determined the zonal velocity in 2000 from Cassini images from NASA’s Planetary Data System using a global method similar to previous longitude-shifting correlation methods used by others, and a new local method based on the longitudinal average of the two-dimensional velocity field. We obtained global velocities from images acquired in May 2008 with the Wide Field Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST). Longer-term variability of the zonal winds is based on comparisons with published velocities based on 1979 Voyager 2 and 1995-1998 HST images. Fluctuations in the zonal wind speeds on the order of 10 m s−1 on timescales ranging from weeks to months were found in the 1979 Voyager 2 and the 1995-1998 HST velocities. In data separated by 10 h, we find that the east-west velocity uncertainty due to longitudinal fluctuations are nearly 10 m s−1, so velocity fluctuations of 10 m s−1 may occur on timescales that are even smaller than 10 h. Fluctuations across such a wide range of timescales limit the accuracy of zonal wind measurements. The concept of an average zonal velocity may be ill-posed, and defining a “temporal mean” zonal velocity as the average of several zonal velocity fields spanning months or years may not be physically meaningful.At 8°N, we use our global method to find peak zonal velocities of ∼110 m s−1 in 2000 and ∼130 m s−1 in 2008. Zonal velocities from 2000 Cassini data produced by our local and global methods agree everywhere, except in the vicinity of 8°N. There, the local algorithm shows that the east-west velocity has large variations in longitude; vast regions exceed ∼140 m s−1. Our global algorithm, and all of the velocity-extraction algorithms used in previously-published studies, found the east-west drift velocities of the visible dark projections, rather than the true zonal velocity at the visible-cloud level. Therefore, the apparent increase in zonal winds between 2000 and 2008 at 8°N is not a true change in zonal velocity.At 7.3°N, the Galileo probe found zonal velocities of 170 m s−1 at the 3-bar level. If the true zonal velocity at the visible-cloud level at this latitude is ∼140 m s−1 rather than ∼105 m s−1, then the vertical zonal wind shear is much less than the currently accepted value.  相似文献   

5.
The region in Jupiter’s atmosphere with the highest density of anticyclonic spot-like vortices is the region known as the South South Temperate Zone (SSTZ), which is located between the eastward jet at ≈−42.9° latitude and the westward jet at ≈−39.2° latitude. We present a characterization of the spots found in this region based on ground-based and Hubble Space Telescope observations from the years 1993 to 2007. Mergers have been reported between spots in this region, similar to those observed for the White Ovals in the latitudinal domain immediately equatorward (northward). We use a multilayer model to perform numerical simulations that capture the details of a well-observed merger event involving multiple interacting vortices. We find that the vertical stratification has an important effect in the outcome of the interaction between spots. In particular it can play a determining role on whether or not a cyclone embedded between two approaching anticyclones can inhibit their merging. From our simulations we conclude that the background static stability of the atmosphere in the SSTZ is better characterized by an average value of .  相似文献   

6.
We present a novel method of constructing streamlines to derive wind speeds within jovian vortices and demonstrate its application to Oval BA for 2001 pre-reddened Cassini flyby data, 2007 post-reddened New Horizons flyby data, and 1998 Galileo data of precursor Oval DE. Our method, while automated, attempts to combine the advantages of both automated and manual cloud tracking methods. The southern maximum wind speed of Oval BA does not show significant changes between these data sets to within our measurement uncertainty. The northern maximum does appear to have increased in strength during this time interval, which likely correlates with the oval’s return to a symmetric shape. We demonstrate how the use of closed streamlines can provide measurements of vorticity averaged over the encircled area with no a priori assumptions concerning oval shape. We find increased averaged interior vorticity between pre- and post-reddened Oval BA, with the precursor Oval DE occupying a middle value of vorticity between these two.  相似文献   

7.
We analyze velocity fields of the Great Red Spot (GRS) and Oval BA that were previously extracted from Cassini, Galileo, and Hubble Space Telescope images (Asay-Davis, X.S., Marcus, P.S., Wong, M., de Pater, I. [2009]. Icarus 203, 164-188). Our analyses use reduced-parameter models in which the GRS, Oval BA, and surrounding zonal (east-west) flows are assumed to have piece-wise-constant potential vorticity (PV), but with finite-sized transition regions between the pieces of constant PV rather than sharp steps. The shapes of the regions of constant PV are computed such that the flow is a steady, equilibrium solution of the 2D quasigeostrophic equations when viewed in a frame translating uniformly in the east-west direction. All parameter values of the models, including the magnitudes of the PV, areas of the regions with constant PV, locations of the transition regions, widths of the transition regions, and the value of the Rossby deformation radius, are found with a genetic algorithm such that the velocity produced by the equilibrium solution is a “best-fit” to the observed velocity fields. A Monte Carlo method is used to estimate the uncertainties in the best-fit parameter values.The best-fit results show that there were significant changes (greater than the uncertainties) in the PV of the GRS between Galileo in 1996 and Hubble in 2006. In particular, the shape of the PV anomaly of the GRS became rounder, and the area of the PV anomaly of the GRS decreased by 18%, although the magnitudes of PV in the anomaly remained constant. In contrast, neither the area nor the magnitude of the PV anomaly of the Oval BA changed from 2000, when its cloud cover was white, to 2006, when its cloud cover was red. The best-fit results also show that the areas of the PV anomalies of the GRS and of the Oval BA are smaller than the areas of their corresponding cloud covers at all times. Using the best-fit values of the Rossby deformation radius, we show that the Brunt-Väisälä frequency is 15% larger at 33°S than at 23°S. As expected (Marcus, 1993), the best-fit results show that the PV of the zonal flow has “jumps” at the latitudes of the maxima of the eastward-going jet streams. However, a surprising result is that a large “jump” in the PV of the zonal flow occurs at the location of a maximum of the westward going jet stream neighboring the GRS. Another surprise is that the jumps in the PV of the zonal flow do not all have the same sign, which implies that there is not a monotonic “staircase” of zonal PV from north to south as was anticipated ( [Marcus, 1993] and [McIntyre, 2008]).  相似文献   

8.
Infrared spectroscopy sensitive to thermal emission from Jupiter’s stratosphere reveals effects persisting 23 days after the impact of a body in late July 2009. Measurements obtained on 2009 August 11 UT at the impact latitude of 56°S (planetocentric), using the Goddard Heterodyne Instrument for Planetary Wind and Composition mounted on the NASA Infrared Telescope Facility, reveal increased ethane abundance and the effects of aerosol opacity. An interval of reduced thermal continuum emission at 11.744 μm is measured ∼60-80° towards planetary east of the impact site, estimated to be at 305° longitude (System III). Retrieved stratospheric ethane mole fraction in the near vicinity of the impact site is enhanced by up to ∼60% relative to quiescent regions at this latitude. Thermal continuum emission at the impact site, and somewhat west of it, is significantly enhanced in the same spectra that retrieve enhanced ethane mole fraction. Assuming that the enhanced continuum brightness near the impact site results from thermalized aerosol debris blocking contribution from the continuum formed in the upper troposphere and indicating the local temperature, then continuum emission by a haze layer can be approximated by an opaque surface inserted at the 45-60 mbar pressure level in the stratosphere in an unperturbed thermal profile, setting an upper limit on the pressure and therefore a lower limit on the altitude of the top of the impact debris at this time. The reduced continuum brightness east of the impact site can be modeled by an opaque surface near the cold tropopause, which is consistent with a lower altitude of ejecta/impactor-formed opacity. The physical extent of the observed region of reduced continuum implies a minimum average velocity of 21 m/s transporting material prograde (planetary east) from the impact.  相似文献   

9.
Thermal-IR imaging from space-borne and ground-based observatories was used to investigate the temperature, composition and aerosol structure of Jupiter’s Great Red Spot (GRS) and its temporal variability between 1995 and 2008. An elliptical warm core, extending over 8° of longitude and 3° of latitude, was observed within the cold anticyclonic vortex at 21°S. The warm airmass is co-located with the deepest red coloration of the GRS interior. The maximum contrast between the core and the coldest regions of the GRS was 3.0-3.5 K in the north-south direction at 400 mbar atmospheric pressure, although the warmer temperatures are present throughout the 150-500 mbar range. The resulting thermal gradients cause counter-rotating flow in the GRS center to decay with altitude into the lower stratosphere. The elliptical warm airmass was too small to be observed in IRTF imaging prior to 2006, but was present throughout the 2006-2008 period in VLT, Subaru and Gemini imaging.Spatially-resolved maps of mid-IR tropospheric aerosol opacity revealed a well-defined lane of depleted aerosols around the GRS periphery, and a correlation with visibly-dark jovian clouds and bright 4.8-μm emission. Ammonia showed a similar but broader ring of depletion encircling the GRS. This narrow lane of subsidence keeps red aerosols physically separate from white aerosols external to the GRS. The visibility of the 4.8-μm bright periphery varies with the mid-IR aerosol opacity of the upper troposphere. Compositional maps of ammonia, phosphine and para-H2 within the GRS interior all exhibit north-south asymmetries, with evidence for higher concentrations north of the warm central core and the strongest depletions in a symmetric arc near the southern periphery. Small-scale enhancements in temperature, NH3 and aerosol opacity associated with localized convection are observed within the generally-warm and aerosol-free South Equatorial Belt (SEB) northwest of the GRS. The extent of 4.8-μm emission from the SEB varied as a part of the 2007 ‘global upheaval,’ though changes during this period were restricted to pressures greater than 500 mbar. Finally, a region of enhanced temperatures extended southwest of the GRS during the survey, restricted to the 100-400 mbar range and with no counterpart in visible imaging or compositional mapping. The warm airmass was perturbed by frequent encounters with the cold airmass of Oval BA, but no internal thermal or compositional effects were noted in either vortex during the close encounters.  相似文献   

10.
We use five and one-half years of limb- and nadir-viewing temperature mapping observations by the Composite Infrared Radiometer-Spectrometer (CIRS) on the Cassini Saturn orbiter, taken between July 2004 and December 2009 (LS from 293° to 4°; northern mid-winter to just after northern spring equinox), to monitor temperature changes in the upper stratosphere and lower mesosphere of Titan. The largest changes are in the northern (winter) polar stratopause, which has declined in temperature by over 20 K between 2005 and 2009. Throughout the rest of the mid to upper stratosphere and lower mesosphere, temperature changes are less than 5 K. In the southern hemisphere, temperatures in the middle stratosphere near 1 mbar increased by 1-2 K from 2004 through early 2007, then declined by 2-4 K throughout 2008 and 2009, with the changes being larger at more polar latitudes. Middle stratospheric temperatures at mid-northern latitudes show a small 1-2 K increase from 2005 through 2009. At north polar latitudes within the polar vortex, temperatures in the middle stratosphere show a ∼4 K increase during 2007, followed by a comparable decrease in temperatures in 2008 and into early 2009. The observed temperature changes in the north polar region are consistent with a weakening of the subsidence within the descending branch of the middle atmosphere meridional circulation.  相似文献   

11.
Henry B. Throop  John Bally 《Icarus》2010,208(1):329-336
If Jupiter and the Sun both formed directly from the same well-mixed proto-solar nebula, then their atmospheric compositions should be similar. However, direct sampling of Jupiter’s troposphere indicates that it is enriched in elements such as C, N, S, Ar, Kr, and Xe by 2-6× relative to the Sun (Wong, M.H., Lunine, J.I., Atreya, S.K., Johnson, T., Mahaffy, P.R., Owen, T.C., Encrenaz, T. [2008]. 219-246). Most existing models to explain this enrichment require an extremely cold proto-solar nebula which allows these heavy elements to condense, and cannot easily explain the observed variations between these species. We find that Jupiter’s atmospheric composition may be explained if the Solar System’s disk heterogeneously accretes small amounts of enriched material such as supernova ejecta from the interstellar medium during Jupiter’s formation. Our results are similar to, but substantially larger than, isotopic anomalies in terrestrial material that indicate the Solar System formed from multiple distinct reservoirs of material simultaneously with one or more nearby supernovas (Trinquier, A., Birck, J.-L., Allegre, C.J. [2007]. Astrophys. J. 655, 1179-1185). Such temporal and spatial heterogeneities could have been common at the time of the Solar System’s formation, rather than the cloud having a purely well-mixed ‘solar nebula’ composition.  相似文献   

12.
We present results from coronagraphic imaging of Mercury’s sodium tail over a 7° field of view. Several sets of observations made at the McDonald Observatory since May 2007 show a tail of neutral sodium atoms stretching more than 1000 Mercury radii (Rm) in length, or a full degree of sky. However, no tail was observed extending beyond 120 Rm during the January 2008 MESSENGER fly-by period, or during a similar orbital phase of Mercury in July 2008. Large changes in Mercury’s heliocentric radial velocity cause Doppler shifts about the Fraunhofer absorption features; the resultant change in solar flux and radiation pressure is the primary cause of the observed variation in tail brightness. Smaller fluctuations in brightness may exist due to changing source rates at the surface, but we have no explicit evidence for such changes in this data set. The effects of radiation pressure on Mercury’s escaping atmosphere are investigated using seven observations spanning different orbital phases. Total escape rates of atmospheric sodium are estimated to be between 5 and 13 × 1023 atoms/s and show a correlation to radiation pressure. Candidate sources of Mercury’s sodium exosphere include desorption by UV sunlight, thermal desorption, solar wind channeled along Mercury’s magnetic field lines, and micro-meteor impacts. Wide-angle observations of the full extent of Mercury’s sodium tail offer opportunities to enhance our understanding of the time histories of these source rates.  相似文献   

13.
A hexagonal structure has been observed at ∼76°N on Saturn since the 1980s (Godfrey, D.A. [1988]. Icarus 76, 335-356). Recent images by Cassini (Baines, K., Momary, T., Roos-Serote, M., Atreya, S., Brown, R., Buratti, B., Clark, R., Nicholson, P. [2007]. Geophys. Res. Abstr. 9, 02109; Baines, K., Momary, T., Fletcher, L., Kim, J., Showman, A., Atreya, S., Brown, R., Buratti, B., Clark, R., Nicholson, P. [2009]. Geophys. Res. Abstr. 11, 3375) have shown that the feature is still visible and largely unchanged. Its long lifespan and geometry has puzzled the planetary physics community for many years and its origin remains unclear. The measured rotation rate of the hexagon may be very close to that of the interior of the planet (Godfrey, D.A. [1990]. Science 247, 1206-1208; Caldwell, J., Hua, X., Turgeon, B., Westphal, J.A., Barnet, C.D. [1993]. Science 206, 326-329; Sánchez-Lavega, A., Lecacheux, J., Colas, F., Laques, P. [1993]. Science 260, 329-332), leading to earlier interpretations of the pattern as a stationary planetary wave, continuously forced by a nearby vortex (Allison, M., Godfrey, D.A., Beebe, R.F. [1990]. Science 247, 1061-1063). Here we present an alternative explanation, based on an analysis of both spacecraft observations of Saturn and observations from laboratory experiments where the instability of quasi-geostrophic barotropic (vertically uniform) jets and shear layers is studied. We also present results from a barotropic linear instability analysis of the saturnian zonal wind profile, which are consistent with the presence of the hexagon in the North Pole and absence of its counter-part in the South Pole. We propose that Saturn’s long-lived polygonal structures correspond to wavemodes caused by the nonlinear equilibration of barotropically unstable zonal jets.  相似文献   

14.
The chromophores responsible for coloring the jovian atmosphere are embedded within Jupiter’s vertical aerosol structure. Sunlight propagates through this vertical distribution of aerosol particles, whose colors are defined by ?0(λ), and we remotely observe the culmination of the radiative transfer as I/F(λ). In this study, we employed a radiative transfer code to retrieve ?0(λ) for particles in Jupiter’s tropospheric haze at seven wavelengths in the near-UV and visible regimes. The data consisted of images of the 2008 passage of Oval BA to the south of the Great Red Spot obtained by the Wide Field Planetary Camera 2 on-board the Hubble Space Telescope. We present derived particle colors for locations that were selected from 14 weather regions, which spanned a large range of observed colors. All ?0(λ) curves were absorbing in the blue, and ?0(λ) increased monotonically to approximately unity as wavelength increased. We found accurate fits to all ?0(λ) curves using an empirically derived functional form: ?0(λ) = 1 − A exp(−). The best-fit parameters for the mean ?0(λ) curve were A = 25.4 and B = 0.0149 for λ in units of nm. We performed a principal component analysis (PCA) on our ?0(λ) results and found that one or two independent chromophores were sufficient to produce the variations in ?0(λ). A PCA of I/F(λ) for the same jovian locations resulted in principal components (PCs) with roughly the same variances as the ?0(λ) PCA, but they did not result in a one-to-one mapping of PC amplitudes between the ?0(λ) PCA and I/F(λ) PCA. We suggest that statistical analyses performed on I/F(λ) image cubes have limited applicability to the characterization of chromophores in the jovian atmosphere due to the sensitivity of I/F(λ) to horizontal variations in the vertical aerosol distribution.  相似文献   

15.
Io’s sublimation-driven atmosphere is modeled using the direct simulation Monte Carlo (DSMC) method. These rarefied gas dynamics simulations improve upon earlier models by using a three-dimensional domain encompassing the entire planet computed in parallel. The effects of plasma heating, planetary rotation, inhomogeneous surface frost, molecular residence time of SO2 on the exposed (non-volatile) rocky surface, and surface temperature distribution are investigated. Circumplanetary flow is predicted to develop from the warm dayside toward the cooler nightside. Io’s rotation leads to a highly asymmetric frost surface temperature distribution (due to the frost’s high thermal inertia) which results in circumplanetary flow that is not axi-symmetric about the subsolar point. The non-equilibrium thermal structure of the atmosphere, specifically vibrational and rotational temperatures, is also examined. Plasma heating is found to significantly inflate the atmosphere on both the dayside and nightside. The plasma energy flux causes high temperatures at high altitudes but plasma energy depletion through the dense gas column above the warmest frost permits gas temperatures cooler than the surface at low altitudes. A frost map (Douté, S., Schmitt, B., Lopes-Gautier, R., Carlson, R., Soderblom, L., Shirley, J., and the Galileo NIMS Team [2001]. Icarus 149, 107-132) is used to control the sublimated flux of SO2 which can result in inhomogeneous column densities that vary by nearly a factor of four for the same surface temperature. A short residence time for SO2 molecules on the “rock” component is found to smooth lateral atmospheric inhomogeneities caused by variations in the surface frost distribution, creating an atmosphere that looks nearly identical to one with uniform frost coverage. A longer residence time is found to agree better with mid-infrared observations (Spencer, J.R., Lellouch, E., Richter, M.J., López-Valverde, M.A., Jessup, K.L, Greathouse, T.K., Flaud, J. [2005]. Icarus 176, 283-304) and reproduce the observed anti-jovian/sub-jovian column density asymmetry. The computed peak dayside column density for Io assuming a surface frost temperature of 115 K agrees with those suggested by Lyman-α observations (Feaga, L.M., McGrath, M., Feldman, P.D. [2009]. Icarus 201, 570-584). On the other hand, the peak dayside column density at 120 K is a factor of five larger and is higher than the upper range of observations (Jessup, K.L., Spencer, J.R., Ballester, G.E., Howell, R.R., Roesler, F., Vigel, M., Yelle, R. [2004]. Icarus 169, 197-215; Spencer et al., 2005).  相似文献   

16.
The occultation of bright star HIP9369 by the northern polar region of Jupiter was observed from four locations in North and South America, providing four data sets for ingress and egress. The inversion of the eight occultation lightcurves provides temperature profiles at different latitudes ranging from 55°N to 73.2°N. We estimate the errors on the profiles due to the uncertainties of the inversion method and compare the value of the temperature at the deepest level probed (∼ 50 μbar) with previous observations. The shape of the temperature gradient profile is found similar to previous investigations of planetary atmospheres with propagating and breaking gravity waves. We analyze the small scale structures in both lightcurves and temperature profiles using the continuous wavelet transform. The calculated power spectra of localized fluctuations in the temperature profiles show slopes close to −3 for all eight profiles. We also isolate and reconstruct the three-dimensional geometry of a single wave mode with vertical and horizontal wavelengths of respectively 3 and 70 km. The identified wave is consistent with the gravity wave regime, with a horizontal phase speed nearly parallel to the planetary meridian. Nevertheless, the dissipation of the corresponding wave in Jupiter’s stratosphere should preclude its detection at the observed levels and an acoustic wave cannot be ruled out.  相似文献   

17.
A study of the vertical cloud structure of oval BA and its red color change is presented in this third part of our complete analysis. A large interest in Jupiter’s anticyclone BA was created by its reddening that occurred between 2005 and 2006. In this work we quantify the color change in oval BA by using images taken with the Advanced Camera for Surveys (ACS) onboard the Hubble Space Telescope (HST) in six filters from the near ultraviolet (F250W) to the deep methane band in the near infrared (F892N). Reflectivity changes are noteworthy in nadir viewing geometry at the ultraviolet and blue wavelengths (F250W, F330W and F435W filters) but almost undetectable or inside error bars in the rest of filters (F550M, F658N and F892N). The observed reflectivity variations are discussed in terms of a commonly accepted vertical cloud structure model for jovian anticyclones in order to explore some causes for the color alteration. Our models of the observed reflectivity variation show that the vortex clouds did not change its vertical extension (top pressure) or its optical depth. We find that a change occurred in the absorbing properties of the particles populating the upper aerosols (single scattering albedo and imaginary refractive index). A discussion on the thermo-physical and dynamical properties of the vortex that could be in the origin of the color change is also presented.  相似文献   

18.
Five years of Cassini Imaging Science Subsystem images, from 2004 to 2009, are analyzed in this work to retrieve global zonal wind profiles of Saturn’s northern and southern hemispheres in the methane absorbing bands at 890 and 727 nm and in their respective adjacent continuum wavelengths of 939 and 752 nm. A complete view of Saturn’s global circulation, including the equator, at two pressure levels, in the tropopause (60 mbar to 250 mbar with the MT filters) and in the upper troposphere (from ∼350 mbar to ∼500 mbar with the CB filter set), is presented. Both zonal wind profiles (available at the Supplementary Material Section), show the same structure but with significant differences in the peak of the eastward jets and the equatorial region, including a region of positive vertical shear symmetrically located around the equator between the 10° < |φc| < 25° where zonal velocities close to the tropopause are higher than at 500 mbar. A comparison of previously published zonal wind sets obtained by Voyager 1 and 2 (1980-1981), Hubble Space Telescope, and ground-based telescopes (1990-2004) with the present Cassini profiles (2004-2009) covering a full Saturn year shows that the shape of the zonal wind profile and intensity of the jets has remained almost unchanged except at the equator, despite the seasonal insolation cycle and the variability of Saturn’s emitted power. The major wind changes occurred at equatorial latitudes, perhaps following the Great White Spot eruption in 1990. It is not evident from our study if the seasonal insolation cycle and its associated ring shadowing influence the equatorial circulation at cloud level.  相似文献   

19.
In this second part of our study of the large jovian anticyclone BA we present detailed measurements of its internal circulation and numerical models of its interaction with the zonal jets and nearby cyclonic regions. We characterized the flow using high-resolution observations obtained by the Cassini spacecraft in December 2000 (9 months after the genesis of BA as a result of the merger of two large White Ovals), by the ACS camera onboard HST in January 2005 and April 2006 and by the New Horizons spacecraft in February 2007. Cloud motions were derived from high-resolution images using an automatic correlator that provides a large sampling of the motions in images separated by short time intervals (30 min-2 h). The internal wind structure did not change when the oval changed its color reddening in late 2005-early 2006 and all four datasets from 2000 to 2007 consistently show a similar wind regime: an asymmetric intense anticyclonic vortex with faster winds in its Southern portion with mean speeds of 110 m/s and peak velocities of 135 m/s. These speeds are slightly higher than those measured in the three White Ovals predecessors of BA by the Voyagers [Mitchell, J.L., Beebe, R.F., Ingersoll, A.P., Garneau, G.W., 1981. J. Geophys. Res. 86, 8751-8757] and Galileo [Vasavada, A.R., and 13 colleagues, 1998. Icarus 135, 265-275] but not as much as it has been recently reported [Simon-Miller, A.A., Chanover, N.J., Orton, G.S., Sussman, M., Tsavaris, I.G., Karkoschka, E., 2006. Icarus 185, 558-562; Cheng, A.F., and 14 colleagues, 2008. Astronom. J. 135, 2446-2452]. The asymmetry of the velocities in the vortex is a consequence of the interaction of BA with the zonal circulation and emerges as a natural result in high-resolution simulations of the vortex dynamics using the EPIC model.  相似文献   

20.
We present measurements of the altitude and eastward velocity component of mesospheric clouds in 35 imaging sequences acquired by the Mars Odyssey (ODY) spacecraft’s Thermal Emission Imaging System visible imaging subsystem (THEMIS-VIS). We measure altitude by using the parallax drift of high-altitude features, and the velocity by exploiting the time delay in the THEMIS-VIS imaging sequence.We observe two distinct classes of mesospheric clouds: equatorial mesospheric clouds observed between 0° and 180° Ls; and northern mid-latitude clouds observed only in twilight in the 200–300° Ls period. The equatorial mesospheric clouds are quite rare in the THEMIS-VIS data set. We have detected them in only five imaging sequences, out of a total of 2048 multi-band equatorial imaging sequences. All five fall between 20° south and 0° latitude, and between 260° and 295° east longitude. The mid-latitude mesospheric clouds are apparently much more common; for these we find 30 examples out of 210 northern winter mid-latitude twilight imaging sequences. The observed mid-latitude clouds are found, with only one exception, in the Acidalia region, but this is quite likely an artifact of the pattern of THEMIS-VIS image targeting. Comparing our THEMIS-VIS images with daily global maps generated from Mars Orbiter Camera Wide Angle (MOC-WA) images, we find some evidence that some mid-latitude mesospheric cloud features correspond to cloud features commonly observed by MOC-WA. Comparing the velocity of our mesospheric clouds with a GCM, we find good agreement for the northern mid-latitude class, but also find that the GCM fails to match the strong easterly winds measured for the equatorial clouds.Applying a simple radiative transfer model to some of the equatorial mesospheric clouds, we find good model fits in two different imaging sequences. By using the observed radiance contrast between cloud and cloud-free regions at multiple visible-band wavelengths, these fits simultaneously constrain the optical depths and particles sizes of the clouds. The particle sizes are constrained primarily by the relative contrasts at the available wavelengths, and are found to be quite different in the two imaging sequences: reff = 0.1 μm and reff = 1.5 μm. The optical depths (constrained by the absolute contrasts) are substantial: 0.22 and 0.5, respectively. These optical depths imply a mass density that greatly exceeds the saturated mass density of water vapor at mesospheric temperatures, and so the aerosol particles are probably composed mainly of CO2 ice. Our simple radiative transfer model is not applicable to twilight, when the mid-latitude mesospheric clouds were observed, and so we leave the properties of these clouds as a question for further work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号